JPS6115154B2 - - Google Patents

Info

Publication number
JPS6115154B2
JPS6115154B2 JP13610878A JP13610878A JPS6115154B2 JP S6115154 B2 JPS6115154 B2 JP S6115154B2 JP 13610878 A JP13610878 A JP 13610878A JP 13610878 A JP13610878 A JP 13610878A JP S6115154 B2 JPS6115154 B2 JP S6115154B2
Authority
JP
Japan
Prior art keywords
film
silicate
tin oxide
oxide film
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13610878A
Other languages
Japanese (ja)
Other versions
JPS5562166A (en
Inventor
Hideo Kawamura
Seishiro Yamakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP13610878A priority Critical patent/JPS5562166A/en
Publication of JPS5562166A publication Critical patent/JPS5562166A/en
Publication of JPS6115154B2 publication Critical patent/JPS6115154B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は保護皮膜を有する金属製品およびそ
の製法に関するものである。 表面に保護皮膜を有する金属製品は、これまで
金属製品の表面をケイ酸アルカリ(アルカリとし
てはリチウム、カリウム、ナトリウム)水溶液で
処理し、ついでこれを乾燥、焼付けてケイ酸ガラ
ス質皮膜を形成したのち脱アルカリ処理すること
により製造されていた。このようにして金属製品
の表面にケイ酸ガラス質皮膜を形成することによ
り、金属製品の耐食性、耐薬品性(耐アルカリ
性、耐酸性)および場合によつては硬度も向上す
る。しかしながら、このようにして金属製品の表
面にケイ酸ガラス質皮膜を形成する場合には、ケ
イ酸ガラス質皮膜に対して充分に脱アルカリ処理
を行う必要がある。すなわち、ケイ酸ガラス質皮
膜中に存在するアルカリ金属は、経時的に空気中
の亜硫酸ガス、炭酸ガス等の酸性ガスと水の存在
下で反応して皮膜表面に塩として析出し白華現象
を起こすからである。ところが、このように充分
に脱アルカリ処理を行うと、それによつて除去さ
れたアルカリ金属に起因する極微細な、すなわち
原子ないし分子オーダの極微細孔が形成されるた
め、耐食性、耐薬品性等に悪影響があらわれる。
このような問題を解消するために、ケイ酸アルカ
リを数度にわたつて塗装することが考えられる
が、そのようにして形成された皮膜にはクラツク
がはいり易く、しかも作業が煩雑になるという問
題が生じた。他方、ガラス製品のコーテイングに
は、一般に酸化スズ皮膜が用いられ、それによつ
てガラス製品の耐薬品性、硬化等が向上してい
た。この皮膜の形成は、通常CVD(chemical
vaper deposition)によつて行われていた。これ
には、一般に、四塩化スズを空気中において高温
で蒸発分解させながらガラス製品に付着させる方
法が採られていた。ところで、金属製品の表面
に、ガラス製品と同様にCVDによつて酸化スズ
皮膜を形成することができれば、ケイ酸ガラス質
皮膜を形成するときに生ずるような問題は起こら
ない。しかしながら、そのようにすると、CVD
の際に発生する塩素系の分解ガスにより金属製品
の腐蝕が起こり、かつ形成された酸化スズ皮膜と
金属製品との接着性が悪いため皮膜の剥離が起き
やすくなる。したがつて、金属製品の表面に直接
酸化スズ皮膜を形成することも妥当ではない。こ
のように、従来の保護皮膜を有する金属製品の保
護皮膜は、完全なものではなく、酸化スズ直付け
も妥当ではない。 この発明は、このような事情に鑑みなされたも
ので、金属製品の表面をケイ酸アルカリ水溶液で
処理して400℃以下の温度で焼付けることにより
金属製品の表面に膜厚5μ以下のケイ酸ガラス質
皮膜を形成し、このケイ酸ガラス質皮膜の上にケ
ミカルベーパーポジシヨンによつて酸化スズ皮膜
を形成する保護皮膜を有する金属製品の製法を要
旨とするものである。 すなわち、この発明の製法によつて形成された
保護皮膜を有する金属製品は、その表面に、金属
に対して密着性の優れたケイ酸ガラス質皮膜が形
成され、そのケイ酸ガラス質皮膜の上に耐食性、
耐薬品性等の極めて優れた酸化スズ皮膜が形成さ
れているため、保護皮膜が完全である。特にケイ
酸ガラス質皮膜が酸化スズ皮膜によつて覆われて
いて空気との接触が断たれているため、ケイ酸ガ
ラス質皮膜に、経時的に白華現象が起こることが
なく、常に良好な外観を保つことができる。その
うえ、酸化スズ皮膜(ケイ酸ガラス質皮膜に対す
る密着性良好)がケイ酸ガラス質皮膜(金属に対
する密着性良好)を介して金属製品の表面に形成
