JPS6214029B2 - - Google Patents

Info

Publication number
JPS6214029B2
JPS6214029B2 JP56194124A JP19412481A JPS6214029B2 JP S6214029 B2 JPS6214029 B2 JP S6214029B2 JP 56194124 A JP56194124 A JP 56194124A JP 19412481 A JP19412481 A JP 19412481A JP S6214029 B2 JPS6214029 B2 JP S6214029B2
Authority
JP
Japan
Prior art keywords
alkali metal
coating
silicate
resistance
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56194124A
Other languages
Japanese (ja)
Other versions
JPS5896876A (en
Inventor
Hidekimi Kadokura
Yoshinori Furumi
Tetsuo Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP19412481A priority Critical patent/JPS5896876A/en
Publication of JPS5896876A publication Critical patent/JPS5896876A/en
Publication of JPS6214029B2 publication Critical patent/JPS6214029B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属材料への耐磨耗性、耐蝕性被膜の
形成方法に関するものである。更に詳細には特定
組成のアルカリ金属ケイ酸塩を金属材料に塗布、
焼付けすることによる金属材料への耐磨耗性、耐
蝕性被膜の形成方法に関するものである。 金属材料面にアルカリ金属ケイ酸塩を塗布し乾
燥することにより、硬度の高い透明な被膜が形成
できることは公知である。 しかしながら、ケイ酸カルシウムやケイ酸ナト
リウムから形成される被膜の場合には、耐湿性が
悪く、空気中の炭酸ガスや亜硫酸ガスと反応し、
表面が白華するという問題があり、且つ、耐水性
が劣る為、水の作用する場所での使用ができない
という問題点を有している。 アルカリ金属ケイ酸塩よりなる被膜の耐湿性、
耐水性を向上させる方法として、アルカリ金属ケ
イ酸塩の被膜を亜硫酸ガス、炭酸ガス、および二
酸化チツ素からなる群から選ばれた少なくとも1
つのガスを含む湿気に富んだ雰囲気中に放置した
後、水洗する方法が提案されている(特開昭55―
43145号公報)。該方法によれば、耐水性の向上は
期待できるものの、工程が複数となるとか被覆さ
れていない部分の金属材料が、酸性ガスおよび水
により腐食されるとか、酸性ガスによるアルカリ
分の中和が不充分な場合は、水洗時に被膜が失透
し、且つ、酸性ガスによりガラス質皮膜中のアル
カリを必要量中和することは困難であり、長時間
を要する等の問題点を有している。 また、アルカリ金属ケイ酸塩に耐水性、耐湿性
を付与する方法として、リチウムを含む混合アル
カリ金属のケイ酸塩も提案されている(特公昭39
―13224号公報、特開昭50―66531号公報)。しか
し、該方法のいずれの場合にも被覆組成物の適用
は常温硬化用であり、金属材料に塗布、焼付け硬
化した場合には、被膜に亀裂、剥離を生じ、結果
として耐蝕性、耐摩耗性、耐酸化性に劣るという
欠点を有している。かかる観点に立脚して、本発
明者らは、金属材料に耐摩耗性、耐蝕性等を付与
する方法を開発すべく鋭意研究を行なつた結果、
金属材料に特定組成のアルカリ金属ケイ酸塩を塗
布することにより、耐水性、耐湿性に優れ、か
つ、耐摩耗性、耐蝕性等を付与できることを見い
出し、本発明を完成するに至つた。 R2O・mLi2O・nSiO2 すなわち、本発明は金属材料の一部または全部
の面に一般式 (式中、RはNaまたはKを示し、mおよびn
は0.1≦m<3、4≦n<10である。) で表わされるアルカリ金属ケイ酸塩の水溶液また
は該アルカリ金属ケイ酸塩の水溶液にホウ酸、亜
鉛イオンおよびアルミニウムイオンより選ばれた
少なくとも1種を溶解して成る水溶液から実質的
に成る被膜形成剤を塗布し、焼付けることを特徴
とする金属材料への耐摩耗性、耐蝕性被膜の形成
方法を提供するにある。 本発明方法の実施に当り、被膜形成剤としては
一般式 R2O・mLi2O・nSiO2 (式中、R、mおよびnは前記と同じ。) で表わされるアルカリ金属ケイ酸塩の水溶液また
は該アルカリ金属ケイ酸塩の水溶液にホウ酸、亜
鉛イオンおよびアルミニウムイオンより選ばれた
少なくとも1種を溶解して成る水溶液が用いられ
る。 本発明方法において、リチウムを含むアルカリ
金属ケイ酸塩を用いる理由は前述の一般式 R2・mLi2O・nSiO2 (式中、R、mおよびnは前記と同じ。)で表
わされるアルカリ金属ケイ酸塩において、nを大
きくし、その効果によりアルカリ金属ケイ酸塩の
耐水性を向上させようとするにある。 すなわち、ナトリウムやカリウムのケイ酸塩は
一般式R2O・nSiO2で示されるものであり、nが
大きい程耐水性は向上するが、nが4以上となる
と水溶液の状態を維持できなくなり、被膜形成剤
としての用をなさないものとなるが、Li2O成分
を含ませることにより、nを任意に変化させても
水溶性の状態を維持できるものとなることを利用
したものである。一般式中のnは最も重要な構成
要件となるものであり、4≦n<10好ましくは5
≦n≦8とされる。nが4未満となると、形成し
た被膜の耐水性が低下するようになり、空気中に
放置しておくと白亜化し、沸騰水等に浸漬すると
失透する等の不都合を生じるようになるし、一方
10以上になると密着性が低下し被膜にクラツクが
入り易くなるという不都合を生じるようになり好
ましくない。 また、mは通常0.1≦m<3、好ましくは0.2≦
m≦2.0とされる。mが0.1未満となると、nが大
きい時の水溶液の安定性が悪くなつたり、被膜に
クラツクが入り易くなり好ましくないし、一方m
が3以上になると耐水性が劣るようになるので好
ましくない。 本発明方法のアルカリ金属ケイ酸塩の一般式に
おいて、Rはカリウムまたはナトリウムを示すも
のであり、これらは単独または混合物としても使
用することができる。 このようなアルカリ金属ケイ酸塩水溶液の製造
方法は公知の方法を適用することができ、例えば
水酸化リチウム、水酸化ナトリウム、水酸化カリ
ウム、二酸化ケイ素の混合物を加熱して製造する
こともできるし、ケイ酸リチウムに水酸化ナトリ
ウムや水酸化カリウムを溶解させて製造すること
もできるが、通常は市販のケイ酸リチウム水溶液
とケイ酸ナトリウム水溶液または/およびケイ酸
カリウム溶液を混合することで製造できる。得ら
れたアルカリ金属ケイ酸塩の水溶液は被膜欠陥の
原因となる固体分を除く為、過した後使用する
のが好ましい。 本発明方法で使用されるアルカリ金属ケイ酸塩
は焼付により耐水性を有する透明被膜を形成する
ものであるが、上述せるアルカリ金属ケイ酸塩水
溶性にホウ酸、亜鉛イオンおよびアルミニウムイ
オンより選ばれた少なくとも1種を含ませること
により、更に耐水性を向上させることができる。
イオンを含ませることで、nが小さい場合の耐水
性を向上することが可能となる。 ホウ酸および/または多価金属イオンを含有さ
せる方法としては、ホウ酸、ホウ砂、ホウ酸カリ
ウムのようなアルカリ金属ホウ酸塩や亜鉛、アル
ミニウムの酸化物、水酸化物、ケイ酸塩、ケイフ
ツ化物等を予めアルカリ金属ケイ酸塩の単独の水
溶液に溶解させておくか、または本発明のアルカ
リ金属ケイ酸塩に直接溶解させる方法を採ること
もできる。ホウ酸、亜鉛イオン、アルミニウムイ
オンの量は酸化物として乾燥被膜中に約1〜5重
量%、好ましくは1〜3重量%存在するように添
加される。亜鉛化合物、アルミニウム化合物溶解
残渣は、通常過により除去される。 本発明方法による金属材料への耐摩耗性、耐蝕
性被膜の形成方法において、被膜の膜厚は約0.1
