JPS62139877A - Formation of deposited film - Google Patents

Formation of deposited film

Info

Publication number
JPS62139877A
JPS62139877A JP60282203A JP28220385A JPS62139877A JP S62139877 A JPS62139877 A JP S62139877A JP 60282203 A JP60282203 A JP 60282203A JP 28220385 A JP28220385 A JP 28220385A JP S62139877 A JPS62139877 A JP S62139877A
Authority
JP
Japan
Prior art keywords
deposited film
gaseous
film
oxidizing agent
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60282203A
Other languages
Japanese (ja)
Other versions
JPH0645887B2 (en
Inventor
Keishi Saito
恵志 斉藤
Masaaki Hirooka
広岡 政昭
Junichi Hanna
純一 半那
Isamu Shimizu
勇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60282203A priority Critical patent/JPH0645887B2/en
Publication of JPS62139877A publication Critical patent/JPS62139877A/en
Publication of JPH0645887B2 publication Critical patent/JPH0645887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited

Abstract

PURPOSE:To form a deposited film having uniform characteristics over a wide area by bringing a gaseous raw material contg. chalcogenide atoms and gaseous halogen oxidizing agent into contact and using the formed precursors in the excited state as a supply source. CONSTITUTION:Gaseous SeH2, etc., in a cylinder 101 and gaseous AsH3, etc., in a cylinder 102 as the gaseous raw material contg. chalcogenide atoms are introduced together with the gaseous halogen oxidizing agent such as gaseous F2 in a cylinder 106 into a vacuum chamber 102. These gaseous raw materials are mixed and bombarded to form the plural precursors contg. the precursors in the excited state. At least one of such precursors in used as the supply source for the film constituting element and the amorphous film such as AsxSe(1-x) (where x=0.42), etc., is deposited on a substrate 118. The film having excellent physical characteristics and high quality is formed with the conserved energy by the above-mentioned method.

Description

【発明の詳細な説明】 〔従来の技術〕 未発upは、半導体膜、絶縁体膜、導体膜等の非品性の
或は結晶性の機能性薄膜、殊に能動性或いは受動性の半
導体デバイス、光半導体デ/くイス或いは太陽電池や電
子写真用の感光デノ<イスなどの用途に有用な堆1h1
1々の形成法に関する。
[Detailed Description of the Invention] [Prior Art] Unexploited UP is a defective or crystalline functional thin film such as a semiconductor film, an insulator film, or a conductor film, especially an active or passive semiconductor device. , a substrate 1h1 useful for applications such as optical semiconductor devices, solar cells, and photosensitive devices for electrophotography.
Regarding each formation method.

堆積膜の形成には、真空蒸着法、プラズマCVD法、熱
CVD法、光DVD法1反応性スパッタリング法、イオ
ンブレーティング法などが試みられており、一般的には
、プラズマCVD法が広く用いられ、企業化されている
Vacuum evaporation method, plasma CVD method, thermal CVD method, optical DVD method 1 reactive sputtering method, ion blating method, etc. have been tried to form the deposited film, and in general, plasma CVD method is widely used. It has become a corporate entity.

面乍ら、これ等堆積膜形成法によって得られる堆積膜は
より高度の機能が求められる電子デバイスや光電子デバ
イスへの適用が求められていることから電気的、光学的
特性及び、繰返し使用での疲労特性あるいは使用環境特
性、更には均一性、再現性を含めて生産性、量産性の点
において更に総合的な特性の向上を図る余地がある。
However, since the deposited films obtained by these deposited film formation methods are required to be applied to electronic devices and optoelectronic devices that require more advanced functions, they have improved electrical and optical properties and durability during repeated use. There is room for further improvement in comprehensive properties in terms of productivity and mass production, including fatigue properties, use environment properties, uniformity and reproducibility.

その中でも、例えば電気的、光学的特性が各用途を充分
に満足させ得るものを発現させることが出来るという点
で、カルコゲナイド膜の場合には現状では加熱真空蒸着
法によって形成することが最良とされている。
Among these, it is currently considered best to form chalcogenide films by heating vacuum evaporation, since it is possible to develop electrical and optical properties that fully satisfy each application. ing.

