JPS6214048A - Exhaust gas sensor - Google Patents

Exhaust gas sensor

Info

Publication number
JPS6214048A
JPS6214048A JP15291685A JP15291685A JPS6214048A JP S6214048 A JPS6214048 A JP S6214048A JP 15291685 A JP15291685 A JP 15291685A JP 15291685 A JP15291685 A JP 15291685A JP S6214048 A JPS6214048 A JP S6214048A
Authority
JP
Japan
Prior art keywords
exhaust gas
heater
sensing section
gas sensing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15291685A
Other languages
Japanese (ja)
Inventor
Kazuo Okinaga
一夫 翁長
Yutaka Yoshida
豊 吉田
Kazuya Komatsu
一也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Mazda Motor Corp
Original Assignee
Figaro Engineering Inc
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc, Mazda Motor Corp filed Critical Figaro Engineering Inc
Priority to JP15291685A priority Critical patent/JPS6214048A/en
Publication of JPS6214048A publication Critical patent/JPS6214048A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To elevate the detection accuracy of air/fuel ratio with an even heating of two types of gas sensing sections, by supporting the N-type gas sensing section and the P-type gas sensing section respectively with first and second fireproof insulating substrates, which are fastened on a heater. CONSTITUTION:A first fireproof insulating substrate 4 is composed of an insulating material such as alumina and grooves 16, 18 and 20 provided at the tip thereof in such a manner as to communicate with a concave 14, which houses an N-type gas sensing section 22 which has a pair of electrodes 24 and 26 and connected to an N-type metal oxide semiconductor. The electrodes 24 and 26 are connected to external leads 28 and 30 at the ends thereof. A second fireproof insulating substrate 6 is arranged in the same manner with the substrate 4 except a gas sensing section 22' employing a P-type metal oxide. The substrates 4 and 6 are fastened on a heater 2 having a heat generating body 8 buried into a fireproof substrate such as alumina using an inorganic bond or the like. Thus, the sensing sections 22 and 22' are set in contact with the heater and exhaust gas is introduced through a gas introduction hole made up of grooves 20 and 20' and the like.

Description

【発明の詳細な説明】 [発明の利用分野] この発明は、n形ガス感知部とp形ガス感知部とを組み
合わせた排ガスセンサの改良に関し、とりわけ2つのガ
ス感知部の加熱温度の均一化に関する。この発明の排ガ
スセンサは、自動車エンジンの空燃比の検出等に用いる
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an improvement of an exhaust gas sensor that combines an n-type gas sensing section and a p-type gas sensing section, and in particular, to making the heating temperature of the two gas sensing sections uniform. Regarding. The exhaust gas sensor of the present invention is used for detecting the air-fuel ratio of an automobile engine.

[従来技術] n形ガス感知部とp形ガス感知部とを組み合わせ、感知
部の温度依存性を補償するとともに、検出感度を向上さ
せた、排ガスセンサが知られている(特公昭57−37
.824号)。
[Prior Art] An exhaust gas sensor is known that combines an n-type gas sensing section and a p-type gas sensing section, compensates for the temperature dependence of the sensing section, and improves detection sensitivity (Japanese Patent Publication No. 57-37
.. No. 824).

発明者らは、このセンサの特性に付いて検討を行い、2
つの感知部の均一加熱に実用化の鍵が有ることを見出だ
した。
The inventors investigated the characteristics of this sensor and found 2
We discovered that the key to practical application lies in uniform heating of the two sensing parts.

発明者らはまず、第7図に示すセンサの形状を検討した
(実願昭59−199,872号)。図において、(0
2)は絶縁性基板、(04)は発熱体、(06)、(0
8)はn形ガス感知部とp形ガス感知部とで有る。この
センサでは、感知部(06)、(08)を発熱体(04
)に対称に配置し、加熱温度の均一化を計っている。に
もかかわらず、自動車エンジンの排気管にセンサを取り
付けると、感知部(06)、(08)間には30〜50
℃の温度差が生じた。
The inventors first studied the shape of the sensor shown in FIG. 7 (Utility Application No. 1998/1987). In the figure, (0
2) is an insulating substrate, (04) is a heating element, (06), (0
8) is an n-type gas sensing section and a p-type gas sensing section. In this sensor, the sensing parts (06) and (08) are connected to the heating element (04).
) to ensure uniform heating temperature. However, when a sensor is attached to the exhaust pipe of an automobile engine, there is a gap of 30 to 50 mm between the sensing parts (06) and (08).
A temperature difference of ℃ occurred.