〜2μm、好ましくは0.2〜1.2μmとされる。膜
厚が0.1μm未満となると、実質的に保護効果が
期待しにくくなるし、一方、2μmを超えると焼
付け時に被膜にふくれを生じたり、クラツクを生
じたり、更には密着性が低下するようになり好ま
しくない。この様な膜厚に調整する為に、本発明
のアルカリ金属ケイ酸塩は水により通常固型分濃
度を約5〜30重量%となるように濃度調整して用
いるのが好ましい。 本発明方法のアルカリ金属ケイ酸塩の水溶液に
エチレングリコール、グリセリン等の乾燥遅延剤
を添加混合し、作業性の改善をはかることができ
る。これらの乾燥遅延剤の添加量は、焼成後の残
留炭素による着色を考慮して、一般にアルカリ金
属ケイ酸塩の水溶液に対して25重量%以下量添加
される。 本発明方法の実施に当り、金属材料は前述のア
ルカリ金属ケイ酸塩が塗布され、次いで乾燥、焼
付が行なわれる。金属材料へのアルカリ金属ケイ
酸塩の塗布に際し金属材料は予め脱脂しておくこ
とが好ましく、脱脂が不充分な場合は均一な被膜
が得られず、被膜の欠陥の原因となる。金属材料
の脱脂方法としては、空焼、アルカリ脱脂、酸
洗、熱水洗浄、界面活性剤洗浄等公知の方法が利
用でき、金属の特性により任意に選ぶことができ
る。 更に、本発明方法のアルカリ金属ケイ酸塩に界
面活性剤を溶解し、金属材料との濡れ性を完全な
ものとすることができる。金属材料への被膜形成
剤の塗布は、スプレー、デイツピング、ローラー
等公知の方法から選べば良いが、通常デイツピン
グによる方法が好ましく用いられる。この時均一
被膜を得る為、金属材料を加熱しておくとか、塗
布液を暖めておく等の方法も採用することができ
る。塗布された金属材料は乾燥され、次いで焼付
けされる。焼付け温度は高温程緻密で耐水性の被
膜が得られるが、耐水性からは約150℃以上が好
ましい。上限は特に限定されるものではないが、
コスト、金属の材質等から通常550℃までの温度
が用いられる。 しかして、従来法のように焼付けしないで乾燥
のみで被膜形成剤を適用する場合には耐水性が劣
り好ましくない。公知の方法の場合は耐水性は付
与されるとしても、公知の組成物を金属材料に塗
布し、焼付け硬化した場合は亀裂、剥離を生じ、
実質的に金属材料を保護することができない。 このようにして得られる本発明方法による被膜
は透明であり、且つ耐水性、耐食性、気密性に優
れ、更にはシリカ質の高い硬度を有している為、
金属の防食、酸化防止、傷つき防止等に優れた効
果を発揮するものである。被覆される金属材料と
しては、アルカリ金属ケイ酸塩により被膜形成可
能なものなら何でも良く、例えばアルミニウム、
銅、鉄、貴金属等およびこれらを主成分とする金
属材料を挙げることができる。アルミニウム、
銅、貴金属等の軟い金属に耐摩耗性、よごれ防止
性、傷つき防止性等を付与することができ、銅お
よび銅合金等酸化され易い金属に酸化防止性を付
与することができる。また、電気絶縁性を付与す
ることも可能である。 勿論このような被膜は金属単体に限らず、メツ
キ面や蒸着面に対しても有効であり、熱交換器用
金属材料、熱反射・光反射用金属材料、装飾材
料、更にはメツキ、蒸着材料の補護等多くの用途
に使用できる。 以下に実施例により本発明を更に詳細に説明す
るが、本発明はこれらによつて制限されるもので
はない。 なお、実施例中の部および%は重量基準を示
す。 実施例中の物性測定は以下の方法に依つた。 1 外 観:目視により透明性、発泡、クラツク
を観察した。 2 耐水性:沸騰水中で所定時間煮沸した後の被
膜を観察した。 3 耐酸化性:所定温度で所定時間焼成した後、
表面観察を行なつた。 4 膜 厚:表面粗さ計により、段差測定を行な
つた。 5 耐蝕性:3%食塩水中に240時間浸漬した後
外観を観察した。 6 耐摩耗性:洗浄剤粉未(商品名:クレンザ
ー)により摩き、外観の変化を観察した。 実施例1〜6、比較例1〜6 ケイ酸ソーダ、ケイ酸カリウム、ケイ酸リチウ
ムの水溶液を所定割合で混合し第1表に示す組成
比のリチウムを含むアルカリ金属ケイ酸塩水溶液
を得た。この液を過し、水より固型分15重量%
となるように希釈した。この塗布液中に銅板およ
びアルミニウム板を浸漬した後引き上げ、20分風
乾後100℃で10分乾燥させた後、更に250℃で10分
間焼付けた。この被覆金属材料の物性を第1表に
示す。 なお被膜厚みは発泡等の異常物を除いていずれ
も約0.5μmであつた。
The present invention relates to a method for forming a wear-resistant and corrosion-resistant coating on metal materials. More specifically, coating a metal material with an alkali metal silicate of a specific composition,
The present invention relates to a method for forming a wear-resistant and corrosion-resistant coating on metal materials by baking. It is well known that a transparent film with high hardness can be formed by applying an alkali metal silicate to a metal material surface and drying it. However, films formed from calcium silicate and sodium silicate have poor moisture resistance and react with carbon dioxide and sulfur dioxide gas in the air.
There is a problem that the surface becomes efflorescent, and the water resistance is poor, so it cannot be used in places exposed to water. Moisture resistance of coatings made of alkali metal silicate,
As a method for improving water resistance, an alkali metal silicate coating is coated with at least one selected from the group consisting of sulfur dioxide gas, carbon dioxide gas, and nitrogen dioxide.
A method has been proposed in which the material is left in a humid atmosphere containing two gases and then washed with water (Japanese Unexamined Patent Application Publication No. 1983-1999).
Publication No. 43145). Although this method can be expected to improve water resistance, it requires multiple steps, the uncoated metal material may be corroded by the acid gas and water, and the acid gas may not neutralize the alkali content. If it is insufficient, the coating will devitrify when washed with water, and it will be difficult to neutralize the required amount of alkali in the glassy coating with acidic gas, resulting in problems such as a long time required. . In addition, mixed alkali metal silicates containing lithium have been proposed as a method of imparting water resistance and moisture resistance to alkali metal silicates (Japanese Patent Publication No.