されているため、剥離することがない。また、こ
のような酸化スズ皮膜をCVDにより形成する
と、皮膜形成作業が簡単になり、かつ形成された
皮膜が均一になる。さらに、ケイ酸ガラス質皮膜
に脱アルカリ処理が施こされているときは、
CVDによる酸化スズ皮膜の形成により、脱アル
カリ処理によつて生じた極微細孔が完全に埋めら
れるため、白華現象の発生が一層防止される。こ
のとき、脱アルカリ処理が不充分でもケイ酸ガラ
ス質皮膜が酸化スズ皮膜によつて空気と遮断され
ているため白華現象が起こることはない。 つぎに、この発明を詳しく説明する。 この発明の対象となる金属製品としては、アル
ミニウム、銅、亜鉛、ニツケル、黄銅、鉄および
これらの合金等からなるものがあげられる。ま
た、陶器等の基体の表面に各種の金属メツキした
ものもあげられる。なお、ここでいう金属製品に
は、最終製品に到るまでの製品も含まれる。 このような金属製品の表面に形成されるケイ酸
ガラス質皮膜形成用のケイ酸アルカリとしては、
例えばつぎのようなものが用いられる。
The present invention relates to a metal product having a protective film and a method for manufacturing the same. Until now, metal products with a protective film on the surface have been produced by treating the surface of the metal product with an aqueous solution of alkali silicate (alkali such as lithium, potassium, or sodium), which is then dried and baked to form a vitreous silicate film. It was later produced by dealkalization treatment. By forming a vitreous silicate film on the surface of a metal product in this way, the corrosion resistance, chemical resistance (alkali resistance, acid resistance), and in some cases, hardness of the metal product are also improved. However, when forming a vitreous silicate film on the surface of a metal product in this manner, it is necessary to sufficiently dealkalize the vitreous silicate film. In other words, the alkali metals present in the vitreous silicate film react with acidic gases such as sulfur dioxide and carbon dioxide in the air over time in the presence of water and precipitate as salts on the film surface, causing the efflorescence phenomenon. Because it will wake you up. However, when a sufficient dealkalization treatment is performed in this way, extremely fine pores, that is, on the order of atoms or molecules, are formed due to the alkali metal removed, resulting in poor corrosion resistance, chemical resistance, etc. will have an adverse effect on.
In order to solve this problem, it is possible to apply alkali silicate several times, but the problem is that the film formed in this way is prone to cracks and the work is complicated. occurred. On the other hand, tin oxide films are generally used for coating glass products, thereby improving the chemical resistance, hardening, etc. of glass products. The formation of this film is usually caused by chemical vapor deposition (CVD).