次に基板の同一面上に、並列に2つの感知部を配置する
と、両者間には10〜20°Cの温度差が生じた。
Next, when two sensing parts were arranged in parallel on the same surface of the substrate, a temperature difference of 10 to 20°C was generated between the two sensing parts.

感知部をヒータに対称に配置したにもかかわらず加熱温
度が異なるのは、排ガスとの接触状況が異なるためと考
えられる。そしてこのような温度差は検出精度を低下さ
せる。
The reason why the heating temperature differs even though the sensing part is arranged symmetrically with respect to the heater is thought to be due to the difference in the contact situation with the exhaust gas. Such a temperature difference reduces detection accuracy.

[発明の課題〕 この発明の課題は、2つのガス感知部の加熱温度を均一
にし、空燃比、とりわけリーンバーン領域での空燃比、
への検出精度を向上させることに有る。
[Problem of the Invention] An object of the present invention is to make the heating temperature of the two gas sensing parts uniform, and to improve the air-fuel ratio, especially the air-fuel ratio in the lean burn region,
The objective is to improve detection accuracy.

[発明の構成] この発明の排ガスセンサでは、nf5ガス感知部を第■
の耐熱絶縁性基板により支持し、p形ガス感知部を第2
の耐熱絶縁性基板により支持する。
[Structure of the Invention] In the exhaust gas sensor of the present invention, the nf5 gas sensing section is
A second heat-resistant insulating substrate supports the p-type gas sensing section.
Supported by a heat-resistant insulating substrate.

また発熱体を埋設したヒータを設け、ヒータに2つの基
板を固着する。ここで、各ガス感知部を排ガス中に露出
させずに、ヒータに対向させる。そしてガス感知部への
排ガスの導入は、基板とヒータとの間に設けたガス導入
孔で行う。
Furthermore, a heater in which a heating element is embedded is provided, and two substrates are fixed to the heater. Here, each gas sensing section is made to face the heater without being exposed to the exhaust gas. The exhaust gas is introduced into the gas sensing section through a gas introduction hole provided between the substrate and the heater.

一般に、このような手法はガスへの応答特性を悪化させ
る、と考えられている。しかし発明者らの実験では、応
答特性の低下は検出でき無かった。
It is generally believed that such a technique deteriorates the response characteristics to gas. However, in the inventors' experiments, no decrease in response characteristics could be detected.

[実施例] 第1図、第2図の排ガスセンサにおいて、(2)は発熱
体を埋設したヒータ、(4)はn形ガス感知部を支持し
た第1の耐熱絶縁性基板、(6)はp形ガス感知部を支
持した第2の耐熱絶縁性基板である。
[Example] In the exhaust gas sensor shown in FIGS. 1 and 2, (2) is a heater in which a heating element is embedded, (4) is a first heat-resistant insulating substrate that supports an n-type gas sensing section, and (6) is a second heat-resistant insulating substrate that supports a p-type gas sensing section.

第2図(b)に、ヒータ(2)の構造を示す。このヒー
タ(2)は、アルミナやムライト等の耐熱絶縁性基板に
、発熱体(8)を埋設したもので、発熱体(8)には、
例えばタングステンや白金の印刷膜を用いる。基板の表
裏から発熱体(8)までの距離が等しいようにし、発熱
体(8)には、外部リード(10)、(12)を接続す
る。
FIG. 2(b) shows the structure of the heater (2). This heater (2) has a heating element (8) embedded in a heat-resistant insulating substrate such as alumina or mullite.
For example, a printed film of tungsten or platinum is used. The distance from the front and back of the board to the heat generating element (8) is made equal, and the external leads (10) and (12) are connected to the heat generating element (8).