(Publication No. 13224, Japanese Unexamined Patent Publication No. 1983-66531). However, in both of these methods, the coating composition is applied to cure at room temperature, and when applied to metal materials and cured by baking, the coating may crack or peel, resulting in poor corrosion and wear resistance. However, it has the disadvantage of poor oxidation resistance. Based on this viewpoint, the present inventors conducted intensive research to develop a method for imparting wear resistance, corrosion resistance, etc. to metal materials.
The present inventors have discovered that by coating a metal material with an alkali metal silicate of a specific composition, it is possible to provide excellent water resistance and moisture resistance, as well as abrasion resistance, corrosion resistance, etc., and have completed the present invention. R 2 O・mLi 2 O・nSiO 2 In other words, the present invention applies the general formula (wherein R represents Na or K, m and n
is 0.1≦m<3, 4≦n<10. ) or an aqueous solution prepared by dissolving at least one selected from boric acid, zinc ions, and aluminum ions in the aqueous solution of the alkali metal silicate. The present invention provides a method for forming a wear-resistant and corrosion-resistant coating on a metal material, which method comprises coating and baking the coating. In carrying out the method of the present invention, the film forming agent is an aqueous solution of an alkali metal silicate represented by the general formula R 2 O.mLi 2 O.nSiO 2 (wherein R, m and n are the same as above). Alternatively, an aqueous solution prepared by dissolving at least one selected from boric acid, zinc ions, and aluminum ions in an aqueous solution of the alkali metal silicate is used. In the method of the present invention, the reason why an alkali metal silicate containing lithium is used is that the alkali metal silicate represented by the general formula R 2 ·mLi 2 O · nSiO 2 (wherein R, m and n are the same as above) is used. The aim is to increase n in silicates and use this effect to improve the water resistance of alkali metal silicates. In other words, silicates of sodium and potassium are represented by the general formula R 2 O·nSiO 2 , and the larger n is, the better the water resistance is, but when n is 4 or more, it becomes impossible to maintain the state of an aqueous solution. Although it is useless as a film-forming agent, by including the Li 2 O component, it is possible to maintain a water-soluble state even if n is arbitrarily changed. n in the general formula is the most important constituent element, and 4≦n<10, preferably 5
≦n≦8. If n is less than 4, the water resistance of the formed film will decrease, and if left in the air, it will become chalky, and if immersed in boiling water, it will devitrify, etc. on the other hand
If it exceeds 10, it is not preferable because the adhesion decreases and cracks tend to form in the coating. In addition, m is usually 0.1≦m<3, preferably 0.2≦
m≦2.0. If m is less than 0.1, the stability of the aqueous solution will deteriorate when n is large, and cracks will easily form in the coating, which is undesirable.