面乍ら、堆積膜の応用用途によっては、大面積化、膜厚
の均一性、膜品質の均一性を十分に満足させて、再現性
のある量産化を図らねばならないため、加熱真空蒸着法
による堆積膜の形成においては、高真空が必要で量産装
置に多大な設備投資が必要となり、またその量産の為の
管理項目も複雑になり、管理許容幅も狭くなり、装置の
調整も微妙であるqとから、これらのことが、今後改善
すべき問題点として指摘されている。
However, depending on the application of the deposited film, it is necessary to fully satisfy the requirements of large area, uniformity of film thickness, and uniformity of film quality, and mass production with reproducibility. Forming a deposited film using a method requires high vacuum and a large investment in equipment for mass production.The control items for mass production also become complex, the tolerance for control becomes narrow, and the adjustment of the equipment is delicate. From a certain point, these have been pointed out as problems that should be improved in the future.

上述の如く、機能成膜の形成において、その実用可能な
特性の確保と、均一性を維持させながら低コストな装置
で量産化できる堆積膜の形成方法を開発することが切望
されている。
As described above, in the formation of functional films, there is a strong desire to develop a method for forming deposited films that can be mass-produced using low-cost equipment while ensuring practical properties and maintaining uniformity.

〔目的〕〔the purpose〕

本発明の目的は、上述した堆積膜形成法の欠点を除去す
ると同時に、従来の形成方法によらない新規な堆積膜形
成法を提供するものである。
An object of the present invention is to eliminate the drawbacks of the above-mentioned method for forming a deposited film, and at the same time to provide a new method for forming a deposited film that does not rely on conventional methods.

本発明の他の目的は、省エネルギー化を計ると同時に膜
品質の管理が容易で大面積に亘って均一特性の堆積膜が
得られる堆積膜形成法を提供するものである。
Another object of the present invention is to provide a method for forming a deposited film that saves energy, allows easy control of film quality, and provides a deposited film with uniform characteristics over a large area.

本発明の更に別の目的は、生産性、量産性に優れ、高品
質で電気的、光学的、半導体的等の物理特性に優れた膜
が簡便に得られる堆積膜形成法を提供することでもある
Still another object of the present invention is to provide a method for forming a deposited film that is highly productive and mass-producible, and can easily produce a film with high quality and excellent physical properties such as electrical, optical, and semiconductor properties. be.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成する本発明の堆積膜形成法は、堆積膜形
成用の気体状原料物質と、該原料物質に酸化作用をする
性質を有する気体状ハロゲン系酸化剤と、を反応空間内
に導入して化学的に接触させることで励起状態の前駆体
を生成し、該前駆体を堆a膜構成要素の供給源として成
膜空間内にある基体上に堆積膜を形成することを特徴と
する。
The method for forming a deposited film of the present invention that achieves the above object introduces into a reaction space a gaseous raw material for forming a deposited film and a gaseous halogen-based oxidizing agent having the property of oxidizing the raw material. The method is characterized in that a precursor in an excited state is generated by chemically contacting the deposited film with the precursor being used as a source of a deposition film component to form a deposited film on a substrate located in a film forming space. .

〔作用〕[Effect]

上記の本発明の堆積膜形成法によれば、省エネルギー化
と同時に大面積化、膜厚均一性、膜品質の均一性を十分
満足させて管理の簡素化と量産化を図り、量産装置に多
大な設備投資も必要とせず、またその量産の為の管理項
目も明確になり、管理許容幅も広く、装置の調整も簡単
になる。
According to the deposited film forming method of the present invention described above, it is possible to save energy, increase the area, uniformity of film thickness, and uniformity of film quality, simplify management and mass production, and save a lot of money on mass production equipment. It does not require major capital investment, the control items for mass production become clear, the control tolerance is wide, and equipment adjustment becomes easy.

本発明の堆積膜形成法に於いて、使用される堆積膜形成
用の気体状原料物質は、気体状ハロゲン系酸化剤との化
学的接触により酸化作用をうけるものであり、目的とす
る堆fA Mの種類。
In the deposited film forming method of the present invention, the gaseous raw material used for forming the deposited film is oxidized by chemical contact with a gaseous halogen-based oxidizing agent, and the target deposit A Type of M.

特性、用途等によって所望に従って適宜選択される0本
発明に於いては、上記の気体状原料物質及び気体状ハロ
ゲン系酸化剤は、化学的接触をする際に気体状とされる
ものであれば良く、通常の場合は、気体でも液体でも固
体であっても差支えない。
In the present invention, the above-mentioned gaseous raw material and gaseous halogen-based oxidizing agent may be selected as desired depending on the characteristics, application, etc. In normal cases, it can be a gas, liquid, or solid.