第2図(a)に、第1の耐熱絶縁性基板(4)を示す。FIG. 2(a) shows the first heat-resistant insulating substrate (4).

この基板は同じくアルミナやムライト等の絶縁材料から
成り、先端部には凹部(14)と、連通ずる溝部(16
)、(18)、(20)とを設けろ。凹部(!4)には
、n形金属酸化物半導体に一対の電極(24)、(26
)を接続したn形ガス感知部(22)を収容する。感知
部(22)の頂面は、基板(4)の頂面とほぼ同一面に
有る様にする。電ff1(24)、(26)は溝部(1
6)、(18)内に収容し、端部を外部リード(28)
、(30)に接続する。また感知部(22)の付近で、
溝部(16)、(18)内に無機接着剤(32)、(3
4)を充填する。
This substrate is also made of an insulating material such as alumina or mullite, and has a recess (14) at the tip and a communicating groove (16).
), (18), and (20). In the recess (!4), a pair of electrodes (24) and (26) are placed on the n-type metal oxide semiconductor.
) is connected to the n-type gas sensing section (22). The top surface of the sensing part (22) is made to be substantially flush with the top surface of the substrate (4). The electric currents ff1 (24) and (26) are connected to the groove portion (1
6), (18), and the end is connected to the external lead (28).
, (30). Also, near the sensing part (22),
Inorganic adhesive (32), (3) in the grooves (16), (18)
4) Fill.

第2図(C)の第2の耐熱絶縁性基板では、ガス感知部
(22’)をp形金属酸化物半導体を用いたものとする
他は、同様?こ構成する。なおここで類似の符号は類似
の要素を示す。
Is the second heat-resistant insulating substrate in FIG. 2(C) the same except that the gas sensing portion (22') is made of a p-type metal oxide semiconductor? Configure this. Note that similar symbols here indicate similar elements.

適宜の無機接着剤等により、基板(4)、(6)をヒー
タ(2)に固着する。感知部(22)、(22’)はヒ
ータに接触し、排ガスは溝部(20)、(20’)等で
形成されるガス導入孔から導かれる。ガス導入孔の内面
には、酸化触媒層(36)、(36°)を塗布あるいは
充填する。
The substrates (4) and (6) are fixed to the heater (2) using a suitable inorganic adhesive or the like. The sensing parts (22), (22') are in contact with the heater, and the exhaust gas is guided through the gas introduction hole formed by the groove parts (20), (20'), etc. The inner surface of the gas introduction hole is coated or filled with an oxidation catalyst layer (36), (36°).

ガス感知部(22)、(22°)の材料には任意のもの
を用いうるが、抵抗温度係数と、酸素感度とが揃ったも
のが好ましい。そしてここでは、n形金属酸化物半導体
には、B a S n O、を、p形金属酸化物半導体
には、5rTiCh、5rtTiO,,5rs−T i
*o 7. S r、T LO+oの一員を用いる。な
おSrTiO3や5rtTiO*等の特性は相互に類似
しティる。B aS no sや5rTi03等は、酸
素感度が高く、抵抗温度係数も類似している。ここで例
えば、BaSnO3をTi0zに代えると、T iOt
の抵抗温度係数が大きすぎるため、特性がマツチングし
ない。また5rTiO1をLaCOO3等に代えると、
温度係数か小さずぎ、酸素感度も低すぎるため、やはり
特性のマツチングが得られない。
Although any material can be used for the gas sensing portions (22) and (22°), materials with the same temperature coefficient of resistance and oxygen sensitivity are preferred. And here, B a S n O is used for the n-type metal oxide semiconductor, and 5rTiCh, 5rtTiO,, 5rs-T i
*o7. A member of S r, T LO+o is used. Note that the properties of SrTiO3, 5rtTiO*, etc. are similar to each other. B aS no s, 5rTi03, etc. have high oxygen sensitivity and similar temperature coefficients of resistance. Here, for example, if BaSnO3 is replaced with TiOz, TiOt
The characteristics do not match because the temperature coefficient of resistance is too large. Also, if 5rTiO1 is replaced with LaCOO3 etc.,
Since the temperature coefficient is too small and the oxygen sensitivity is too low, matching of characteristics cannot be obtained.

