WO2017037829A1 - Method for quantitative analysis of high-molecular-weight compound, and data processing device for said quantitative analysis - Google Patents

Method for quantitative analysis of high-molecular-weight compound, and data processing device for said quantitative analysis Download PDF

Info

Publication number
WO2017037829A1
WO2017037829A1 PCT/JP2015/074652 JP2015074652W WO2017037829A1 WO 2017037829 A1 WO2017037829 A1 WO 2017037829A1 JP 2015074652 W JP2015074652 W JP 2015074652W WO 2017037829 A1 WO2017037829 A1 WO 2017037829A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantitative
polymer compound
sugar chain
sample
analysis
Prior art date
Application number
PCT/JP2015/074652
Other languages
French (fr)
Japanese (ja)
Inventor
修一 中家
慎治 船津
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to EP15902952.9A priority Critical patent/EP3364184A4/en
Priority to JP2017537095A priority patent/JP6508342B2/en
Priority to US15/755,761 priority patent/US10438785B2/en
Priority to CN201580082725.2A priority patent/CN107923873B/en
Priority to PCT/JP2015/074652 priority patent/WO2017037829A1/en
Publication of WO2017037829A1 publication Critical patent/WO2017037829A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8831Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving peptides or proteins

Definitions

  • the present invention relates to a quantitative analysis method for quantifying a high molecular compound such as a sugar chain or a glycopeptide in a sample and a data processing apparatus for the quantitative analysis, and more specifically, a mass spectrometer capable of MS / MS analysis.
  • the present invention relates to a method for quantifying a polymer compound in a sample and a data processing apparatus therefor.
  • MRM Multiple Reaction
  • LC-MS liquid chromatograph mass spectrometer
  • quadrupole mass filter two-stage mass separator
  • MRM transitions a plurality of combinations of precursor ions and product ions (generally referred to as MRM transitions) can be set in one measurement time range. Dozens of components can be quantified. Such an analysis method is called multi-component simultaneous analysis, and has been widely used in recent years for inspection of residual agricultural chemicals and inspection of pollutants in environmental water.
  • Non-Patent Documents 1 and 2 liquid chromatographs that still use ultraviolet absorption detectors or fluorescence detectors as detectors are still frequently used for quantitative analysis of polymer compounds such as sugar chains and glycopeptides (see Non-Patent Documents 1 and 2). ).
  • an ion source such as an electrospray ionization (ESI) method generally used in LC-MS
  • the valence is not 1 when ionizing a polymer compound such as a sugar chain or a glycopeptide. This is because a plurality of types of valence ions are likely to be generated, so that it is not a simple combination of one precursor ion and one product ion for each component like a low molecular compound.
  • the present invention has been made in order to solve the above-mentioned problems, and its object is to provide a mass spectrometer capable of performing MS / MS analysis such as a liquid chromatograph and a tandem quadrupole mass spectrometer, for example.
  • a mass spectrometer capable of performing MS / MS analysis such as a liquid chromatograph and a tandem quadrupole mass spectrometer, for example.
  • the quantitative analysis method of a polymer compound according to the present invention made to solve the above problems is a quantitative analysis method for quantifying a polymer compound in a sample using a mass spectrometer capable of MS / MS analysis.
  • a data processing apparatus for quantitative analysis of a polymer compound according to the present invention which has been made to solve the above problems, is an apparatus for carrying out the above quantitative analysis method, and is capable of performing MS / MS analysis.
  • a data processing device for quantifying a polymer compound in a sample based on data obtained using an analysis device a) With respect to a polymer compound to be analyzed or assumed to be analyzed, a plurality of precursor ions having different ionic valences derived from the compound and a plurality of MRM measurements targeting one common product ion are used.
  • a quadrupole mass filter is provided before and after the collision cell.
  • Q-TOF mass spectrometer in which the subsequent quadrupole mass filter is replaced with a time-of-flight mass spectrometer in the tandem quadrupole mass spectrometer, or a collision cell
  • TOF / TOF mass spectrometer in which two stages of time-of-flight mass separators are connected across an ion gate.
  • the mass spectrometer used here utilizes an ion source that tends to generate multivalent ions.
  • an ion source for example, an ion source by a so-called atmospheric pressure ionization method such as the above-mentioned ESI method can be cited.
  • the polymer compound to be analyzed is typically a sugar chain or a glycopeptide. This is because in sugar chains and glycopeptides, a common product ion generated by cleavage of the precursor ion is known regardless of differences in the structures of the sugar chains and glycopeptides.
  • the mass-to-charge ratio m / w derived from the core structure (3Hex-2HexNac) of the N-linked sugar chain Product ions whose z is 138 may be set as a common product ion (see Patent Document 1).
  • PMP-labeled O-linked sugar chains labeled with 1-phenyl-3-methyl-5-pyrazolone (PMP) are preferentially eliminated by cleavage.
  • a product ion having a mass-to-charge ratio m / z of 175 derived from a complete PMP may be used as a common product ion.
  • the analyst can estimate to some extent the range of ionic valences of ions generated, for example, during ionization by the ESI method based on a priori information. Therefore, by inputting and setting information based on such estimation, it is possible to avoid useless measurement in which significant data cannot be obtained.
  • the peak areas derived from the target compound appearing in the mass chromatograms obtained by the plurality of MRM measurements for one target compound are totaled.
  • the peak area obtained from the mass chromatogram obtained by one MRM measurement reflects the amount of ions having a certain ion valence derived from the target compound. Therefore, by summing multiple peak areas that reflect the amount of ions with different ionic valences derived from the target compound, a total value that reflects the amount of ions that does not depend on the ionic valence is calculated. Used for quantification of target compounds.
  • the sample is a mixture of sugar chains or glycopeptides
  • measurement is performed so as to cover almost all sugar chains or glycopeptides contained in the sample, and the total value of each peak area is obtained based on the results.
  • the abundance ratio of each sugar chain or glycopeptide in the sample can be calculated.
  • the sample is a mixture of sugar chains or glycopeptides
  • the peak information acquisition unit acquires a total value of a plurality of sugar chains or glycopeptides contained in the sample
  • the quantitative processing unit is based on a total value for any sugar chain or glycopeptide obtained by the peak information acquisition unit and a total value obtained by summing the total values of a plurality of sugar chains or glycopeptides contained in the sample.
  • a sample containing a compound separated by a liquid chromatograph is used as a mass spectrometer.
  • the LC-MS Preferably used to obtain data.
  • a polymer compound such as a sugar chain or a glycopeptide, in which a plurality of types of polyvalent ions are easily generated upon ionization.
  • MRM measurement in a mass spectrometer capable of MS / MS analysis.
  • the use of LC-MS enables simultaneous multi-component analysis of a sample such as a sugar chain or a mixture of glycopeptides, thereby improving the throughput of quantitative analysis of these polymer compounds and the time required for analysis. Savings and labor savings can be achieved.
  • carbohydrate obtained in the quantitative analyzer of a present Example The figure which shows an example of the graph of the abundance ratio of the sugar chain which is a quantitative analysis result in the quantitative analysis apparatus of a present Example, and a table
  • FIG. 1 is a schematic configuration diagram of a quantitative analysis apparatus of the present embodiment including a data processing apparatus according to the present invention.
  • This quantitative analyzer is obtained by the measuring unit 2 including the liquid chromatograph (LC) 20 and the tandem quadrupole mass spectrometer (MS / MS) 21 and the operation of the measuring unit 2 and obtained by the measuring unit 2.
  • the liquid chromatograph 20 includes a liquid feed pump for feeding a mobile phase, an injector for injecting a sample into the mobile phase, a column for separating components in the sample in the time direction, and the like.
  • the tandem quadrupole mass spectrometer 21 uses an ESI ion source, a front quadrupole mass filter, a collision cell, a rear quadrupole mass filter, to ionize components in the liquid sample eluted from the column. Including detectors.
  • the tandem quadrupole mass spectrometer 21 may be another type of mass spectrometer capable of MS / MS analysis, such as a Q-TOF mass spectrometer.
  • control / processing unit 3 is a personal computer or a higher-performance workstation (however, they are not necessarily one, and may be a plurality of computers connected to each other).
  • Each of the functional blocks included in the control / processing unit 3 is implemented by one or more installed dedicated control / processing software operating on the computer.
  • control / processing unit 3 includes an analysis control unit 31, a data collection unit 32, and a data storage as functional blocks (reference numeral 3A in FIG. 1) embodied by existing control / processing software.
  • the control / processing unit 3 executes a characteristic data process, which will be described later, as a functional block (reference numeral 3B in FIG. 1) embodied by newly prepared control / processing software.
  • Measurement target setting unit 300 including m / z calculation unit 301, measurement condition setting unit including multivalent ion information file creation unit 303, multivalent ion information file storage unit 304, method file creation unit 305, and method file storage unit 306 302, a peak area summation unit 311, a multivalent ion quantitative calculation unit 310 including a quantitative value calculation unit 312, and a quantitative output information creation unit 313.
  • the functional blocks indicated by reference numerals 3A and 3B in FIG. 1 may be realized by a single control / processing software.
  • Samples to be measured are, for example, N-linked glycopeptide mixtures, labeled N-linked sugar chain mixtures, PMP-labeled O-linked sugar chain mixtures, and the like. All of them are prepared through a predetermined pretreatment.
  • the N-linked glycopeptide is prepared, for example, by digesting a glycoprotein such as an antibody with an appropriate enzyme such as trypsin and complying with the method described in Non-Patent Document 3.
  • the labeled N-linked sugar chain is prepared by, for example, treating a sugar chain with glycanase with PNGase and then labeling with 2-aminopyridine or the like.
  • the PMP-labeled O-linked sugar chain is prepared, for example, by non-reductive alkaline ⁇ elimination and labeling with PMP according to the method described in Non-Patent Document 4.
  • the analyst Prior to measuring the sample as described above by the measurement unit 2, the analyst inputs measurement conditions from the input unit 4 such as a keyboard. First, the analyst should examine the structure of various sugar chains that are assumed to be contained in the sample, the ionic valence of ions (precursor ions) that are assumed to be generated from the sugar chains, and the structure of the sugar chains. The mass-to-charge ratio of the product ions that appear in common regardless of, is input and set. Specifically, when the analyst performs a predetermined operation with the input unit 4, the measurement target setting unit 300 displays a list of various sugar chain structures on the screen of the display unit 5.
  • the analyst selects a plurality of sugar chain structures assumed to be included in the sample from the list, and inputs a plurality of ion valences for each. Since the mass is known for each glycan structure, the precursor m / z calculation unit 301 calculates the mass-to-charge ratio of ions derived from the glycan for each glycan structure from the mass and the input valence. Calculated as the precursor ion mass to charge ratio.
  • the measurement target setting unit 300 displays a candidate list of product ion mass-to-charge ratios on the screen of the display unit 5, and the analyst selects an appropriate mass-to-charge ratio from the list according to the type of sample. Since the mass-to-charge ratio of the product ion usually depends on the backbone structure of the sugar chain, when the component in the sample is an N-linked glycopeptide or a labeled N-linked sugar chain, it is disclosed in Patent Document 1. As shown, m / z 138 may be selected as the product ion mass-to-charge ratio. This is an ion derived from the core structure (3Hex-2HexNac) of the N-linked sugar chain.
  • m as the product ion mass-to-charge ratio. / z175 may be selected. This is an ion derived from PMP, which is a complete body that is preferentially eliminated by cleavage.
  • FIG. 3 is a diagram showing an example of a combination of a precursor ion that is a multivalent ion and a common product ion, that is, an MRM transition.
  • the first row shows a combination of a precursor ion having a mass-to-charge ratio of m / z 986.7225, which is a trivalent ion, and a product ion having a mass-to-charge ratio of m / z 138.
  • the analyst inputs a measurement time range and a measurement condition such as an MRM transition of the MRM measurement executed within the measurement time range on the measurement condition setting screen displayed on the screen of the display unit 5 by the measurement condition setting unit 302. Input by part 4.
  • the measurement time range is appropriately determined based on a known retention time of a sugar chain.
  • the method file creation unit 305 In response to the setting of the measurement conditions as described above, the method file creation unit 305 repeatedly executes MRM measurement for a predetermined one or more MRM transitions in a time range from a predetermined start time to an end time based on the sample injection. Create a method file to control each part. If only the MRM measurement for one MRM transition is set in a certain measurement time range, the MRM measurement for that one MRM transition is repeatedly executed. If MRM measurement for a plurality of MRM transitions is set in a certain measurement time range, a cycle of executing MRM measurement for each of the plurality of MRM transitions once is repeated. The created method file is stored in the method file storage unit 306.
  • the multivalent ion information file creation unit 303 includes a unique ID assigned to each sugar chain structure, a mass-to-charge ratio of a plurality of precursor ions having different ion valences derived from the sugar chain, and a common A multivalent ion information file that links the mass-to-charge ratio of product ions is created and stored in the multivalent ion information file storage unit 304.
  • FIG. 2 is an explanatory diagram showing an example of this association.
  • the unique ID that can identify the sugar chain structure the mass-to-charge ratio of the three types of precursor ions having ionic valences of 2, 3, and 4, and the mass of one product ion common to these precursor ions The charge ratio is tied.
  • three types of MRM transitions exist for this sugar chain.
  • the file for performing such association is created because the method file described above associates the measurement time range with the MRM transition, but the MRM transition and the compound (in this case, sugar chain or sugar This is because there is no correspondence with the peptide structure.
  • the analysis control unit 31 controls the measurement unit 2 according to the measurement conditions in the method file stored in the method file storage unit 306, and performs LC / MS analysis on the sample.
  • the tandem quadrupole mass spectrometer 21 sequentially performs MRM measurements for various MRM transitions on the components that are sequentially eluted from the column of the liquid chromatograph 20.
  • the data collection unit 32 collects data obtained from the tandem quadrupole mass spectrometer 21 and stores it in the data storage unit 33 as one data file.
  • the chromatogram creation unit 34 reads the designated data file from the data storage unit 33, and converts the data obtained by the MRM measurement into each MRM transition. Based on this, a mass chromatogram showing the relationship between time and signal intensity is created.
  • the peak area calculation unit 35 detects a peak within the allowable range of each detection time in each mass chromatogram, and calculates the peak area.
  • the quantitative value of the target compound is calculated based on this peak area value.
  • the quantitative analysis assuming multivalent ions the following data processing is performed.
  • the peak area summing unit 311 in the multivalent ion quantitative calculation unit 310 reads the multivalent ion information file in which the association information is stored from the multivalent ion information file storage unit 304. Based on the association information, a plurality of MRM transitions associated with the same sugar chain or glycopeptide are recognized, and a plurality of sugar chains or glycopeptides derived from the same sugar chain or glycopeptide are identified for each same sugar chain or glycopeptide. The peak areas calculated in the mass chromatogram for the MRM transitions are summed, and the sum of the peak areas is calculated. For example, in the example of FIG.
  • the peak area summation unit 311 obtains the peak area summation values for all sugar chains set by the analyst before the measurement is executed. Unless there is a significant leak in the ion valence specified by the analyst, the combined peak area value should correspond to the relative content of the sugar chain or glycopeptide. Therefore, the quantitative value calculation unit 312 obtains a peak total area value obtained by summing up the peak area total values in all sugar chains or glycopeptides, and the ratio of the peak area total value in each sugar chain or glycopeptide to the peak total area value. Each (% value) is calculated as a quantitative value.
  • the quantitative output information creation unit 313 aggregates the abundance ratios calculated for each sugar chain or glycopeptide in the form of a graph or a table, and displays this on the screen of the display unit 5 as a quantitative analysis result.
  • FIG. 6 is an example of a quantitative analysis result displayed on the screen of the display unit 5.
  • the abundance ratios and standard deviations for 33 types of sugar chains are indicated by numerical values in the table below, and the abundance ratios for the structures of the 33 types of sugar chains are indicated by bar graphs above.
  • the analyst can intuitively grasp the abundance ratio of sugar chains and glycopeptides contained in the sample by viewing this display.
  • the abundance ratio of specific sugar chains and glycopeptides specified by the analyst may be displayed. Good.
  • only those whose abundance ratio exceeds or falls below a predetermined value may be selected and displayed.
  • the present invention has been applied to the quantification of sugar chains and glycopeptides.
  • the present invention is generally applied to the quantification of types of polymer compounds that can generate a common product ion regardless of the chemical structure.
  • the invention is applicable.
  • the mass analysis was performed after temporally separating the components in the sample with a liquid chromatograph, but the number of components contained in the sample was small, and the mass was analyzed. If different components having the same structure but different structures are not included, the sample can be directly introduced into the mass spectrometer without passing through the liquid chromatograph for mass analysis.
  • Measurement unit 20 Liquid chromatograph 21 ... Tandem quadrupole mass spectrometer 3 ... Control / processing unit 31 ... Analysis control unit 32 ; Data collection unit 33 ... Data storage unit 34 ... Chromatogram creation unit 35 ... Peak area Calculation unit 300 ... Measurement object setting unit 301 ... Precursor m / z calculation unit 302 ... Measurement condition setting unit 303 ... Multivalent ion information file creation unit 304 ... Multivalent ion information file storage unit 305 ... Method file creation unit 306 ... Method file Storage unit 310 ... multivalent ion quantitative calculation unit 311 ... peak area summation unit 312 ... quantitative value calculation unit 313 ... quantitative output information creation unit 4 ... input unit 5 ... display unit