If it is 3 or more, water resistance becomes poor, which is not preferable. In the general formula of the alkali metal silicate used in the method of the present invention, R represents potassium or sodium, which can be used alone or as a mixture. Such an aqueous alkali metal silicate solution can be produced by a known method, for example, by heating a mixture of lithium hydroxide, sodium hydroxide, potassium hydroxide, and silicon dioxide. It can also be produced by dissolving sodium hydroxide or potassium hydroxide in lithium silicate, but it can usually be produced by mixing a commercially available lithium silicate aqueous solution with a sodium silicate aqueous solution or/and a potassium silicate solution. . The obtained aqueous solution of alkali metal silicate is preferably used after being filtered to remove solids that cause coating defects. The alkali metal silicate used in the method of the present invention forms a water-resistant transparent film by baking. By including at least one kind, water resistance can be further improved.
By including ions, it is possible to improve water resistance when n is small. Examples of methods for incorporating boric acid and/or polyvalent metal ions include boric acid, borax, alkali metal borates such as potassium borate, and oxides, hydroxides, silicates, and silicates of zinc and aluminum. It is also possible to adopt a method in which the compound or the like is dissolved in advance in a single aqueous solution of the alkali metal silicate, or directly dissolved in the alkali metal silicate of the present invention. The amounts of boric acid, zinc ions, and aluminum ions are added as oxides so that they are present in the dry film in an amount of about 1 to 5% by weight, preferably 1 to 3% by weight. The dissolved zinc compound and aluminum compound residues are usually removed by filtration. In the method of forming a wear-resistant and corrosion-resistant coating on metal materials according to the method of the present invention, the thickness of the coating is approximately 0.1
~2μm, preferably 0.2~1.2μm. If the film thickness is less than 0.1 μm, it is practically difficult to expect a protective effect; on the other hand, if it exceeds 2 μm, the film may blister or crack during baking, and the adhesion may deteriorate. I don't like it. In order to adjust the film thickness to such a level, the alkali metal silicate of the present invention is preferably used after adjusting the solid content concentration with water to about 5 to 30% by weight. Workability can be improved by adding and mixing a drying retardant such as ethylene glycol or glycerin to the aqueous solution of the alkali metal silicate used in the method of the present invention. The amount of these drying retardants to be added is generally 25% by weight or less based on the aqueous solution of alkali metal silicate, taking into consideration the coloring caused by residual carbon after firing. In carrying out the method of the present invention, the metal material is coated with the alkali metal silicate described above, then dried and baked. When applying an alkali metal silicate to a metal material, it is preferable to degrease the metal material in advance; if the degreasing is insufficient, a uniform coating cannot be obtained, which may cause defects in the coating. As a method for degreasing the metal material, known methods such as dry firing, alkaline degreasing, pickling, hot water cleaning, and surfactant cleaning can be used, and any method can be selected depending on the characteristics of the metal. Furthermore, by dissolving a surfactant in the alkali metal silicate of the present invention, it is possible to perfect the wettability with the metal material. The film-forming agent may be applied to the metal material by any known method such as spraying, dipping, or rolling, but dipping is usually preferred. At this time, in order to obtain a uniform coating, methods such as heating the metal material or warming the coating liquid may also be adopted. The applied metal material is dried and then baked. The higher the baking temperature, the more dense and water-resistant the film can be obtained, but from the viewpoint of water resistance, it is preferably about 150°C or higher. The upper limit is not particularly limited, but