vapor deposition). Generally, this method involves evaporating and decomposing tin tetrachloride in the air at high temperatures while adhering it to glass products. By the way, if a tin oxide film can be formed on the surface of a metal product by CVD in the same way as a glass product, the problems that occur when forming a vitreous silicate film will not occur. However, doing so would result in CVD
The chlorine-based decomposition gas generated during this process corrodes metal products, and the poor adhesion between the formed tin oxide film and metal products makes it easy for the film to peel off. Therefore, it is also not appropriate to form a tin oxide film directly on the surface of a metal product. As described above, the protective coatings of metal products having conventional protective coatings are not perfect, and direct attachment of tin oxide is not appropriate. This invention was made in view of the above circumstances, and by treating the surface of the metal product with an aqueous alkali silicate solution and baking it at a temperature of 400°C or less, a silicic acid film with a thickness of 5 μm or less is formed on the surface of the metal product. The gist of the present invention is a method for manufacturing a metal product having a protective coating in which a glassy film is formed and a tin oxide film is formed on the silicate glassy film by chemical vapor positioning. In other words, a metal product having a protective film formed by the manufacturing method of the present invention has a vitreous silicate film that has excellent adhesion to metals formed on its surface, and a vitreous silicate film that has excellent adhesion to metal. Corrosion resistance,
A tin oxide film with extremely high chemical resistance is formed, so the protective film is perfect. In particular, since the vitreous silicate film is covered with a tin oxide film and is cut off from contact with air, the vitreous silicate film does not develop efflorescence over time and remains in good condition. Appearance can be maintained. Moreover, since the tin oxide film (good adhesion to vitreous silicate film) is formed on the surface of the metal product via the vitreous silicate film (good adhesion to metal), it will not peel off. Further, when such a tin oxide film is formed by CVD, the film forming operation becomes easy and the formed film becomes uniform. Furthermore, when dealkalization treatment is applied to the silicate glass film,
The formation of a tin oxide film by CVD completely fills the extremely fine pores created by the dealkalization treatment, further preventing the occurrence of efflorescence. At this time, even if the dealkalization treatment is insufficient, efflorescence does not occur because the silicate glass film is isolated from the air by the tin oxide film. Next, this invention will be explained in detail. Examples of metal products to which this invention applies include those made of aluminum, copper, zinc, nickel, brass, iron, and alloys thereof. Also included are ceramics or other substrates plated with various metals on the surface. Note that the metal products mentioned here include products up to the final product. As an alkali silicate for forming a vitreous silicate film formed on the surface of such metal products,