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)

Abstract

When an analyst inputs the structure of each of sugar chains supposed to be contained in a sample, a supposed ionic valence, a common product ion m/z, etc., then a precursor m/z calculation unit (301) calculates the m/z of a precursor ion derived from the sugar chain and a method file creation unit (305) creates a method file including MRM transitions. A polyvalent-ion information file creation unit (303) creates a file which links a unique ID of the sugar-chain structure to the precursor ion m/z and the product ion m/z. After completion of a measurement, a chromatogram creation unit (34) makes a mass chromatogram for each MRM transition, and a peak-area addition unit (311) adds up the areas of peaks of the mass chromatograms for the MRM transitions corresponding to the same sugar chain by reference to the linking file. A quantitative-value calculation unit (312) determines the proportion of each sugar chain present, as a quantitative value on the basis of the total value. A quantitative output information creation unit (39) converts the quantitative values into a graph, and the graph is output to a display unit (5). Thus, simultaneous multi-component analysis of a compound which is apt to generate a polyvalent ion, such as a sugar chain, can be made with LC-MS.

Description

高分子化合物の定量分析方法及び該定量分析のためのデータ処理装置Method for quantitative analysis of polymer compound and data processing apparatus for the quantitative analysis
 本発明は、試料中の糖鎖や糖ペプチドなどの高分子化合物を定量する定量分析方法及び該定量分析のためのデータ処理装置に関し、さらに詳しくは、MS/MS分析が可能な質量分析装置を用いて試料中の高分子化合物を定量する方法及びそのためのデータ処理装置に関する。 The present invention relates to a quantitative analysis method for quantifying a high molecular compound such as a sugar chain or a glycopeptide in a sample and a data processing apparatus for the quantitative analysis, and more specifically, a mass spectrometer capable of MS / MS analysis. The present invention relates to a method for quantifying a polymer compound in a sample and a data processing apparatus therefor.
 医薬品や農薬などの低分子化合物の定量分析には、液体クロマトグラフとタンデム四重極型質量分析装置とを組み合わせた液体クロマトグラフ質量分析装置(LC-MS)による多重反応モニタリング(MRM=Multiple Reaction Monitoring)測定がしばしば利用されている。MRM測定では、2段階の質量分離器(四重極マスフィルタ)により夾雑成分の影響を排除することができるので、目的成分と保持時間が近い夾雑成分が存在し、液体クロマトグラフにおいてそれらが十分には分離できない場合であっても、高い精度で目的成分の定量分析を行うことができる。また、通常、LC-MSによるMRM測定では、プリカーサイオンとプロダクトイオンとの組み合わせ(一般にMRMトランジションという)を一つの測定時間範囲に複数設定することができ、1回の測定で数十種から百数十種の成分の定量を行うことができる。こうした分析手法は多成分一斉分析と呼ばれ、近年、残留農薬検査、環境水中の汚染物質検査などに広く利用されている。 For quantitative analysis of low molecular weight compounds such as pharmaceuticals and agricultural chemicals, multiple reaction monitoring (MRM = Multiple Reaction) using a liquid chromatograph mass spectrometer (LC-MS) that combines a liquid chromatograph and a tandem quadrupole mass spectrometer Monitoring) is often used. In MRM measurement, the influence of contaminant components can be eliminated by a two-stage mass separator (quadrupole mass filter), so there are contaminant components with retention times close to those of the target component. Even if it cannot be separated, the quantitative analysis of the target component can be performed with high accuracy. In general, in MRM measurement by LC-MS, a plurality of combinations of precursor ions and product ions (generally referred to as MRM transitions) can be set in one measurement time range. Dozens of components can be quantified. Such an analysis method is called multi-component simultaneous analysis, and has been widely used in recent years for inspection of residual agricultural chemicals and inspection of pollutants in environmental water.
 一方、糖鎖や糖ペプチドなどの高分子化合物の定量分析には、いまだに紫外吸収検出器や蛍光検出器を検出器として用いた液体クロマトグラフが頻用されている(非特許文献1、2など参照)。その理由の一つは、LC-MSで一般に使用されているエレクトロスプレーイオン化(ESI)法などによるイオン源では、糖鎖や糖ペプチドなどの高分子化合物をイオン化する際に価数が1でない多価イオンが複数種類生成され易いため、低分子化合物のように、成分毎に、一つのプリカーサイオンと一つのプロダクトイオンという単純な組み合わせにはならないためである。さらに、よく知られているように糖鎖の構造には不均一性があり、試料によって検出されるイオン価数のばらつきが大きいという問題もある。こうしたことのために、糖鎖や糖ペプチドなどの高分子化合物の定量分析では、低分子化合物の定量分析とは異なり、LC-MSを利用した多成分一斉分析は困難である。その結果、紫外吸収検出器や蛍光検出器を検出器とした液体クロマトグラフを用いて化合物一つ一つについて定量分析を行う必要があり、分析のスループットが低く、分析に要する時間の短縮や労力の削減が大きな課題となっている。 On the other hand, liquid chromatographs that still use ultraviolet absorption detectors or fluorescence detectors as detectors are still frequently used for quantitative analysis of polymer compounds such as sugar chains and glycopeptides (see Non-Patent Documents 1 and 2). ). One of the reasons is that, in an ion source such as an electrospray ionization (ESI) method generally used in LC-MS, the valence is not 1 when ionizing a polymer compound such as a sugar chain or a glycopeptide. This is because a plurality of types of valence ions are likely to be generated, so that it is not a simple combination of one precursor ion and one product ion for each component like a low molecular compound. Furthermore, as is well known, there is a problem in that the sugar chain structure has non-uniformity, and the ionic valence detected by the sample varies greatly. For this reason, unlike the quantitative analysis of low molecular weight compounds, multi-component simultaneous analysis using LC-MS is difficult for quantitative analysis of high molecular weight compounds such as sugar chains and glycopeptides. As a result, it is necessary to perform a quantitative analysis for each compound using a liquid chromatograph with an ultraviolet absorption detector or a fluorescence detector as the detector, resulting in low analysis throughput, reduced analysis time, and labor. Reduction has become a major issue.
特開2014-66704号公報JP 2014-66704 A
 本発明は上記課題を解決するために成されたものであり、その目的とするところは、例えば液体クロマトグラフとタンデム四重極型質量分析装置などのMS/MS分析が可能である質量分析装置とを組み合わせた装置におけるMRM測定を利用して、糖鎖や糖ペプチドなどの高分子化合物についての多成分一斉分析を可能とすることで、それら高分子化合物の定量分析のスループットを改善することができる高分子化合物の定量分析方法及び該方法を実施するためのデータ処理装置を提供することである。 The present invention has been made in order to solve the above-mentioned problems, and its object is to provide a mass spectrometer capable of performing MS / MS analysis such as a liquid chromatograph and a tandem quadrupole mass spectrometer, for example. Can improve the throughput of quantitative analysis of high-molecular compounds by enabling multi-component simultaneous analysis of high-molecular compounds such as sugar chains and glycopeptides by using MRM measurement in a device combined with It is to provide a method for quantitative analysis of a polymer compound that can be produced and a data processing device for carrying out the method.
 上記課題を解決するためになされた本発明に係る高分子化合物の定量分析方法は、MS/MS分析が可能である質量分析装置を利用して試料中の高分子化合物を定量する定量分析方法であって、
 a)分析対象である又は分析対象として想定される高分子化合物について、該化合物由来でイオン価数が相違する複数のプリカーサイオン及び共通である一つのプロダクトイオンを対象とした複数のMRM測定によってそれぞれ得られた複数のマスクロマトグラムに現れるピークの面積を合計した合算値を算出するピーク情報取得ステップと、
 b)前記ピーク情報取得ステップで得られた合算値を利用して、分析対象である又は分析対象として想定される高分子化合物の定量演算を行う定量ステップと、
 を有することを特徴としている。
The quantitative analysis method of a polymer compound according to the present invention made to solve the above problems is a quantitative analysis method for quantifying a polymer compound in a sample using a mass spectrometer capable of MS / MS analysis. There,
a) With respect to a polymer compound to be analyzed or assumed to be analyzed, a plurality of precursor ions having different ionic valences derived from the compound and a plurality of MRM measurements targeting one common product ion are used. A peak information acquisition step for calculating a total value of the peak areas appearing in the obtained plurality of mass chromatograms,
b) Using the total value obtained in the peak information acquisition step, a quantitative step for performing a quantitative calculation of a polymer compound that is an analysis target or assumed as an analysis target;
It is characterized by having.
 また上記課題を解決するためになされた本発明に係る高分子化合物の定量分析のためのデータ処理装置は、上記定量分析方法を実施するための装置であり、MS/MS分析が可能である質量分析装置を用いて得られたデータに基づいて試料中の高分子化合物を定量するデータ処理装置であって、
 a)分析対象である又は分析対象として想定される高分子化合物について、該化合物由来でイオン価数が相違する複数のプリカーサイオン及び共通である一つのプロダクトイオンを対象とした複数のMRM測定によってそれぞれ得られた複数のマスクロマトグラムに現れるピークの面積を合計した合算値を算出するピーク情報取得部と、
 b)前記ピーク情報取得部で得られた合算値を利用して、分析対象である又は分析対象として想定される高分子化合物の定量演算を行う定量処理部と、
 を備えることを特徴としている。
In addition, a data processing apparatus for quantitative analysis of a polymer compound according to the present invention, which has been made to solve the above problems, is an apparatus for carrying out the above quantitative analysis method, and is capable of performing MS / MS analysis. A data processing device for quantifying a polymer compound in a sample based on data obtained using an analysis device,