Temperatures up to 550°C are usually used due to cost, metal material, etc. However, when the film-forming agent is applied only by drying without baking as in the conventional method, the water resistance is poor, which is not preferable. Although water resistance can be imparted using known methods, cracks and peeling occur when a known composition is applied to a metal material and hardened by baking.
Substantially unable to protect metal materials. The coating obtained by the method of the present invention thus obtained is transparent, has excellent water resistance, corrosion resistance, and airtightness, and also has high hardness of silica.
It exhibits excellent effects in preventing corrosion, oxidation, and scratching of metals. The metal material to be coated may be any material that can be coated with an alkali metal silicate, such as aluminum,
Examples include copper, iron, precious metals, and metal materials containing these as main components. aluminum,
Abrasion resistance, antifouling properties, anti-scratch properties, etc. can be imparted to soft metals such as copper and precious metals, and antioxidation properties can be imparted to metals that are easily oxidized such as copper and copper alloys. It is also possible to provide electrical insulation. Of course, such coatings are effective not only on metals alone, but also on plated and vapor-deposited surfaces, such as metal materials for heat exchangers, metal materials for heat reflection and light reflection, decorative materials, and even plating and vapor-deposition materials. It can be used for many purposes such as protection. The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto. Note that parts and percentages in the examples are based on weight. Measurement of physical properties in Examples was carried out by the following method. 1 Appearance: Visually observed transparency, foaming, and cracks. 2. Water resistance: The film was observed after being boiled in boiling water for a predetermined period of time. 3 Oxidation resistance: After firing at a specified temperature for a specified period of time,
The surface was observed. 4. Film thickness: Step height measurement was performed using a surface roughness meter. 5 Corrosion resistance: The appearance was observed after immersion in 3% saline for 240 hours. 6. Abrasion resistance: Rubbed with detergent powder (trade name: Cleanser) and observed changes in appearance. Examples 1 to 6, Comparative Examples 1 to 6 Aqueous solutions of sodium silicate, potassium silicate, and lithium silicate were mixed at predetermined ratios to obtain aqueous alkali metal silicate solutions containing lithium having composition ratios shown in Table 1. . This liquid is filtered and the solid content is 15% by weight compared to water.
It was diluted so that A copper plate and an aluminum plate were immersed in this coating solution, taken out, air-dried for 20 minutes, dried at 100°C for 10 minutes, and then baked at 250°C for 10 minutes. Table 1 shows the physical properties of this coated metal material. The film thickness was approximately 0.5 μm in all cases, excluding abnormalities such as foaming.