For example, the following are used.

【表】 つぎに、この発明の保護皮膜を有する金属製品
の製法の一例について説明する。まず、金属製品
を準備し、この金属製品の表面を目的に応じて機
械的、化学的、電気的に研磨する。そして、ケイ
酸アルカリ水溶液によつて充分に濡れるように表
面の脱脂を行う。 つぎに、この金属製品の表面をケイ酸アルカリ
水溶液で処理する。この場合、ケイ酸アルカリ水
溶液は、市販品をそのまま用いてもよいし、適宜
水で希釈して用いてもよい。また、金属製品の表
面に対するケイ酸アルカリ水溶液による処理は、
吹付け、はけ塗り等によつて行つてもよいが、通
常は浸漬法によつて行われる。その場合、固形分
濃度10〜20重量%(以下%と略す)のケイ酸アル
カリ水溶液を用いると、その後の処理を経て約1
〜2μのケイ酸ガラス質皮膜が形成される。ケイ
酸アルカリ水溶液の濃度は特に限定するものでは
ないが、高濃度のものを用いると、次工程の乾
燥、焼付けの際に、脱水による発泡が起こり易く
なる。 つぎに、ケイ酸アルカリ水溶液で表面処理され
た金属製品を乾燥、焼付け工程へ送る。ここで乾
燥は、金属製品の表面に塗装されたケイ酸アルカ
リ水溶液から水を蒸散させて皮膜化させ、さらに
皮膜中の自由水を飛散させるために行うものであ
り、100〜130℃程度の温度で緩かに発泡が起こら
ないように行われる。焼付けは、乾燥に引続いて
行われ、ケイ酸アルカリ皮膜中に微量残存する自
由水を飛散させ、さらにケイ酸アルカリ皮膜をガ
ラス化させるとともに、そのガラス化が進行する
過程で生じる水を除去するものである。この焼付
けは、通常170℃以上であつて400℃以下の温度で
行われる必要がある。そして、その範囲内でもな
るべく高温で行う程ガラス化が進行するものと考
えられる。このようにして形成されたケイ酸ガラ
ス質皮膜の膜厚は、この発明では、5μ以下であ
る必要がある。また、この膜厚を前記範囲の中で
も2μ〜0.5μの範囲内に選ぶことが好ましい。
なぜなら、ケイ酸ガラス質皮膜の膜厚が5μを超
えると、皮膜に亀裂が生じ易くなるからである。 つぎに、乾燥、焼付け工程で形成されたケイ酸
ガラス質皮膜の脱アルカリ処理を行う。これは、
ケイ酸ガラス質皮膜中に存在するアルカリ金属を
除去して白華現象の発生を防止するために行うの
であり、通常、ケイ酸ガラス質皮膜を有する金属
製品を、硫酸、硝酸、リン酸、塩酸等を酸の水溶
液や硝酸アンモニウム、塩化アンモニウム、酢酸
マグネシウム等の塩の水溶液に室温〜80℃の温度
で短時間浸漬することにより行う。なお、この脱
アルカリ処理工程は必ず行う必要はない。すなわ
ち、ケイ酸ガラス質皮膜は酸化スズ皮膜により被
覆されて空気と遮断されるようになるため、それ
によつて充分白華現象の発生が防止されるように
なるからである。しかしながら、脱アルカリ処理
を行つておくと、経時的に酸化スズ皮膜が皮膜が
劣化し、ケイ酸ガラス質皮膜が空気と接触するよ
うな事態が到来しても白華現象の発生を防止する
ことができるようになる。 つぎに、ケイ酸ガラス質皮膜の上に酸化スズ皮
膜を形成する。この酸化スズ皮膜の形成は、ハロ
ゲン化スズ化合物等を用い、CVDによつて行わ
れる。すなわち、四塩化スズ、二塩化ジメチルス
ズ、三塩化メチルスズ等の化合物を加熱により蒸
発させ、その蒸気中にケイ酸ガラス質皮膜を有す
る金属製品を入れて200〜500℃で加熱保持してケ
イ酸ガラス質皮膜表面に分解酸化したスズを付着
させるのである。このように、CVDで酸化スズ
皮膜を形成すると、酸化スズ皮膜が均一になり、
かつ脱アルカリで生じたケイ酸ガラス質皮膜の微
細孔が完全に埋められるために、白華現象の発生
がほぼ完全に防止される。またCVDによる酸化
スズ皮膜の形成は容易であるため、極めて作業性
がよい。この場合、酸化スズ皮膜の厚みは、通
常、1μ以下で充分所期の目的を達成できるもの
である。 このようにして製造された保護皮膜を有する金
属製品は、保護皮膜がケイ酸ガラス質皮膜とその
上に形成された酸化スズ皮膜からなるため、完全
であり、耐食性、耐薬品性等に極めて富み、白華
現象も起らない。 つぎに、実施例について説明する。 実施例 1 水ガラス3号を水で希釈し固形分濃度を10%と
した水溶液に、予め硝酸−リン酸で化学研磨した
アルミニウム板(JIS規格1100)を室温で浸漬し
た。ついで、これを乾燥機に入れ、100℃で10
分、130〜150℃で10分、250℃で30分乾燥、焼付
けした。つぎに、これを60℃の5%硝酸中に20秒
間浸漬し、ついで繰返し水洗したのち乾燥した。
つぎに、四塩化スズを50℃で蒸発させ、その蒸気
に、このアルミニウム処理板を300℃に加熱した
状態で接触させて、ケイ酸ガラス質皮膜の上に酸
化スズ皮膜を形成した。このようにしてケイ酸ガ
ラス質皮膜の上に酸化スズ皮膜が形成されたアル
ミニウム板を得た。この場合、ケイ酸ガラス質皮
膜の膜厚は約1.5μであり、酸化スズ皮膜の膜厚
は0.1〜0.2μであつた。つぎに、これに対してつ
ぎのように試験を行つた。すなわち、このものの
皮膜表面に10%塩酸および苛性ソーダ溶液を滴下
し、それらの溶液の蒸発を防ぐためにカバーをし
て1時間室温で放置し、ついで拭き取つた。この
ようにしても皮膜表面には何ら異常が認められな
かつた。ちなみに、ケイ酸ガラス質皮膜だけで、
その上に酸化スズ皮膜を形成していないもの(比
較例1)の皮膜に対して同様の試験を行つたとこ
ろ苛性ソーダにより光沢の消失がみとめられた。
また、実施例1のものおよび比較例1のものをそ
れぞれ亜硫酸ガスの0.3%雰囲気(相対湿度100
%、室温25℃)に1夜放置したのち取出して風乾
したところ、実施例1のものは異常が認められな
かつたが、比較例1のものは僅かに白華が認めら
れた。 実施例 2 ケイ酸カリウム2Kの20%水溶液にアルミニウ
ム合金板(JIS−6063)を浸漬した。ついで、こ
れを乾燥機に入れ、100〜110℃で15分、130〜140
℃で15分、170〜180℃で15分、350℃で15分乾
燥、焼付けた。つぎに、これを50℃の10%硝酸ア
ルミニウム水溶液中に1分間浸漬したのち、繰返