a) With respect to a polymer compound to be analyzed or assumed to be analyzed, a plurality of precursor ions having different ionic valences derived from the compound and a plurality of MRM measurements targeting one common product ion are used. A peak information acquisition unit for calculating a total value of the peak areas appearing in the obtained plurality of mass chromatograms;
b) Using the total value obtained by the peak information acquisition unit, a quantitative processing unit that performs a quantitative calculation of a polymer compound that is an analysis target or is assumed to be an analysis target;
It is characterized by having.
 本発明に係る高分子化合物の定量分析方法及びデータ処理装置において処理の対象であるデータを取得するための質量分析装置としては典型的には、コリジョンセルを挟んで前後に四重極マスフィルタを配置したタンデム四重極型質量分析装置、該タンデム四重極型質量分析装置において後段の四重極マスフィルタを飛行時間型質量分析装置に置き換えたQ-TOF型質量分析装置、又は、コリジョンセル及びイオンゲートを挟んで飛行時間型質量分離器を2段接続したTOF/TOF型質量分析装置などである。また、ここで使用される質量分析装置は、多価イオンを生成し易い傾向にあるイオン源を利用したものであることが好ましい。こうしたイオン源としては例えば、上述したESI法等のいわゆる大気圧イオン化法によるイオン源が挙げられる。 Typically, as a mass spectrometer for acquiring data to be processed in the polymer compound quantitative analysis method and the data processing apparatus according to the present invention, a quadrupole mass filter is provided before and after the collision cell. Arranged tandem quadrupole mass spectrometer, Q-TOF mass spectrometer in which the subsequent quadrupole mass filter is replaced with a time-of-flight mass spectrometer in the tandem quadrupole mass spectrometer, or a collision cell And a TOF / TOF mass spectrometer in which two stages of time-of-flight mass separators are connected across an ion gate. Moreover, it is preferable that the mass spectrometer used here utilizes an ion source that tends to generate multivalent ions. As such an ion source, for example, an ion source by a so-called atmospheric pressure ionization method such as the above-mentioned ESI method can be cited.
 また本発明に係る高分子化合物の定量分析方法及びデータ処理装置において、分析対象の高分子化合物は典型的には糖鎖又は糖ペプチドである。何故なら、糖鎖や糖ペプチドでは、その糖鎖や糖ペプチドの構造の相違に拘わらず、そのプリカーサイオンの開裂によって生成される共通のプロダクトイオンが既知であるからである。
 例えば、N-結合型糖ペプチドや2-アミノピリジン等により標識された標識N-結合型糖鎖では、N-結合型糖鎖のコア構造(3Hex-2HexNac)に由来する、質量電荷比m/zが138であるプロダクトイオンを共通のプロダクトイオンとすればよい(特許文献1参照)。また、1-フェニル-3-メチル-5-ピラゾロン(1-phenyl-3-Methyl-5-pyrazolone=PMP)により標識されたPMP標識O-結合型糖鎖では、開裂によって優先的に脱離する完全体であるPMP由来の、質量電荷比m/zが175であるプロダクトイオンを共通のプロダクトイオンとすればよい。
In the polymer compound quantitative analysis method and data processing apparatus according to the present invention, the polymer compound to be analyzed is typically a sugar chain or a glycopeptide. This is because in sugar chains and glycopeptides, a common product ion generated by cleavage of the precursor ion is known regardless of differences in the structures of the sugar chains and glycopeptides.
For example, in a labeled N-linked sugar chain labeled with an N-linked glycopeptide, 2-aminopyridine, or the like, the mass-to-charge ratio m / w derived from the core structure (3Hex-2HexNac) of the N-linked sugar chain Product ions whose z is 138 may be set as a common product ion (see Patent Document 1). In addition, PMP-labeled O-linked sugar chains labeled with 1-phenyl-3-methyl-5-pyrazolone (PMP) are preferentially eliminated by cleavage. A product ion having a mass-to-charge ratio m / z of 175 derived from a complete PMP may be used as a common product ion.
 或る高分子化合物からイオン価数が相違する複数の多価イオンが生成される場合、所定範囲のイオン価数全てについてMRMトランジションを定めMRM測定を実施することも可能ではあるが、一つの化合物当たりのMRMトランジションの数が多いと、一つのMRMトランジションの下でのMRM測定の時間が短くなる、又は、同じMRMトランジションの下でのMRM測定の繰り返しの時間間隔が長くなる。前者は分析感度の低下に繋がるし、後者は定量精度の低下に繋がる。そこで、本発明に係るデータ処理装置では、化合物情報、イオン価数についての情報、及びプロダクトイオンについての情報を分析者が入力設定できるようにするとよい。糖鎖、糖ペプチドなどの特定の高分子化合物については、分析者は先験情報に基づき、例えばESI法によるイオン化の際に生成されるイオンのイオン価数の範囲を或る程度推定可能であるから、そうした推定に基づく情報を入力設定することで、有意なデータが得られない無駄な測定を回避することができる。 When a plurality of multivalent ions having different ionic valences are generated from a certain polymer compound, it is possible to set MRM transitions for all the ionic valences in a predetermined range and perform MRM measurement. When the number of MRM transitions per unit is large, the time for MRM measurement under one MRM transition is shortened, or the time interval for repeating the MRM measurement under the same MRM transition is increased. The former leads to a decrease in analytical sensitivity, and the latter leads to a decrease in quantitative accuracy. Therefore, in the data processing apparatus according to the present invention, it is preferable that an analyst can input and set compound information, information on ion valence, and information on product ions. For specific polymer compounds such as sugar chains and glycopeptides, the analyst can estimate to some extent the range of ionic valences of ions generated, for example, during ionization by the ESI method based on a priori information. Therefore, by inputting and setting information based on such estimation, it is possible to avoid useless measurement in which significant data cannot be obtained.
 本発明に係る高分子化合物の定量分析方法において、ピーク情報取得ステップでは、一つの目的化合物に対する複数のMRM測定によってそれぞれ得られたマスクロマトグラムに現れる、該目的化合物由来のピーク面積を合計する。このとき、一つのMRM測定によって得られるマスクロマトグラムから求まるピーク面積は、目的化合物由来の或る一つのイオン価数のイオンの量を反映したものである。そこで、目的化合物由来のそれぞれ異なるイオン価数のイオンの量を反映した複数のピーク面積を合計することで、イオン価数に依らないイオンの量を反映した合算値を算出し、この合算値を目的化合物の定量に利用する。例えば、試料が糖鎖又は糖ペプチドの混合物である場合、試料に含まれる糖鎖又は糖ペプチドをほぼ網羅するように測定を実行し、その結果に基づいてそれぞれのピーク面積の合算値を求めることで、各糖鎖又は糖ペプチドの試料中の存在量比を算出することができる。 In the polymer compound quantitative analysis method according to the present invention, in the peak information acquisition step, the peak areas derived from the target compound appearing in the mass chromatograms obtained by the plurality of MRM measurements for one target compound are totaled. At this time, the peak area obtained from the mass chromatogram obtained by one MRM measurement reflects the amount of ions having a certain ion valence derived from the target compound. Therefore, by summing multiple peak areas that reflect the amount of ions with different ionic valences derived from the target compound, a total value that reflects the amount of ions that does not depend on the ionic valence is calculated. Used for quantification of target compounds. For example, when the sample is a mixture of sugar chains or glycopeptides, measurement is performed so as to cover almost all sugar chains or glycopeptides contained in the sample, and the total value of each peak area is obtained based on the results. Thus, the abundance ratio of each sugar chain or glycopeptide in the sample can be calculated.
 こうした演算を実行するとともにその結果を出力するために、本発明に係る高分子化合物の定量分析のためのデータ処理装置では、
 前記試料は糖鎖又は糖ペプチドの混合物であり、
 前記ピーク情報取得部は、前記試料に含まれる複数の糖鎖又は糖ペプチドの合算値を取得し、
 前記定量処理部は、前記ピーク情報取得部で得られた任意の糖鎖又は糖ペプチドに対する合算値と、前記試料に含まれる複数の糖鎖又は糖ペプチドの合算値を合計した合計値とに基づいて、前記任意の糖鎖又は糖ペプチドの存在量比を求め、
 前記定量処理部で得られた任意の糖鎖又は糖ペプチドの存在量比を表示部の画面上にグラフ形式又は表形式で提示する定量結果提示部、をさらに備える構成とするとよい。
In order to execute such calculation and output the result, in the data processing apparatus for quantitative analysis of the polymer compound according to the present invention,
The sample is a mixture of sugar chains or glycopeptides,
The peak information acquisition unit acquires a total value of a plurality of sugar chains or glycopeptides contained in the sample,
The quantitative processing unit is based on a total value for any sugar chain or glycopeptide obtained by the peak information acquisition unit and a total value obtained by summing the total values of a plurality of sugar chains or glycopeptides contained in the sample. And determining the abundance ratio of the arbitrary sugar chain or glycopeptide,
It is good to set it as the structure further provided with the fixed_quantity | quantitative_assay result presentation part which presents the abundance ratio of arbitrary sugar_chain | carbohydrate or glycopeptide obtained by the said fixed_quantity | quantitative_assay processing part on the screen of a display part in a graph format or a table | surface form.
 なお、本発明に係る高分子化合物の定量分析方法及びデータ処理装置において処理対象であるデータを取得するために、上述したように、液体クロマトグラフで成分分離された化合物を含む試料を質量分析装置に導入するLC-MSを用いることは必須ではないものの、多成分一斉分析を行う場合、特に糖鎖のように質量が同じで構造が多様である化合物の定量を行う際にはLC-MSを用いてデータを取得することが好ましい。 In addition, in order to obtain data to be processed in the polymer compound quantitative analysis method and data processing apparatus according to the present invention, as described above, a sample containing a compound separated by a liquid chromatograph is used as a mass spectrometer. Although it is not essential to use the LC-MS introduced into the LC-MS, when performing multi-component simultaneous analysis, particularly when quantifying compounds having the same mass and various structures such as sugar chains, the LC-MS Preferably used to obtain data.