【表】 第1表より本発明方法による被膜を施さない金
属の場合(比較例1および2)は耐摩耗性、耐蝕
性、耐酸化性(銅の場合)が悪く、たとえ被覆し
たとしてもnが4未満の場合(比較例3)は耐水
性に劣り、nが10以上(比較例4)となると密着
性が劣る様になり、mが3以上(比較例6)にな
ると耐水性が劣るようになるが、本発明方法に示
される範囲のアルカリ金属ケイ酸塩による場合
(実施例1〜6)は良好な耐水性、耐蝕性、耐摩
耗性を示すことが明らかである。 実施例 7 ケイ酸ナトリウム、ケイ酸リチウムを混合し、
Na2O・0.4Li2O・5.0SiO2の組成の固型分20重量
%の被覆液を調合し、この水溶液に2%のホウ砂
を溶解させた。ホウ砂溶解前・後の水溶液を銅板
に塗布し、200℃で10分間の焼付けを行なつた。
この被覆銅板の物性は第2表に示すとおりであつ
た。 なお、該ホウ砂溶解物の乾燥被膜の各成分モル
比はNa2O・0.37Li2O・4.6SiO2・0.18B2O3であつ
た。
[Table] Table 1 shows that metals not coated by the method of the present invention (Comparative Examples 1 and 2) have poor wear resistance, corrosion resistance, and oxidation resistance (copper), and even if coated, When n is less than 4 (Comparative Example 3), the water resistance is poor, when n is 10 or more (Comparative Example 4), the adhesion is poor, and when m is 3 or more (Comparative Example 6), the water resistance is poor. However, it is clear that the use of alkali metal silicates in the range shown in the method of the present invention (Examples 1 to 6) exhibits good water resistance, corrosion resistance, and abrasion resistance. Example 7 Mixing sodium silicate and lithium silicate,
A coating solution having a composition of Na 2 O.0.4Li 2 O.5.0SiO 2 and a solid content of 20% by weight was prepared, and 2% of borax was dissolved in this aqueous solution. The aqueous solution before and after dissolving borax was applied to a copper plate and baked at 200°C for 10 minutes.
The physical properties of this coated copper plate were as shown in Table 2. The molar ratio of each component in the dry coating of the borax melt was Na2O.0.37Li2O.4.6SiO2.0.18B2O3 .