し水洗し乾燥した。つぎに、二塩化ジメチルスズ
(商品名:グラハード、中国塗料社製)を加熱
し、窒素ガスをキヤリヤーガスとして送りなが
ら、そのなかにアルミニウム処理板を400℃に加
熱した状態で10分間入れた。その結果、ケイ酸ガ
ラス質皮膜の上に酸化スズ皮膜が形成されたアル
ミニウム板を得た。このものに対して実施例1の
ものに対して行つたと同様の試験を行つたところ
異常は認められなかつた。また、このものの皮膜
上に5%のフツ化アンモニウム水溶液を滴下して
も異常は認められなかつた。 実施例 3 ケイ酸カリウムAとケイ酸リチウム3.5を1:
1(容量基準)の割合で混合し、これを水で希釈
して濃度を15%とした。ついで、この溶液に、銅
板(純度99.5%)を浸漬した。これ以降は実施例
1と同様にして乾燥、焼付け、脱アルカリ処理を
行つた。つぎに、二塩化ジメチルスズを加熱して
空気をキヤリヤーガスとして流し、その流れのな
かに銅処理板を350℃に加熱した状態で入れた。
その結果、ケイ酸ガラス質皮膜の上に酸化スズ皮
膜が形成された銅板を得た。このものに対して実
施例1および2と同様の試験を行つたところ異常
は認められなかつた。また、このものをウエザオ
メータにかけたところ(250時間)異常は認めら
れなかつた。ちなみに、ケイ酸ガラス質皮膜だけ
でその上に酸化スズ皮膜を形成していないもの
(比較例2)は、亜硫酸ガステスト、5%フツ化
アンモニウム水溶液テスト、ウエザオメータテス
トで光沢が消失し、白華が少々認められた。
[Table] Next, an example of a method for manufacturing a metal product having a protective film according to the present invention will be described. First, a metal product is prepared, and the surface of this metal product is polished mechanically, chemically, or electrically depending on the purpose. Then, the surface is degreased so that it is sufficiently wetted with an aqueous alkali silicate solution. Next, the surface of this metal product is treated with an aqueous alkali silicate solution. In this case, the aqueous alkali silicate solution may be a commercially available product as it is, or may be diluted with water as appropriate. In addition, the treatment of the surface of metal products with an aqueous alkali silicate solution is
It may be applied by spraying, brushing, etc., but it is usually performed by dipping. In that case, if an aqueous alkali silicate solution with a solid content concentration of 10 to 20% by weight (hereinafter referred to as %) is used, approximately 1%
A vitreous silicate film of ~2μ is formed. Although the concentration of the aqueous alkali silicate solution is not particularly limited, if one with a high concentration is used, foaming due to dehydration tends to occur during the next step of drying and baking. Next, the metal product whose surface has been treated with an aqueous alkali silicate solution is sent to a drying and baking process. Here, drying is performed to evaporate water from the aqueous alkali silicate solution coated on the surface of the metal product to form a film, and to scatter free water in the film, at a temperature of about 100 to 130°C. This is done slowly to prevent foaming. Baking is performed following drying to scatter the trace amount of free water remaining in the alkali silicate film, vitrify the alkali silicate film, and remove water generated during the vitrification process. It is something. This baking usually needs to be carried out at a temperature of 170°C or higher and 400°C or lower. Even within this range, it is thought that vitrification progresses as the temperature is as high as possible. In the present invention, the thickness of the vitreous silicate film thus formed must be 5 μm or less. Moreover, it is preferable to select this film thickness within the range of 2μ to 0.5μ within the above range.