 本発明に係る高分子化合物の定量分析方法及び該定量分析のためのデータ処理装置によれば、イオン化の際に複数種類の多価イオンが生成され易い、糖鎖や糖ペプチドなどの高分子化合物を、MS/MS分析が可能な質量分析装置におけるMRM測定を利用して効率良く且つ精度良く定量することができる。また特に、LC-MSを利用することによって、糖鎖や糖ペプチドの混合物などの試料に対する多成分一斉分析が可能となるので、それら高分子化合物の定量分析のスループットを改善し、分析に要する時間の節約と労力の削減を達成することができる。 According to the method for quantitative analysis of a polymer compound and a data processing apparatus for the quantitative analysis according to the present invention, a polymer compound such as a sugar chain or a glycopeptide, in which a plurality of types of polyvalent ions are easily generated upon ionization. Can be efficiently and accurately quantified using MRM measurement in a mass spectrometer capable of MS / MS analysis. In particular, the use of LC-MS enables simultaneous multi-component analysis of a sample such as a sugar chain or a mixture of glycopeptides, thereby improving the throughput of quantitative analysis of these polymer compounds and the time required for analysis. Savings and labor savings can be achieved.
本発明の一実施例である定量分析装置の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the quantitative analyzer which is one Example of this invention. 本実施例の定量分析装置における分析対象化合物とプリカーサイオン及びプロダクトイオンの紐付けの一例を示す説明図。Explanatory drawing which shows an example of the string | linking of the analysis object compound, precursor ion, and product ion in the quantitative analysis apparatus of a present Example. 本実施例の定量分析装置における多価イオンであるプリカーサイオンと共通のプロダクトイオンとの組み合わせの一例を示す図。The figure which shows an example of the combination of the precursor ion which is a multivalent ion and the common product ion in the quantitative analysis apparatus of a present Example. 本実施例の定量分析装置において得られる、同一糖鎖由来の複数のMRMトランジションにおけるマスクロマトグラムの一例を示す図。The figure which shows an example of the mass chromatogram in the several MRM transition derived from the same sugar_chain | carbohydrate obtained in the quantitative analyzer of a present Example. 本実施例の定量分析装置において得られる、同一糖鎖由来の複数のMRMトランジションにおけるマスクロマトグラムの別の例を示す図。The figure which shows another example of the mass chromatogram in the several MRM transition derived from the same sugar_chain | carbohydrate obtained in the quantitative analyzer of a present Example. 本実施例の定量分析装置における定量分析結果である糖鎖の存在量比のグラフ及び表の一例を示す図。The figure which shows an example of the graph of the abundance ratio of the sugar chain which is a quantitative analysis result in the quantitative analysis apparatus of a present Example, and a table | surface.
 以下、本発明に係る高分子化合物の定量分析方法及び該方法を実施するためのデータ処理装置の一実施例について、添付図面を参照して説明する。ここでは、糖鎖又は糖ペプチドの混合物を試料とし、該試料中の糖鎖又は糖ペプチドを定量する場合を例に挙げる。
 図1は、本発明に係るデータ処理装置を含む、本実施例の定量分析装置の概略構成図である。
Hereinafter, an embodiment of a quantitative analysis method for a polymer compound according to the present invention and a data processing apparatus for carrying out the method will be described with reference to the accompanying drawings. Here, as an example, a mixture of sugar chains or glycopeptides is used as a sample, and the sugar chains or glycopeptides in the sample are quantified.
FIG. 1 is a schematic configuration diagram of a quantitative analysis apparatus of the present embodiment including a data processing apparatus according to the present invention.
 この定量分析装置は、液体クロマトグラフ(LC)20及びタンデム四重極型質量分析装置(MS/MS)21を含む測定部2と、測定部2の動作を制御するとともに該測定部2で得られたデータを処理する制御・処理部3と、ユーザーインターフェイスである入力部4及び表示部5と、を備える。 This quantitative analyzer is obtained by the measuring unit 2 including the liquid chromatograph (LC) 20 and the tandem quadrupole mass spectrometer (MS / MS) 21 and the operation of the measuring unit 2 and obtained by the measuring unit 2. A control / processing unit 3 for processing the received data, and an input unit 4 and a display unit 5 which are user interfaces.
 図示しないが、液体クロマトグラフ20は移動相を送給する送液ポンプ、移動相中に試料を注入するインジェクタ、試料中の成分を時間方向に分離するカラムなどを含む。一方、タンデム四重極型質量分析装置21はそのカラムから溶出して来る液体試料中の成分をイオン化するためにESIイオン源、前段四重極マスフィルタ、コリジョンセル、後段四重極マスフィルタ、検出器などを含む。なお、タンデム四重極型質量分析装置21はQ-TOF型質量分析装置等、MS/MS分析が可能である他の形態の質量分析装置でもよい。 Although not shown, the liquid chromatograph 20 includes a liquid feed pump for feeding a mobile phase, an injector for injecting a sample into the mobile phase, a column for separating components in the sample in the time direction, and the like. On the other hand, the tandem quadrupole mass spectrometer 21 uses an ESI ion source, a front quadrupole mass filter, a collision cell, a rear quadrupole mass filter, to ionize components in the liquid sample eluted from the column. Including detectors. The tandem quadrupole mass spectrometer 21 may be another type of mass spectrometer capable of MS / MS analysis, such as a Q-TOF mass spectrometer.
 通常、制御・処理部3の実体はパーソナルコンピュータ又はより高性能のワークステーション(ただし、それらは必ずしも1台であるとは限らず、相互に接続された複数台のコンピュータである場合もある)であり、インストールされた1又は複数の専用の制御・処理ソフトウエアが、該コンピュータ上で動作することで、制御・処理部3に含まれる各機能ブロックが具現化される。 Usually, the control / processing unit 3 is a personal computer or a higher-performance workstation (however, they are not necessarily one, and may be a plurality of computers connected to each other). Each of the functional blocks included in the control / processing unit 3 is implemented by one or more installed dedicated control / processing software operating on the computer.
 具体的には、制御・処理部3は、既存の制御・処理ソフトウエアで具現化される機能ブロック(図1中の符号3A)として、分析制御部31と、データ収集部32と、データ記憶部33と、クロマトグラム作成部34と、ピーク面積算出部35と、を備える。また、制御・処理部3は、後述する特徴的なデータ処理を実行するために、新たに用意された制御・処理ソフトウエアで具現化される機能ブロック(図1中の符号3B)として、プリカーサm/z計算部301を含む測定対象設定部300と、多価イオン情報ファイル作成部303、多価イオン情報ファイル記憶部304、メソッドファイル作成部305、メソッドファイル記憶部306を含む測定条件設定部302と、ピーク面積合算部311、定量値算出部312を含む多価イオン定量演算部310と、定量出力情報作成部313と、を備える。なお、図1中で符号3A、3Bで示される機能ブロックは、一つの制御・処理ソフトウエアで具現化されるものであってもよいことは当然である。 Specifically, the control / processing unit 3 includes an analysis control unit 31, a data collection unit 32, and a data storage as functional blocks (reference numeral 3A in FIG. 1) embodied by existing control / processing software. A section 33, a chromatogram creation section 34, and a peak area calculation section 35. In addition, the control / processing unit 3 executes a characteristic data process, which will be described later, as a functional block (reference numeral 3B in FIG. 1) embodied by newly prepared control / processing software. Measurement target setting unit 300 including m / z calculation unit 301, measurement condition setting unit including multivalent ion information file creation unit 303, multivalent ion information file storage unit 304, method file creation unit 305, and method file storage unit 306 302, a peak area summation unit 311, a multivalent ion quantitative calculation unit 310 including a quantitative value calculation unit 312, and a quantitative output information creation unit 313. Naturally, the functional blocks indicated by reference numerals 3A and 3B in FIG. 1 may be realized by a single control / processing software.
 測定対象である試料は例えば、N-結合型糖ペプチド混合物、標識N-結合型糖鎖混合物、PMP標識O-結合型糖鎖混合物などである。それらはいずれも所定の前処理を経て調製されたものである。N-結合型糖ペプチドは例えば、抗体などの糖タンパク質をトリプシンなどの適宜の酵素で消化し、非特許文献3に記載の方法に準拠した方法で調製される。標識N-結合型糖鎖は例えば、糖鎖をPNGaseなどでグリカナーゼ処理したあとに2-アミノピリジンなどで標識することで調製される。PMP標識O-結合型糖鎖は例えば、非特許文献4に記載の方法に準拠し、非還元的アルカリβ脱離とPMPによる標識によって調製される。 Samples to be measured are, for example, N-linked glycopeptide mixtures, labeled N-linked sugar chain mixtures, PMP-labeled O-linked sugar chain mixtures, and the like. All of them are prepared through a predetermined pretreatment. The N-linked glycopeptide is prepared, for example, by digesting a glycoprotein such as an antibody with an appropriate enzyme such as trypsin and complying with the method described in Non-Patent Document 3. The labeled N-linked sugar chain is prepared by, for example, treating a sugar chain with glycanase with PNGase and then labeling with 2-aminopyridine or the like. The PMP-labeled O-linked sugar chain is prepared, for example, by non-reductive alkaline β elimination and labeling with PMP according to the method described in Non-Patent Document 4.
 上述したような試料を測定部2により測定するに先立って、分析者はキーボード等である入力部4から測定条件を入力する。まず、分析者は、試料に含まれていると想定される様々な糖鎖の構造と、その糖鎖から生成されると想定されるイオン(プリカーサイオン)のイオン価数と、糖鎖の構造に関係なく共通に現れるプロダクトイオンの質量電荷比と、を入力設定する。
 具体的には、分析者が入力部4で所定の操作を行うと、測定対象設定部300は様々な糖鎖の構造のリストを表示部5の画面上に表示する。分析者はそのリストの中から試料に含まれていると想定される複数の糖鎖構造を選択し、それぞれについて複数のイオン価数を入力する。糖鎖構造毎に質量は既知であるから、プリカーサm/z計算部301は、その質量と入力されたイオン価数とから、糖鎖構造毎に、該糖鎖由来のイオンの質量電荷比をプリカーサイオン質量電荷比として算出する。