次にBa5nOsにはPLやPt−Rh合金を腐食する
性質が有る。そこでBa5nOzを用いる場合、電極(
24)、(26)にはZ r Otを結晶粒界に析出さ
せた、Ptを用いるのが好ましい。BaSnO3はこの
材料を腐食しない。
Next, Ba5nOs has the property of corroding PL and Pt-Rh alloys. Therefore, when using Ba5nOz, the electrode (
For 24) and (26), it is preferable to use Pt in which Z r Ot is precipitated at grain boundaries. BaSnO3 does not corrode this material.

このガスセンサには、種々の変形が可能で有る。This gas sensor can be modified in various ways.

例えば第3図の基板(104)では、ガス導入孔(12
0)を長くし、排ガスが通過する間に充分に排ガス中の
未反応成分を除去するようにしている。
For example, in the substrate (104) shown in FIG.
0) is made long to sufficiently remove unreacted components in the exhaust gas while the exhaust gas passes through.

また逆に、第4図の基板(204)では、感知部(22
)の全周を開放し、ガスの導入を促進している。しかし
実際には、第1図や第3図の実施例でも充分な応答速度
が得られるので有り、第4図の実施例は好ましいもので
は無い。
Conversely, in the substrate (204) of FIG.
) is opened all around to facilitate the introduction of gas. However, in reality, sufficient response speed can be obtained with the embodiments shown in FIGS. 1 and 3, and the embodiment shown in FIG. 4 is not preferred.

第5図の特性図、第6図の回路図を基に、センサの作用
を述へる。n形ガス感知部(22)の抵抗値(n+)は
空燃比とともに増し、p形ガス感知部(22’)の抵抗
値(pl)は空燃比ととらに減少する。
The operation of the sensor will be described based on the characteristic diagram in FIG. 5 and the circuit diagram in FIG. 6. The resistance value (n+) of the n-type gas sensing section (22) increases with the air-fuel ratio, and the resistance value (pl) of the p-type gas sensing section (22') decreases with the air-fuel ratio.

そこでこの抵抗値の比等がら空燃比か検出できる。Therefore, the air-fuel ratio can be detected from the ratio of this resistance value.

温度が変化すると抵抗値は破線(R2)、(p2)のよ
うに変化し、温度係数が一致すれば温度補償もなされる
。そして抵抗値や電気伝導度等の積は、センサの温度に
対応する。
When the temperature changes, the resistance value changes as shown by the broken lines (R2) and (p2), and if the temperature coefficients match, temperature compensation is also performed. The product of resistance value, electrical conductivity, etc. corresponds to the temperature of the sensor.

第6図の回路では、電源(E)に感知部(22)、(2
2°)と負荷抵抗(R1)、(R2)とを接続する。
In the circuit shown in Fig. 6, the power supply (E) is connected to the sensing section (22), (2
2°) and load resistors (R1) and (R2).

発熱体(8)には、スイッチング要素としてのトランジ
スタ(Tri)を介して、電源(E)を接続する。
A power source (E) is connected to the heating element (8) via a transistor (Tri) as a switching element.

除算回路(DI)で、負荷抵抗(R1)、(R2)への
出力の比を求め、適宜の空燃比制御回路(11)に入力
する。乗算回路(Ml)では、出力の積等からセンサの
温度を求め、比較回路(C1)で定める基準電位と比較
し、トランジスタ(Tri)をオン−オフさせる。
A division circuit (DI) calculates the ratio of the outputs to the load resistors (R1) and (R2), and inputs the ratio to an appropriate air-fuel ratio control circuit (11). The multiplication circuit (Ml) determines the temperature of the sensor from the product of the outputs, compares it with a reference potential determined by the comparison circuit (C1), and turns on and off the transistor (Tri).