【表】 第2表よりホウ酸化合物の添加により耐水性が
向上することが明らかである。
[Table] It is clear from Table 2 that water resistance is improved by adding a boric acid compound.

Claims (1)

【特許請求の範囲】 1 金属材料の一部または全部の面に一般式 R2O・mLi2O・nSiO2 (式中、RはNaまたはKを示し、mおよびn
は0.1≦m<3、4≦n<10である。)であらわさ
れるアルカリ金属ケイ酸塩の水溶液または該アル
カリ金属ケイ酸塩の水溶液にホウ酸、亜鉛イオン
およびアルミニウムイオンより選ばれた少なくと
も1種を溶解して成る水溶液から実質的に成る被
膜形剤を塗布し、焼付けることを特徴とする金属
材料への耐摩耗性、耐蝕性被膜の形成方法。
[Claims] 1 Part or all of the surface of the metal material has the general formula R 2 O・mLi 2 O・nSiO 2 (wherein R represents Na or K, m and n
is 0.1≦m<3, 4≦n<10. ) or an aqueous solution obtained by dissolving at least one selected from boric acid, zinc ions, and aluminum ions in the aqueous solution of the alkali metal silicate. A method for forming a wear-resistant and corrosion-resistant film on a metal material, the method comprising coating and baking the film.
JP19412481A 1981-12-02 1981-12-02 Formation of wear and corrosion resistant film on metallic material Granted JPS5896876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19412481A JPS5896876A (en) 1981-12-02 1981-12-02 Formation of wear and corrosion resistant film on metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19412481A JPS5896876A (en) 1981-12-02 1981-12-02 Formation of wear and corrosion resistant film on metallic material