Prior to measuring the sample as described above by the measurement unit 2, the analyst inputs measurement conditions from the input unit 4 such as a keyboard. First, the analyst should examine the structure of various sugar chains that are assumed to be contained in the sample, the ionic valence of ions (precursor ions) that are assumed to be generated from the sugar chains, and the structure of the sugar chains. The mass-to-charge ratio of the product ions that appear in common regardless of, is input and set.
Specifically, when the analyst performs a predetermined operation with the input unit 4, the measurement target setting unit 300 displays a list of various sugar chain structures on the screen of the display unit 5. The analyst selects a plurality of sugar chain structures assumed to be included in the sample from the list, and inputs a plurality of ion valences for each. Since the mass is known for each glycan structure, the precursor m / z calculation unit 301 calculates the mass-to-charge ratio of ions derived from the glycan for each glycan structure from the mass and the input valence. Calculated as the precursor ion mass to charge ratio.
 また、測定対象設定部300はプロダクトイオンの質量電荷比の候補リストを表示部5の画面上に表示し、分析者はそのリストから試料の種類等に応じて適宜の質量電荷比を選択する。プロダクトイオンの質量電荷比は通常、糖鎖の基幹構造に依存するから、試料中の成分がN-結合型糖ペプチド又は標識N-結合型糖鎖である場合には、特許文献1に開示されているように、プロダクトイオン質量電荷比としてm/z138を選択すればよい。これはN-結合型糖鎖のコア構造(3Hex-2HexNac)に由来するイオンである。また、試料中の成分がPMP標識O-結合型糖鎖である場合には、本出願人による先願である特願2015-83846号に開示されているように、プロダクトイオン質量電荷比としてm/z175を選択すればよい。これは開裂によって優先的に脱離する完全体であるPMP由来のイオンである。 The measurement target setting unit 300 displays a candidate list of product ion mass-to-charge ratios on the screen of the display unit 5, and the analyst selects an appropriate mass-to-charge ratio from the list according to the type of sample. Since the mass-to-charge ratio of the product ion usually depends on the backbone structure of the sugar chain, when the component in the sample is an N-linked glycopeptide or a labeled N-linked sugar chain, it is disclosed in Patent Document 1. As shown, m / z 138 may be selected as the product ion mass-to-charge ratio. This is an ion derived from the core structure (3Hex-2HexNac) of the N-linked sugar chain. Further, when the component in the sample is a PMP-labeled O-linked sugar chain, as disclosed in Japanese Patent Application No. 2015-88346, which is a prior application by the present applicant, m as the product ion mass-to-charge ratio. / z175 may be selected. This is an ion derived from PMP, which is a complete body that is preferentially eliminated by cleavage.
 上記処理により、多数のプリカーサイオンの質量電荷比とプロダクトイオンの質量電荷比とが決まるから、一つのプリカーサイオンの質量電荷比と一つのプロダクトイオンの質量電荷比とを組み合わせた、多数のMRMトランジションが決まる。図3は、多価イオンであるプリカーサイオンと共通のプロダクトイオンとの組み合わせ、つまりはMRMトランジションの一例を示す図である。図3において例えば1行目は、3価イオンである質量電荷比がm/z986.7225のプリカーサイオンと、質量電荷比がm/z138であるプロダクトイオンとの組み合わせを示している。 Since the mass-to-charge ratio of many precursor ions and the mass-to-charge ratio of product ions are determined by the above processing, a large number of MRM transitions combining the mass-to-charge ratio of one precursor ion and the mass-to-charge ratio of one product ion are combined. Is decided. FIG. 3 is a diagram showing an example of a combination of a precursor ion that is a multivalent ion and a common product ion, that is, an MRM transition. In FIG. 3, for example, the first row shows a combination of a precursor ion having a mass-to-charge ratio of m / z 986.7225, which is a trivalent ion, and a product ion having a mass-to-charge ratio of m / z 138.
 さらに分析者は、測定条件設定部302により表示部5の画面上に表示される測定条件設定画面において、測定時間範囲とその測定時間範囲内に実行するMRM測定のMRMトランジション等の測定条件を入力部4により入力する。通常、測定時間範囲は想定される糖鎖の既知の保持時間に基づいて適宜決められる。 Further, the analyst inputs a measurement time range and a measurement condition such as an MRM transition of the MRM measurement executed within the measurement time range on the measurement condition setting screen displayed on the screen of the display unit 5 by the measurement condition setting unit 302. Input by part 4. Usually, the measurement time range is appropriately determined based on a known retention time of a sugar chain.
 上記のような測定条件の設定を受けてメソッドファイル作成部305は、試料注入を基点とする所定の開始時間から終了時間までの時間範囲に所定の1乃至複数のMRMトランジションに対するMRM測定を繰り返し実行するように各部を制御するためのメソッドファイルを作成する。或る測定時間範囲に一つのMRMトランジションに対するMRM測定しか設定されていなければ、その一つのMRMトランジションに対するMRM測定を繰り返し実行することになる。また、或る測定時間範囲に複数のMRMトランジションに対するMRM測定が設定されていれば、その複数のMRMトランジションに対するMRM測定をそれぞれ1回ずつ実施するというサイクルを繰り返し実行することになる。作成されたメソッドファイルはメソッドファイル記憶部306に保存される。 In response to the setting of the measurement conditions as described above, the method file creation unit 305 repeatedly executes MRM measurement for a predetermined one or more MRM transitions in a time range from a predetermined start time to an end time based on the sample injection. Create a method file to control each part. If only the MRM measurement for one MRM transition is set in a certain measurement time range, the MRM measurement for that one MRM transition is repeatedly executed. If MRM measurement for a plurality of MRM transitions is set in a certain measurement time range, a cycle of executing MRM measurement for each of the plurality of MRM transitions once is repeated. The created method file is stored in the method file storage unit 306.
 また、多価イオン情報ファイル作成部303は、各糖鎖構造に割り当てられている固有IDと、該糖鎖に由来するイオン価数の相違する複数のプリカーサイオンの質量電荷比、及び、共通のプロダクトイオンの質量電荷比、を紐付けする多価イオン情報ファイルを作成し、多価イオン情報ファイル記憶部304に保存する。 In addition, the multivalent ion information file creation unit 303 includes a unique ID assigned to each sugar chain structure, a mass-to-charge ratio of a plurality of precursor ions having different ion valences derived from the sugar chain, and a common A multivalent ion information file that links the mass-to-charge ratio of product ions is created and stored in the multivalent ion information file storage unit 304.
 図2はこの紐付けの一例を示す説明図である。この例では、糖鎖構造を特定可能な固有IDと、イオン価数が2、3、4である3種類のプリカーサイオンの質量電荷比、及びそれらプリカーサイオンに共通である一つのプロダクトイオンの質量電荷比、が紐付けされている。この場合には、この糖鎖については三種類のMRMトランジションが存在していることになる。このような紐付けを行うためのファイルを作成するのは、上述したメソッドファイルでは測定時間範囲とMRMトランジションとの対応付けはなされているものの、MRMトランジションと化合物(この場合には糖鎖や糖ペプチドの構造)との対応付けはなされていないためである。 FIG. 2 is an explanatory diagram showing an example of this association. In this example, the unique ID that can identify the sugar chain structure, the mass-to-charge ratio of the three types of precursor ions having ionic valences of 2, 3, and 4, and the mass of one product ion common to these precursor ions The charge ratio is tied. In this case, three types of MRM transitions exist for this sugar chain. The file for performing such association is created because the method file described above associates the measurement time range with the MRM transition, but the MRM transition and the compound (in this case, sugar chain or sugar This is because there is no correspondence with the peptide structure.
 例えば分析者から分析開始が指示されると、分析制御部31はメソッドファイル記憶部306に保存されているメソッドファイル中の測定条件に従って測定部2を制御し、試料に対するLC/MS分析を実施する。即ち、液体クロマトグラフ20のカラムから順次溶出してくる成分に対し、タンデム四重極型質量分析装置21では様々なMRMトランジションに対するMRM測定が順次実施される。データ収集部32はタンデム四重極型質量分析装置21から得られたデータを収集し、一つのデータファイルとしてデータ記憶部33に保存する。 For example, when an analysis start is instructed by an analyst, the analysis control unit 31 controls the measurement unit 2 according to the measurement conditions in the method file stored in the method file storage unit 306, and performs LC / MS analysis on the sample. . In other words, the tandem quadrupole mass spectrometer 21 sequentially performs MRM measurements for various MRM transitions on the components that are sequentially eluted from the column of the liquid chromatograph 20. The data collection unit 32 collects data obtained from the tandem quadrupole mass spectrometer 21 and stores it in the data storage unit 33 as one data file.
 測定が終了したあと、分析者が定量処理の実行を指示すると、クロマトグラム作成部34は、指定されたデータファイルをデータ記憶部33から読み出し、MRMトランジション毎に、MRM測定で得られたデータに基づいて、時間と信号強度との関係を示すマスクロマトグラムを作成する。 When the analyst instructs the execution of the quantitative process after the measurement is completed, the chromatogram creation unit 34 reads the designated data file from the data storage unit 33, and converts the data obtained by the MRM measurement into each MRM transition. Based on this, a mass chromatogram showing the relationship between time and signal intensity is created.