実際には、空燃比、特にリーンバーン領域での空燃比へ
の、検出信号は僅かであり、温度変動による信号は大き
い。そこでガス感知部(22)、(22°)の温度を±
30℃程度で制御し、両者の温度差を±5℃程度以下と
する。
In reality, the detection signal to the air-fuel ratio, especially the air-fuel ratio in the lean burn region, is small, and the signal due to temperature fluctuations is large. Therefore, the temperature of the gas sensing part (22), (22°) should be adjusted to ±
The temperature is controlled at about 30°C, and the temperature difference between the two is kept to about ±5°C or less.

このような課題は、実施例のガスセンサを用いることに
より達成される。ガス感知部(22)、(22°)はヒ
ータ(2)にほぼ直接に接触し、排ガスとは直接に接触
しない。従って排ガスによる加熱が不均一でも、ガス感
知部(22)等はほぼ均一に加熱される。ガス導入孔か
らの排ガスは、感知部(22)等に達する前に、ヒータ
(2)に接触し、ヒータ(2)とほぼ等しい温度となる
Such a problem is achieved by using the gas sensor of the example. The gas sensing portions (22), (22°) are in almost direct contact with the heater (2), but not with the exhaust gas. Therefore, even if the heating by the exhaust gas is uneven, the gas sensing section (22) etc. are heated almost uniformly. The exhaust gas from the gas introduction hole comes into contact with the heater (2) before reaching the sensing part (22) and the like, and has a temperature almost equal to that of the heater (2).

例えば第1図の実施例において、ヒータ(2)や基板(
4)、(6)の厚さを各1mm、幅を各3mm、孔部(
20)、(16)等の直径を0.4mmとすると、感知
部(22)、(22’)間の温度差は5℃以下で、かつ
応答性の低下は見られなかった。
For example, in the embodiment shown in FIG.
4), (6) are each 1 mm thick, each width 3 mm, and the hole (
When the diameters of sensing parts 20), (16), etc. were set to 0.4 mm, the temperature difference between sensing parts (22) and (22') was 5° C. or less, and no decrease in responsiveness was observed.

実施例のガスセンサには、これ以外にも種々の利点が有
る。ガス導入孔からの排ガスは感知部(22)等に達す
る前に、触媒(36)等に触れ、排ガス中の未反応成分
が除去される。そしてこの点と排ガスの温度を均一にす
るという点て、第3図の実施例が優れている。次に電極
(24)、(26)等は、ヒータ(2)と基板(4)等
でシールドされ、排ガスから保護される。また感知部(
22)、(22°)は、基板(4)、(6)とヒータ(
2)とで囲まれ、基板(4)等からの脱落が防止される
The gas sensor of the embodiment has various other advantages as well. Before the exhaust gas from the gas introduction hole reaches the sensing section (22), etc., it comes into contact with the catalyst (36), etc., and unreacted components in the exhaust gas are removed. The embodiment shown in FIG. 3 is superior in this respect and in that the temperature of the exhaust gas is made uniform. Next, the electrodes (24), (26), etc. are shielded with a heater (2), a substrate (4), etc., and are protected from exhaust gas. Also, the sensing part (
22), (22°) are the substrates (4), (6) and the heater (
2), and is prevented from falling off from the substrate (4) and the like.

なお変形例に付いて説明すると、感知部(22)等は、
凹部(14)等に充填したものでも良く、また凹部(1
4)内に膜状に印刷したものでも良い。
In addition, to explain about the modified example, the sensing part (22) etc.
It may be filled in the recess (14), etc., or the recess (1
4) A film may be printed inside.