This is because if the thickness of the vitreous silicate film exceeds 5 μm, cracks tend to occur in the film. Next, the silicate glass film formed in the drying and baking process is dealkalized. this is,
This is done to prevent the occurrence of efflorescence by removing alkali metals present in the vitreous silicate film, and metal products with a vitreous silicate film are usually treated with sulfuric acid, nitric acid, phosphoric acid, or hydrochloric acid. etc., by immersing the material in an aqueous solution of an acid or a salt such as ammonium nitrate, ammonium chloride, or magnesium acetate for a short time at a temperature of room temperature to 80°C. Note that this dealkalization step does not necessarily need to be performed. That is, the silicate glass film is covered with the tin oxide film and is isolated from the air, thereby sufficiently preventing the occurrence of efflorescence. However, dealkalization treatment can prevent the occurrence of efflorescence even if the tin oxide film deteriorates over time and the silicate glass film comes into contact with air. You will be able to do this. Next, a tin oxide film is formed on the silicate glass film. Formation of this tin oxide film is performed by CVD using a halogenated tin compound or the like. That is, compounds such as tin tetrachloride, dimethyltin dichloride, and methyltin trichloride are evaporated by heating, and a metal product having a silicate glass film is placed in the vapor and heated and held at 200 to 500°C to form silicate glass. This involves attaching decomposed and oxidized tin to the surface of the coating. In this way, when a tin oxide film is formed by CVD, the tin oxide film becomes uniform,
In addition, since the micropores in the silicate glass film produced by dealkalization are completely filled, the occurrence of efflorescence is almost completely prevented. Furthermore, since it is easy to form a tin oxide film by CVD, the workability is extremely good. In this case, the thickness of the tin oxide film is usually 1 μm or less, which is sufficient to achieve the desired purpose. Metal products manufactured in this way have a complete protective film consisting of a silicate glass film and a tin oxide film formed on it, and are extremely resistant to corrosion and chemicals. , no efflorescence phenomenon occurs. Next, examples will be described. Example 1 An aluminum plate (JIS standard 1100), which had been chemically polished with nitric acid-phosphoric acid in advance, was immersed at room temperature in an aqueous solution in which water glass No. 3 was diluted with water to give a solid content concentration of 10%. Next, put this in a dryer and heat it at 100℃ for 10 minutes.
It was dried and baked at 130-150℃ for 10 minutes and at 250℃ for 30 minutes. Next, this was immersed in 5% nitric acid at 60° C. for 20 seconds, then repeatedly washed with water and then dried.
Next, tin tetrachloride was evaporated at 50°C, and the aluminum-treated plate heated to 300°C was brought into contact with the vapor to form a tin oxide film on the silicate glass film. In this way, an aluminum plate having a tin oxide film formed on the silicate glass film was obtained. In this case, the thickness of the vitreous silicate film was approximately 1.5 μm, and the thickness of the tin oxide film was 0.1 to 0.2 μm. Next, a test was conducted on this as follows. That is, 10% hydrochloric acid and caustic soda solutions were dropped onto the surface of the film, covered to prevent evaporation of the solutions, left at room temperature for 1 hour, and then wiped off. Even in this manner, no abnormality was observed on the surface of the film. By the way, with just the silicate glass film,
When a similar test was conducted on a film on which no tin oxide film was formed (Comparative Example 1), it was found that the luster disappeared due to caustic soda.
In addition, Example 1 and Comparative Example 1 were each placed in an atmosphere of 0.3% sulfur dioxide gas (relative humidity 100%).
%, room temperature at 25° C.) for one night, and then taken out and air-dried. No abnormality was observed in the sample of Example 1, but slight efflorescence was observed in the sample of Comparative Example 1. Example 2 An aluminum alloy plate (JIS-6063) was immersed in a 20% aqueous solution of potassium silicate 2K. Next, put this in the dryer and dry at 100-110℃ for 15 minutes at 130-140℃.
℃ for 15 minutes, 170-180℃ for 15 minutes, and 350℃ for 15 minutes and baked. Next, this was immersed in a 10% aluminum nitrate aqueous solution at 50° C. for 1 minute, and then repeatedly washed with water and dried. Next, dimethyltin dichloride (trade name: Grahard, manufactured by China Paint Co., Ltd.) was heated, and the aluminum-treated plate was heated to 400°C and placed in it for 10 minutes while nitrogen gas was supplied as a carrier gas. As a result, an aluminum plate was obtained in which a tin oxide film was formed on a silicate glass film. When this product was subjected to the same test as that performed on the product of Example 1, no abnormality was observed. Further, no abnormality was observed even when a 5% ammonium fluoride aqueous solution was dropped onto the film of this product. Example 3 Potassium silicate A and lithium silicate 3.5:1
1 (by volume) and diluted with water to give a concentration of 15%. Then, a copper plate (purity 99.5%) was immersed in this solution. After this, drying, baking, and dealkalization were performed in the same manner as in Example 1. Next, dimethyltin dichloride was heated, air was passed through it as a carrier gas, and a copper-treated plate heated to 350°C was placed in the flow.