 図4、図5にはそうして作成されるマスクロマトグラムの一例を示している。この例では、マスクロマトグラムには孤立したピークが現れており、このピークが目的とする(想定した)糖鎖や糖ペプチドに由来するものであることが明らかである。しかしながら、場合によっては、複数の糖鎖由来の複数のピークが一つのマスクロマトグラム上に現れることがある。これは、例えば成分は同じで構造のみが相違する複数の糖鎖や糖ペプチドが存在するような場合である。こうした場合には、目的とする糖鎖や糖ペプチドとそれ以外の糖鎖や糖ペプチドとを識別したうえで分離する必要がある。そこで、分析者は、各マスクロマトグラムを表示部5の画面上に表示させて、画面上でピークを確認し、必要に応じて、目的とする糖鎖や糖ペプチドのピークを検出するための検出時間の許容範囲を指定する。 4 and 5 show examples of mass chromatograms created in this way. In this example, an isolated peak appears in the mass chromatogram, and it is clear that this peak is derived from the target (assumed) sugar chain or glycopeptide. However, in some cases, a plurality of peaks derived from a plurality of sugar chains may appear on one mass chromatogram. This is the case, for example, when there are a plurality of sugar chains or glycopeptides having the same components but different only in structure. In such a case, it is necessary to identify and separate the target sugar chain or glycopeptide from other sugar chains or glycopeptides. Therefore, the analyst displays each mass chromatogram on the screen of the display unit 5, confirms the peak on the screen, and detects the peak of the target sugar chain or glycopeptide as necessary. Specify the allowable range of detection time.
 そのうえで分析者が定量処理の続行を指示すると、ピーク面積算出部35は各マスクロマトグラムにおいて、それぞれの検出時間の許容範囲内においてピークを検出し、そのピーク面積を計算する。多価イオンではない通常の(つまり1価のみを想定した)定量分析の場合には、このピーク面積値に基づいて目的化合物の定量値が計算される。それに対し、多価イオンを想定した定量分析では、次のようなデータ処理が行われる。 Then, when the analyst instructs the continuation of the quantitative process, the peak area calculation unit 35 detects a peak within the allowable range of each detection time in each mass chromatogram, and calculates the peak area. In the case of normal quantitative analysis that is not multivalent ions (that is, assuming only monovalent), the quantitative value of the target compound is calculated based on this peak area value. On the other hand, in the quantitative analysis assuming multivalent ions, the following data processing is performed.
 即ち、多価イオン定量演算部310においてピーク面積合算部311は、多価イオン情報ファイル記憶部304から紐付け情報が格納されている多価イオン情報ファイルを読み出す。そして、その紐付け情報に基づいて、同一の糖鎖又は糖ペプチドに対応付けられている複数のMRMトランジションを認識し、同一の糖鎖又は糖ペプチド毎に、その糖鎖又は糖ペプチド由来の複数のMRMトランジションに対するマスクロマトグラムにおいて算出されているピーク面積を合計し、ピーク面積の合算値を算出する。
 例えば図4の例では、紐付け情報に基づいて、価数3、4の二つのMRMトランジションに対するマスクロマトグラムが同一の糖鎖由来であることが判明する。そこで、その二つのマスクロマトグラムにおいてそれぞれ求まるピーク面積を合計し、ピーク面積の合算値を求める。図5に示した例でも同様である。
In other words, the peak area summing unit 311 in the multivalent ion quantitative calculation unit 310 reads the multivalent ion information file in which the association information is stored from the multivalent ion information file storage unit 304. Based on the association information, a plurality of MRM transitions associated with the same sugar chain or glycopeptide are recognized, and a plurality of sugar chains or glycopeptides derived from the same sugar chain or glycopeptide are identified for each same sugar chain or glycopeptide. The peak areas calculated in the mass chromatogram for the MRM transitions are summed, and the sum of the peak areas is calculated.
For example, in the example of FIG. 4, it is found that the mass chromatograms for the two MRM transitions with valences 3 and 4 are derived from the same sugar chain based on the association information. Therefore, the peak areas obtained in the two mass chromatograms are summed up to obtain the sum of the peak areas. The same applies to the example shown in FIG.
 このようにしてピーク面積合算部311は、測定実行前に分析者により設定された全ての糖鎖についてのピーク面積合算値を得る。分析者が指定したイオン価数に大きな漏れがない限り、ピーク面積合算値はその糖鎖や糖ペプチドの相対的な含有量に対応している筈である。そこで、定量値算出部312は、全ての糖鎖又は糖ペプチドにおけるピーク面積合算値を合計したピーク総面積値を求め、そのピーク総面積値に対する各糖鎖又は糖ペプチドにおけるピーク面積合算値の割合(%値)を、それぞれ定量値として計算する。 In this way, the peak area summation unit 311 obtains the peak area summation values for all sugar chains set by the analyst before the measurement is executed. Unless there is a significant leak in the ion valence specified by the analyst, the combined peak area value should correspond to the relative content of the sugar chain or glycopeptide. Therefore, the quantitative value calculation unit 312 obtains a peak total area value obtained by summing up the peak area total values in all sugar chains or glycopeptides, and the ratio of the peak area total value in each sugar chain or glycopeptide to the peak total area value. Each (% value) is calculated as a quantitative value.
 測定実行前に分析者により設定された糖鎖や糖ペプチドが試料に含まれている糖鎖や糖ペプチドを網羅しているとすれば、上述したように計算されたピーク面積合算値の割合はその糖鎖や糖ペプチドの試料中での存在量比を示している。そこで、定量出力情報作成部313は、各糖鎖又は糖ペプチド毎に算出した存在量比をグラフ又は表の形式に集約し、これを定量分析結果として表示部5の画面上に表示する。 If the sugar chain or glycopeptide set by the analyst before the execution of the measurement covers the sugar chain or glycopeptide contained in the sample, the ratio of the peak area total value calculated as described above is The abundance ratio in the sample of the sugar chain or glycopeptide is shown. Therefore, the quantitative output information creation unit 313 aggregates the abundance ratios calculated for each sugar chain or glycopeptide in the form of a graph or a table, and displays this on the screen of the display unit 5 as a quantitative analysis result.
 図6は、表示部5の画面上に表示される定量分析結果の一例である。この例では、33種類の糖鎖について存在比と標準偏差とが下の表中に数値で示され、上にはその33種類の糖鎖の構造に対する存在比が棒グラフで示されている。分析者はこの表示を見て、試料に含まれる糖鎖や糖ペプチドの存在量比を直感的に把握することができる。もちろん、このように全ての糖鎖や糖ペプチドの存在量比を網羅的に表示するのではなく、分析者が指定した特定の糖鎖や糖ペプチドの存在量比のみを表示するようにしてもよい。また、存在量比が所定値を超える又は下回るものだけを選択して表示するようにしてもよい。 FIG. 6 is an example of a quantitative analysis result displayed on the screen of the display unit 5. In this example, the abundance ratios and standard deviations for 33 types of sugar chains are indicated by numerical values in the table below, and the abundance ratios for the structures of the 33 types of sugar chains are indicated by bar graphs above. The analyst can intuitively grasp the abundance ratio of sugar chains and glycopeptides contained in the sample by viewing this display. Of course, instead of exhaustively displaying the abundance ratio of all sugar chains and glycopeptides in this way, only the abundance ratio of specific sugar chains and glycopeptides specified by the analyst may be displayed. Good. Alternatively, only those whose abundance ratio exceeds or falls below a predetermined value may be selected and displayed.
 上記実施例の説明では、糖鎖や糖ペプチドの定量に本発明を適用していたが、その化学構造に依らず共通のプロダクトイオンが生成され得るような種類の高分子化合物の定量全般に本発明は適用可能である。また、上記実施例の定量分析装置では、液体クロマトグラフで試料中の成分を時間的に分離したあとに質量分析を実施するようにしていたが、試料に含まれる成分の数が少なく、また質量が同一で構造が相違する異なる成分が含まれていなければ、液体クロマトグラフを通すことなく試料を直接、質量分析装置に導入して質量分析することもできる。 In the description of the above examples, the present invention has been applied to the quantification of sugar chains and glycopeptides. However, the present invention is generally applied to the quantification of types of polymer compounds that can generate a common product ion regardless of the chemical structure. The invention is applicable. In addition, in the quantitative analysis apparatus of the above example, the mass analysis was performed after temporally separating the components in the sample with a liquid chromatograph, but the number of components contained in the sample was small, and the mass was analyzed. If different components having the same structure but different structures are not included, the sample can be directly introduced into the mass spectrometer without passing through the liquid chromatograph for mass analysis.
 また、上記実施例は本発明の一例にすぎず、本発明の趣旨の範囲で適宜変形、修正、追加等を行っても本願特許請求の範囲に包含されることは当然である。 Further, the above-described embodiment is merely an example of the present invention, and it will be understood that the present invention is encompassed in the scope of the claims of the present application even if appropriate modifications, corrections, additions, etc. are made within the scope of the present invention.
2…測定部
20…液体クロマトグラフ
21…タンデム四重極型質量分析装置
3…制御・処理部
31…分析制御部
32…データ収集部
33…データ記憶部
34…クロマトグラム作成部
35…ピーク面積算出部
300…測定対象設定部
301…プリカーサm/z計算部
302…測定条件設定部
303…多価イオン情報ファイル作成部
304…多価イオン情報ファイル記憶部
305…メソッドファイル作成部
306…メソッドファイル記憶部
310…多価イオン定量演算部
311…ピーク面積合算部
312…定量値算出部
313…定量出力情報作成部
4…入力部
5…表示部
2 ... Measurement unit 20 ... Liquid chromatograph 21 ... Tandem quadrupole mass spectrometer 3 ... Control / processing unit 31 ... Analysis control unit 32 ... Data collection unit 33 ... Data storage unit 34 ... Chromatogram creation unit 35 ... Peak area Calculation unit 300 ... Measurement object setting unit 301 ... Precursor m / z calculation unit 302 ... Measurement condition setting unit 303 ... Multivalent ion information file creation unit 304 ... Multivalent ion information file storage unit 305 ... Method file creation unit 306 ... Method file Storage unit 310 ... multivalent ion quantitative calculation unit 311 ... peak area summation unit 312 ... quantitative value calculation unit 313 ... quantitative output information creation unit 4 ... input unit 5 ... display unit