[発明の効果] この発明では、2つのガス感知部を均一に加熱でき、空
燃比への検出精度を向上する事が出来る。
[Effects of the Invention] According to the present invention, it is possible to uniformly heat the two gas sensing sections, and it is possible to improve the accuracy of detecting the air-fuel ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の排ガスセンサの斜視図、第2図(a)
は第1の耐熱絶縁性基板の背面図、第2図(b)はヒー
タの正面図、第2図(C)は第2の耐熱絶縁性基板の正
面図で有る。第3図は、他の実施例の第1の耐熱絶縁性
基板の要部の、部分切り欠き部付き正面図、第4図は、
さらに他の実施例の第1の耐熱絶縁性基板の要部の、部
分切り欠き部付き斜視図で有る。第5図は実施例の特性
図、第6図は付帯回路の回路図、第7図は従来例の断面
図で有る。 図において、(2) ヒータ、(4)、(+04)、(
204)  第1の耐熱絶縁性基板、(6)第2の耐熱
絶縁性基板、(8)発熱体、(14)、(14°)凹部
、(22)n形ガス感知部、(22’)  l)形ガス
感知部。 特許出願人 フィガロ技研株式会社 マツダ 株式会社 第6図 第1図 第3図 第2 図(a) 血 第2 図(b) 第4図 第5図 1・01・11・2χ
Figure 1 is a perspective view of the exhaust gas sensor of the example, Figure 2 (a)
2 is a rear view of the first heat-resistant insulating substrate, FIG. 2(b) is a front view of the heater, and FIG. 2(C) is a front view of the second heat-resistant insulating substrate. FIG. 3 is a front view with a partial cutout of the main part of the first heat-resistant insulating substrate of another embodiment, and FIG.
It is a perspective view with a partial notch of the main part of the first heat-resistant insulating substrate of still another example. FIG. 5 is a characteristic diagram of the embodiment, FIG. 6 is a circuit diagram of an auxiliary circuit, and FIG. 7 is a sectional view of a conventional example. In the figure, (2) heater, (4), (+04), (
204) First heat-resistant insulating substrate, (6) second heat-resistant insulating substrate, (8) heating element, (14), (14°) recess, (22) n-type gas sensing section, (22') l) Type gas sensing section. Patent applicant Figaro Giken Co., Ltd. Mazda Co., Ltd. Fig. 6 Fig. 1 Fig. 3 Fig. 2 Fig. 2 (a) Blood Fig. 2 (b) Fig. 4 Fig. 5 Fig. 1, 01, 11, 2χ

Claims (3)

【特許請求の範囲】[Claims] (1) n形金属酸化物半導体に一対の電極を接続した
n形ガス感知部と、p形金属酸化物半導体に一対の電極
を接続したp形ガス感知部とを組み合わせた排ガスセン
サにおいて、 耐熱絶縁性基板に発熱体を埋設したヒータと、前記n形
ガス感知部を支持した第1の耐熱絶縁性基板と、 前記p形ガス感知部を支持した第2の耐熱絶縁性基板と
を設けると共に、 各ガス感知部が排ガス中に露出されず、ヒータに対向し
て配置されるように、前記第1及び第2の基板をヒータ
に固着し、 かつヒータと第1及び第2の基板のと間には、排ガスを
各ガス感知部に導くためのガス導入孔を設けた、 ことを特徴とする排ガスセンサ。
(1) In an exhaust gas sensor that combines an n-type gas sensing section with a pair of electrodes connected to an n-type metal oxide semiconductor and a p-type gas sensing section with a pair of electrodes connected to a p-type metal oxide semiconductor, A heater having a heating element embedded in an insulating substrate, a first heat-resistant insulating substrate supporting the n-type gas sensing section, and a second heat-resistant insulating substrate supporting the p-type gas sensing section are provided; , fixing the first and second substrates to the heater so that each gas sensing portion is not exposed to exhaust gas and being disposed facing the heater; and connecting the heater and the first and second substrates. An exhaust gas sensor characterized in that a gas introduction hole is provided in between for guiding exhaust gas to each gas sensing section.
(2)特許請求の範囲第1項記載の排ガスセンサにおい
て、 前記ガス導入孔には、酸化触媒層を設けたことを特徴と
する排ガスセンサ。
(2) The exhaust gas sensor according to claim 1, wherein the gas introduction hole is provided with an oxidation catalyst layer.
(3)特許請求の範囲第1項記載の排ガスセンサにおい
て、 前記第1及び第2の基板には、凹部とこれに連通する一
対の溝部とを設け、各凹部に各ガス感知部を収容すると
ともに、各溝部に電極を収容したことを特徴とする排ガ
スセンサ。
(3) In the exhaust gas sensor according to claim 1, the first and second substrates are provided with a recess and a pair of grooves communicating with the recess, and each gas sensing portion is accommodated in each recess. An exhaust gas sensor characterized in that an electrode is housed in each groove.
JP15291685A 1985-07-11 1985-07-11 Exhaust gas sensor Pending JPS6214048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15291685A JPS6214048A (en) 1985-07-11 1985-07-11 Exhaust gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15291685A JPS6214048A (en) 1985-07-11 1985-07-11 Exhaust gas sensor