As a result, a copper plate was obtained in which a tin oxide film was formed on a silicate glass film. When this product was subjected to the same tests as in Examples 1 and 2, no abnormality was observed. Furthermore, when this product was subjected to a weatherometer (250 hours), no abnormalities were observed. By the way, the product with only a silicate glass film without a tin oxide film on it (Comparative Example 2) lost its luster in the sulfur dioxide gas test, 5% ammonium fluoride aqueous solution test, and weatherometer test. Some efflorescence was observed.

Claims (1)

【特許請求の範囲】[Claims] 1 金属製品の表面をケイ酸アルカリ水溶液で処
理して400℃以下の温度で焼付けることにより金
属製品の表面に膜厚5μ以下のケイ酸ガラス質皮
膜を形成し、このケイ酸ガラス質皮膜の上にケミ
カルベーパーデポジシヨンによつて酸化スズ皮膜
を形成する保護皮膜を有する金属製品の製法。
1. A vitreous silicate film with a thickness of 5 μm or less is formed on the surface of a metal product by treating the surface of the product with an aqueous alkali silicate solution and baking at a temperature of 400°C or less. A method for manufacturing metal products having a protective film formed thereon by chemical vapor deposition to form a tin oxide film.
JP13610878A 1978-11-04 1978-11-04 Metal product having protective coating and manufacture thereof Granted JPS5562166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13610878A JPS5562166A (en) 1978-11-04 1978-11-04 Metal product having protective coating and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13610878A JPS5562166A (en) 1978-11-04 1978-11-04 Metal product having protective coating and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5562166A JPS5562166A (en) 1980-05-10
JPS6115154B2 true JPS6115154B2 (en) 1986-04-22

Family

ID=15167465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13610878A Granted JPS5562166A (en) 1978-11-04 1978-11-04 Metal product having protective coating and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5562166A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835439A (en) * 1987-09-29 1989-05-30 General Electric Company Increasing the oxidation resistance of molybdenum and its use for lamp seals
JP2594113B2 (en) * 1988-05-31 1997-03-26 三洋電機株式会社 Method for forming tin oxide film
TWI471388B (en) * 2014-05-09 2015-02-01 Hongtansawat Warapon Inorganic microfilm substrate and its manufacturing method
JP6749181B2 (en) 2016-08-19 2020-09-02 Ntn株式会社 Electric motor device

Also Published As

Publication number Publication date
JPS5562166A (en) 1980-05-10

Similar Documents

Publication Publication Date Title
EP0085701B1 (en) Copper-containing articles with a corrosion inhibitor coating and methods of producing the coating
EP0035626B1 (en) Improved electroless plating process for glass or ceramic bodies
US6022425A (en) Conversion coating and process and solution for its formation
US4306917A (en) Conversion coating solutions for treating metallic surfaces
US3962490A (en) Preparation of nickel and chromium substrates for ceramic coating
JPS6115154B2 (en)
US3404046A (en) Chromating of zinc and aluminum and composition therefor
US5053112A (en) Preparing metal for melt-coating
US2719796A (en) Process for enameling aluminum
US4036667A (en) Process for producing improved, protective conversion coatings on aluminum and its alloys, wherein aluminum is the principal constituent
US3323938A (en) Method of coating tin over basis metals
US3667991A (en) Processes for nickel plating metals
JPS6256579A (en) Acidic aqueous solution and method for passivating surface of zinc or zinc/aluminum alloy
US4063968A (en) Formation of nickel phosphate coatings on iron or steel
US1770828A (en) Art of protectively treating metals
US3620939A (en) Coating for magnesium and its alloys and method of applying
US3556868A (en) Chromate coating composition and method
US4569699A (en) Method for providing a corrosion resistant coating for magnesium containing materials
JPS6214029B2 (en)
US6709707B2 (en) Removal of Ormosil films from metal substrates
JPH05271996A (en) Surface treatment of magnesium alloy material
US1709894A (en) Surface treatment of light metals
US2850416A (en) Process for coating metals and product thereof
ATE261003T1 (en) FERRAT CONVERSION LAYERS ON METAL SUBSTRATES
JPS60243285A (en) Method for removing cover from metallic electrode