Claims (7)

  1.  MS/MS分析が可能である質量分析装置を利用して試料中の高分子化合物を定量する定量分析方法であって、
     a)分析対象である又は分析対象として想定される高分子化合物について、該化合物由来でイオン価数が相違する複数のプリカーサイオン及び共通である一つのプロダクトイオンを対象とした複数のMRM測定によってそれぞれ得られた複数のマスクロマトグラムに現れるピークの面積を合計した合算値を算出するピーク情報取得ステップと、
     b)前記ピーク情報取得ステップで得られた合算値を利用して、分析対象である又は分析対象として想定される高分子化合物の定量演算を行う定量ステップと、
     を有することを特徴とする高分子化合物の定量分析方法。
    A quantitative analysis method for quantifying a polymer compound in a sample using a mass spectrometer capable of MS / MS analysis,
    a) With respect to a polymer compound to be analyzed or assumed to be analyzed, a plurality of precursor ions having different ionic valences derived from the compound and a plurality of MRM measurements targeting one common product ion are used. A peak information acquisition step for calculating a total value of the peak areas appearing in the obtained plurality of mass chromatograms,
    b) Using the total value obtained in the peak information acquisition step, a quantitative step for performing a quantitative calculation of a polymer compound that is an analysis target or assumed as an analysis target;
    A method for quantitative analysis of a polymer compound, comprising:
  2.  請求項1に記載の高分子化合物の定量分析方法であって、
     前記高分子化合物は糖鎖又は糖ペプチドであることを特徴とする高分子化合物の定量分析方法。
    A method for quantitative analysis of a polymer compound according to claim 1,
    The method for quantitative analysis of a polymer compound, wherein the polymer compound is a sugar chain or a glycopeptide.
  3.  請求項2に記載の高分子化合物の定量分析方法であって、
     前記試料は糖鎖又は糖ペプチドの混合物であり、
     前記ピーク情報取得ステップでは、前記試料に含まれる複数の糖鎖又は糖ペプチドの合算値を取得し、
     前記定量ステップでは、前記ピーク情報取得ステップで得られた任意の糖鎖又は糖ペプチドに対する合算値と、前記試料に含まれる複数の糖鎖又は糖ペプチドの合算値を合計した合計値とに基づいて、前記任意の糖鎖又は糖ペプチドの存在量比を求め、
     前記定量ステップで得られた任意の糖鎖又は糖ペプチドの存在量比を表示部の画面上にグラフ形式又は表形式で提示する定量結果提示ステップをさらに有することを特徴とする高分子化合物の定量分析方法。
    A method for quantitative analysis of a polymer compound according to claim 2,
    The sample is a mixture of sugar chains or glycopeptides,
    In the peak information acquisition step, a total value of a plurality of sugar chains or glycopeptides contained in the sample is acquired,
    In the quantification step, based on the total value for any sugar chain or glycopeptide obtained in the peak information acquisition step, and the total value obtained by summing the total values of a plurality of sugar chains or glycopeptides contained in the sample The abundance ratio of the arbitrary sugar chain or glycopeptide is determined,
    Quantification of a polymer compound, further comprising a quantification result presentation step of presenting an abundance ratio of any sugar chain or glycopeptide obtained in the quantification step in a graph format or a table format on a screen of a display unit Analysis method.
  4.  請求項1~3のいずれか1項に記載の高分子化合物の定量分析方法であって、
    前記質量分析装置の前段に液体クロマトグラフを接続した液体クロマトグラフ質量分析装置を用いて試料中の高分子化合物を測定することを特徴とする高分子化合物の定量分析方法。
    A method for quantitative analysis of a polymer compound according to any one of claims 1 to 3,
    A method for quantitative analysis of a polymer compound, comprising: measuring a polymer compound in a sample using a liquid chromatograph mass spectrometer having a liquid chromatograph connected to a front stage of the mass spectrometer.
  5.  MS/MS分析が可能である質量分析装置を用いて得られたデータに基づいて試料中の高分子化合物を定量するデータ処理装置であって、
     a)分析対象である又は分析対象として想定される高分子化合物について、該化合物由来でイオン価数が相違する複数のプリカーサイオン及び共通である一つのプロダクトイオンを対象とした複数のMRM測定によってそれぞれ得られた複数のマスクロマトグラムに現れるピークの面積を合計した合算値を算出するピーク情報取得部と、
     b)前記ピーク情報取得部で得られた合算値を利用して、分析対象である又は分析対象として想定される高分子化合物の定量演算を行う定量処理部と、
     を備えることを特徴とするデータ処理装置。
    A data processing apparatus for quantifying a polymer compound in a sample based on data obtained using a mass spectrometer capable of MS / MS analysis,
    a) With respect to a polymer compound to be analyzed or assumed to be analyzed, a plurality of precursor ions having different ionic valences derived from the compound and a plurality of MRM measurements targeting one common product ion are used. A peak information acquisition unit for calculating a total value of the peak areas appearing in the obtained plurality of mass chromatograms;
    b) Using the total value obtained by the peak information acquisition unit, a quantitative processing unit that performs a quantitative calculation of a polymer compound that is an analysis target or is assumed to be an analysis target;
    A data processing apparatus comprising:
  6.  請求項5に記載のデータ処理装置であって、
     前記高分子化合物は糖鎖又は糖ペプチドであることを特徴とするデータ処理装置。
    The data processing apparatus according to claim 5, wherein
    The data processing apparatus, wherein the polymer compound is a sugar chain or a glycopeptide.
  7.  請求項6に記載のデータ処理装置であって、
     前記試料は糖鎖又は糖ペプチドの混合物であり、
     前記ピーク情報取得部は、前記試料に含まれる複数の糖鎖又は糖ペプチドの合算値を取得し、
     前記定量処理部は、前記ピーク情報取得部で得られた任意の糖鎖又は糖ペプチドに対する合算値と、前記試料に含まれる複数の糖鎖又は糖ペプチドの合算値を合計した合計値とに基づいて、前記任意の糖鎖又は糖ペプチドの存在量比を求め、
     前記定量処理部で得られた任意の糖鎖又は糖ペプチドの存在量比を表示部の画面上にグラフ形式又は表形式で提示する定量結果提示部、をさらに備えることを特徴とするデータ処理装置。
    The data processing apparatus according to claim 6, wherein
    The sample is a mixture of sugar chains or glycopeptides,
    The peak information acquisition unit acquires a total value of a plurality of sugar chains or glycopeptides contained in the sample,
    The quantitative processing unit is based on a total value for any sugar chain or glycopeptide obtained by the peak information acquisition unit and a total value obtained by summing the total values of a plurality of sugar chains or glycopeptides contained in the sample. And determining the abundance ratio of the arbitrary sugar chain or glycopeptide,
    A data processing apparatus, further comprising: a quantitative result presenting unit that presents an abundance ratio of any sugar chain or glycopeptide obtained in the quantitative processing unit on a screen of a display unit in a graph format or a table format .
PCT/JP2015/074652 2015-08-31 2015-08-31 Method for quantitative analysis of high-molecular-weight compound, and data processing device for said quantitative analysis WO2017037829A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15902952.9A EP3364184A4 (en) 2015-08-31 2015-08-31 Method for quantitative analysis of high-molecular-weight compound, and data processing device for said quantitative analysis
JP2017537095A JP6508342B2 (en) 2015-08-31 2015-08-31 Method for quantitative analysis of polymer compound and data processor for said quantitative analysis
US15/755,761 US10438785B2 (en) 2015-08-31 2015-08-31 Method for quantitative analysis of high-molecular compound and data-processing device for the quantitative analysis
CN201580082725.2A CN107923873B (en) 2015-08-31 2015-08-31 Method for quantitative analysis of polymer compound and data processing device for the quantitative analysis
PCT/JP2015/074652 WO2017037829A1 (en) 2015-08-31 2015-08-31 Method for quantitative analysis of high-molecular-weight compound, and data processing device for said quantitative analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074652 WO2017037829A1 (en) 2015-08-31 2015-08-31 Method for quantitative analysis of high-molecular-weight compound, and data processing device for said quantitative analysis