Publications (2)

Publication Number Publication Date
JPS5896876A JPS5896876A (en) 1983-06-09
JPS6214029B2 true JPS6214029B2 (en) 1987-03-31

Family

ID=16319303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19412481A Granted JPS5896876A (en) 1981-12-02 1981-12-02 Formation of wear and corrosion resistant film on metallic material

Country Status (1)

Country Link
JP (1) JPS5896876A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106777A (en) * 1984-10-31 1986-05-24 Susumu Murao Corrosion resistant cast product
JP2639129B2 (en) * 1989-09-13 1997-08-06 日本板硝子株式会社 Method for producing colored metal body
JPH0559572A (en) * 1991-09-02 1993-03-09 Kawasaki Steel Corp Aluminum alloy sheet excellent in press formability and corrosion resistance
JP5353342B2 (en) * 2009-03-17 2013-11-27 新日鐵住金株式会社 Surface treatment zinc-based plating metal material and surface treatment liquid
JP2013084894A (en) * 2011-09-28 2013-05-09 Fujifilm Corp Substrate with insulating layer, semiconductor device using the same, photoelectric conversion element, light-emitting element, and electronic circuit
TWI471388B (en) * 2014-05-09 2015-02-01 Hongtansawat Warapon Inorganic microfilm substrate and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167156A (en) * 1979-06-08 1980-12-26 Matsushita Electric Works Ltd Manufacture of product having siliceous film
JPS5625969A (en) * 1979-08-04 1981-03-12 Matsushita Electric Works Ltd Manufacture of product having glassy film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167156A (en) * 1979-06-08 1980-12-26 Matsushita Electric Works Ltd Manufacture of product having siliceous film
JPS5625969A (en) * 1979-08-04 1981-03-12 Matsushita Electric Works Ltd Manufacture of product having glassy film

Also Published As

Publication number Publication date
JPS5896876A (en) 1983-06-09

Similar Documents

Publication Publication Date Title
US6077885A (en) Chromate-free protective coatings
KR950004234B1 (en) Corrosion resistant aluminum coating composition
US4755224A (en) Corrosion resistant aluminum coating composition
JPH09503824A (en) Hydrophilic coating for aluminum
US5672390A (en) Process for protecting a surface using silicate compounds
US5205874A (en) Process of protecting metallic and wood surfaces using silicate compounds
JPS645110B2 (en)
US2544139A (en) Process for enameling aluminumrich alloys
JPS6214029B2 (en)
JPH06240174A (en) Coating liquid for forming film and paint composition
US2927874A (en) Process for producing aluminum surface coatings
US2719796A (en) Process for enameling aluminum
US3625737A (en) Protective coating and method of making
JPH0765004B2 (en) Heat and corrosion resistant paint
EP0684323B1 (en) Boron nitride-silicate sealant
US20040115448A1 (en) Corrosion resistant magnesium and magnesium alloy and method of producing same
CA2276475C (en) Pickling/activation solution for the pretreatment of aluminium-steel composites prior to dip tinning
JPS607030B2 (en) Manufacturing method for products with siliceous film
AU691794B2 (en) Process for protecting a surface using silicate compounds
US2381124A (en) Composition for cleaning metal such as aluminum and magnesium
JPS59140378A (en) Manufacture of protective film
JPS60166356A (en) Plated wire with rustproof treatment
JPS607029B2 (en) Manufacturing method for products with siliceous film
JPS6115154B2 (en)
JPS5949310B2 (en) Manufacturing method for products with glassy coating