Publications (1)

Publication Number Publication Date
JPS6214048A true JPS6214048A (en) 1987-01-22

Family

ID=15550948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15291685A Pending JPS6214048A (en) 1985-07-11 1985-07-11 Exhaust gas sensor

Country Status (1)

Country Link
JP (1) JPS6214048A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638547A (en) * 1986-06-28 1988-01-14 Ngk Spark Plug Co Ltd Gas detector
JPH0391601A (en) * 1989-08-15 1991-04-17 Union Carbide Ind Gases Technol Corp Method of combustion with decreased nox
JPH0571706A (en) * 1991-02-11 1993-03-23 Union Carbide Ind Gases Technol Corp Combustion method for simultaneously inhibiting nitrogen oxide and incomplete combustion product
JPH06213410A (en) * 1992-12-08 1994-08-02 Praxair Technol Inc Combustion of mixed oxidant
JP2009074977A (en) * 2007-09-21 2009-04-09 Hokuriku Electric Ind Co Ltd Response sensor and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638547A (en) * 1986-06-28 1988-01-14 Ngk Spark Plug Co Ltd Gas detector
JPH0391601A (en) * 1989-08-15 1991-04-17 Union Carbide Ind Gases Technol Corp Method of combustion with decreased nox
JPH0571706A (en) * 1991-02-11 1993-03-23 Union Carbide Ind Gases Technol Corp Combustion method for simultaneously inhibiting nitrogen oxide and incomplete combustion product
JPH06213410A (en) * 1992-12-08 1994-08-02 Praxair Technol Inc Combustion of mixed oxidant
JP2009074977A (en) * 2007-09-21 2009-04-09 Hokuriku Electric Ind Co Ltd Response sensor and its manufacturing method

Similar Documents

Publication Publication Date Title
US3989614A (en) Gas sensor
JPS61170618A (en) Semiconductor sensor for detecting flow rate
JPH07508100A (en) Sensor device for detecting gas components and/or gas concentration of gas mixture
JPS6336463B2 (en)
JPS634660B2 (en)
EP0121905B1 (en) Oxygen sensor
US4505802A (en) Oxygen concentration detector
US5562811A (en) Device for temperature measurement at an oxygen probe
JPH029713B2 (en)
JP2002310988A (en) Gas sensor
KR970002295A (en) Gas sensor
CA1248198A (en) Air-fuel ratio sensor used to control an internal combustion engine
JP2011089943A (en) Contact combustion type gas sensor
JPS6214048A (en) Exhaust gas sensor
US6348140B1 (en) Gas sensor with a high combined resistance to lead wire resistance ratio
JPH11118566A (en) Flow sensor
JPH1151893A (en) Contact combustion type gas sensor
JPH11311559A (en) Sensor circuit system
EP0334614A3 (en) Catalytic gas detector
JPH01284748A (en) Connector for connecting sensor
JPS6326569A (en) Ion selective electrode device
JPS62126341A (en) Gas sensor
JPS61137055A (en) Oxygen sensor element
US7972489B2 (en) Sensor element
JPH0220681Y2 (en)