Publications (1)

Publication Number Publication Date
WO2017037829A1 true WO2017037829A1 (en) 2017-03-09

Family

ID=58187127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074652 WO2017037829A1 (en) 2015-08-31 2015-08-31 Method for quantitative analysis of high-molecular-weight compound, and data processing device for said quantitative analysis

Country Status (5)

Country Link
US (1) US10438785B2 (en)
EP (1) EP3364184A4 (en)
JP (1) JP6508342B2 (en)
CN (1) CN107923873B (en)
WO (1) WO2017037829A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019148455A (en) * 2018-02-26 2019-09-05 株式会社島津製作所 Measurement data processing method, measurement data processing device, and measurement data processing program
JP2020516901A (en) * 2017-04-14 2020-06-11 株式会社島津製作所 Detection method and detection device
JP2021530693A (en) * 2018-07-13 2021-11-11 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Detection and quantification of glycosylated peptides

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106461607B (en) * 2014-06-12 2019-10-11 株式会社岛津制作所 Mass spectral analysis data processing equipment and the device program
CN109918056A (en) * 2019-03-07 2019-06-21 深圳市绘云生物科技有限公司 A kind of metabolin batch quantitation software system
CN111751576B (en) * 2019-03-27 2023-07-11 台湾积体电路制造股份有限公司 Atomic probe analysis method, atomic probe analysis device and recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526998A (en) * 2006-02-15 2009-07-23 アプライド バイオシステムズ インコーポレイテッド Mass labels for quantitative analysis
JP2014066704A (en) * 2012-09-07 2014-04-17 Institute Of Physical & Chemical Research Sugar chain structure analysis method
JP2014130134A (en) * 2012-11-29 2014-07-10 Nippi:Kk Analytical method of collagen, stable isotope labeled collagen, and manufacturing method of stable isotope labeled collagen
JP2015145840A (en) * 2014-02-03 2015-08-13 株式会社島津製作所 Analytic method for sugar peptide and program for sugar chain structure analysis

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9274124B2 (en) * 2010-03-15 2016-03-01 Anderson Forschung Group, Inc. Mass spectrometric assays for peptides
CN103097387B (en) * 2010-07-09 2016-11-02 拜耳知识产权有限责任公司 Pyrimidine and triazine that ring condenses and it is for treating and/or prevent the purposes of cardiovascular disease
CA2823324C (en) 2010-12-28 2019-12-31 Quest Diagnostics Investments Incorporated Quantitation of insulin by mass spectrometry
US9810669B2 (en) * 2011-11-28 2017-11-07 Waters Technologies Corporation Techniques for quantification of samples
CN103336064B (en) * 2012-07-17 2016-03-16 江西出入境检验检疫局检验检疫综合技术中心 The liquid chromatography-tandem mass spectrometry method for determining of chloramphenicol residue in a kind of milk powder
JP2014145840A (en) * 2013-01-28 2014-08-14 Fuji Xerox Co Ltd Sliding member for fixing device, fixing device, and image forming apparatus
CN104020216B (en) * 2014-06-19 2017-02-15 苏州中科纳泰生物科技有限公司 Method for relatively quantitatively analyzing carbohydrate chain in two-end labeling manner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526998A (en) * 2006-02-15 2009-07-23 アプライド バイオシステムズ インコーポレイテッド Mass labels for quantitative analysis
JP2014066704A (en) * 2012-09-07 2014-04-17 Institute Of Physical & Chemical Research Sugar chain structure analysis method
JP2014130134A (en) * 2012-11-29 2014-07-10 Nippi:Kk Analytical method of collagen, stable isotope labeled collagen, and manufacturing method of stable isotope labeled collagen
JP2015145840A (en) * 2014-02-03 2015-08-13 株式会社島津製作所 Analytic method for sugar peptide and program for sugar chain structure analysis

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EHWANG SONG: "Quantification of Glycopeptides by Multiple Reaction Monitoring LC-MS/MS", RAPID COMMUN MASS SPECTROM, vol. 26/17, 15 September 2012 (2012-09-15), pages 1941 - 1954, XP055467218 *
See also references of EP3364184A4 *
SHUICHI NAKAYA: "Gyoshutai Hyokaho Sentaku no Tameno Kiso Kento Oyobi O-Ketsugogata Tosa Hyoka ni Okeru Saiteki Bunseki Joken Kento", KOSEI RODO KAGAKU KENKYU ITAKUHI SOYAKU KIBAN SUISHIN KENKYU JIGYO IYAKUHIN TO NO HINSHITSU ANZENSEI KAKUHO NO TAMENO HYOKAHO NO SENRYAKUTEKI KAIHATSU HEISEI 26 NENDO ITAKU GYOMU SEIKA HOKOKUSHO SENTANTEKI BIO IYAKUHIN NO HINSHITSU ANZENSEI KAKUHO NO, vol. 2, March 2015 (2015-03-01), pages 89 - 101, XP009504866 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020516901A (en) * 2017-04-14 2020-06-11 株式会社島津製作所 Detection method and detection device
JP2019148455A (en) * 2018-02-26 2019-09-05 株式会社島津製作所 Measurement data processing method, measurement data processing device, and measurement data processing program
US11474086B2 (en) 2018-02-26 2022-10-18 Shimadzu Corporation Measurement data processing method, measurement data processing device, and program for processing measurement data
JP2021530693A (en) * 2018-07-13 2021-11-11 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Detection and quantification of glycosylated peptides
US11807665B2 (en) 2018-07-13 2023-11-07 Regeneron Pharmaceuticals, Inc. Detection and quantification of glycosylated peptides
JP7412407B2 (en) 2018-07-13 2024-01-12 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Detection and quantification of glycosylated peptides

Also Published As

Publication number Publication date
US20180337028A1 (en) 2018-11-22
EP3364184A4 (en) 2019-07-24
US10438785B2 (en) 2019-10-08
JPWO2017037829A1 (en) 2018-05-17
JP6508342B2 (en) 2019-05-08
CN107923873B (en) 2020-09-29
CN107923873A (en) 2018-04-17
EP3364184A1 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
WO2017037829A1 (en) Method for quantitative analysis of high-molecular-weight compound, and data processing device for said quantitative analysis
Slavov Single-cell protein analysis by mass spectrometry
US9435778B2 (en) Methods and systems for experimental set-up and data analysis in targeted proteomics applications
Leptos et al. MapQuant: Open‐source software for large‐scale protein quantification
US9460901B2 (en) Data-processing system for chromatograph mass spectrometry
JP4704034B2 (en) Method of using data binning in analysis of chromatographic / spectrometric data
Köcher et al. Quality control in LC‐MS/MS
CN108982729B (en) System and method for extracting mass traces
CN110506205B (en) Mass spectrometer and chromatograph-mass spectrometer
CN110741254B (en) Method and apparatus for chromatographic mass spectrometry
EP3916756A1 (en) Absolute quantitation of a target analyte using a mass spectrometer
CN113227778A (en) Chromatograph mass analysis device
JP6146211B2 (en) Mass spectrometry data processing method and mass spectrometer using the method
JP4929149B2 (en) Mass spectrometry spectrum analysis method
WO2011058381A1 (en) Detection and/or quantification of a compound in a sample
WO2018163926A1 (en) Tandem mass spectrometry device and program for same device
WO2015189696A1 (en) Chromatograph mass spectrometer and control method therefor
CN108780073B (en) Chromatograph device
JP6665740B2 (en) Peptide analysis method, peptide analysis device, and peptide analysis program
JP7056767B2 (en) Substance identification method using chromatograph
JP7156207B2 (en) Glycopeptide analyzer
EP3514531A1 (en) Method of generating an inclusion list for targeted mass spectrometric analysis
US11393666B2 (en) Automatic MS-N characterization of mass spectrometric “dark matter”
Homer Clinical mass spectrometry: A short review
Gross et al. Hyphenated methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537095

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015902952

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15755761

Country of ref document: US