堆積膜形成用の原料物質あるいはハロゲン系酸化剤が液
体又は固体である場合には、Ar。
When the raw material for forming the deposited film or the halogen-based oxidizing agent is liquid or solid, Ar.

He、N2.I2等のキャリアーガスを使用し、必要に
応じては熱も加えながらバブリングを行なって反応空間
に堆積膜形成用の原料物質及びハロゲン系酸化剤を気体
状として導入する。
He, N2. A carrier gas such as I2 is used, and bubbling is performed while adding heat if necessary, to introduce a raw material for forming a deposited film and a halogen-based oxidizing agent into the reaction space in gaseous form.

この際、上記気体状原料物質及び気体状ハロゲン系酸化
剤の分圧及び混合比は、キャリアーガスの流量あるいは
堆積膜形成用の原料物質及び気体状ハロゲン系酸化剤の
蒸気圧を調節することにより設定される。
At this time, the partial pressure and mixing ratio of the gaseous raw material and the gaseous halogen-based oxidizing agent can be adjusted by adjusting the flow rate of the carrier gas or the vapor pressure of the raw material for forming the deposited film and the gaseous halogen-based oxidizing agent. Set.

本発明に於いて使用される堆積膜形成用の原料物質とし
てぼ、例えば、カルコゲナイド系の堆積膜を得るのであ
れば、カルコゲナイド系原素の水素化物または、塩素化
物、有機金属化合物等が有効なものとして挙げることが
出来る。
As raw materials for forming a deposited film used in the present invention, for example, if a chalcogenide deposited film is to be obtained, hydrides, chlorides, organometallic compounds, etc. of chalcogenide elements are effective. It can be mentioned as a thing.

具体的にはSe系化合物としては、SeH2゜5eCu
2.Se (CH3)2 、Se (C2H5)2,5
e2Br2などを有効な原料物質として挙げることが出
きる。
Specifically, as a Se-based compound, SeH2゜5eCu
2. Se (CH3)2, Se (C2H5)2,5
e2Br2 etc. can be mentioned as an effective raw material.

S系化合物としては、SI2 、SCC20s2c文2
.SOC立2.SF6などを有効な原料物質として挙げ
ることか出きる。
As S-based compounds, SI2, SCC20s2c sentence 2
.. SOC standing 2. SF6 and the like can be cited as effective raw materials.

Te系化合物としては、TeI2 、Te(CH3)2
 、Te (C2H5)2などを有効な原料物質として
挙げることが出きる。
Examples of Te-based compounds include TeI2, Te(CH3)2
, Te (C2H5)2, etc. can be mentioned as effective raw materials.

As系化合物としてはAsH3、AsCl3 。As-based compounds include AsH3 and AsCl3.

AsBr3 、As  (CHS)3 、As (C2
H5)3 、AS  (CeHs)3 、AS (oc
H3)3 、AS  (OC2H5)3 、As (O
C3H7)3 、As (OC4H9) 3ftどを有
効な原料物質として挙げることが出きる。
AsBr3, As(CHS)3, As(C2
H5)3, AS (CeHs)3, AS (oc
H3)3, AS (OC2H5)3, As (O
C3H7)3, As (OC4H9) 3ft, etc. can be cited as effective raw materials.

勿論、これ等の原料物質は1種のみならず2種以上混合
して使用することも出来る。
Of course, these raw materials can be used not only alone, but also as a mixture of two or more.

本発明に於いて使用されるハロゲン系酸化剤は、反応空
間内に導入される際気体状とされ。
The halogen-based oxidizing agent used in the present invention is in a gaseous state when introduced into the reaction space.

同時に反応空間内に導入される堆積膜形成用の気体状原
料物質に化学的接触だけで効果的に酸化作用をする性質
を有するもので、F2゜C12,Br2.I2等のハロ
ゲンガス、発生期状態の弗素、塩素、臭素等が有効なも
のとして挙げることが出来る。
At the same time, it has the property of effectively oxidizing the gaseous raw material for forming a deposited film introduced into the reaction space through chemical contact alone.F2°C12, Br2. Effective examples include halogen gas such as I2, nascent fluorine, chlorine, and bromine.

これ等のハロゲン系酸化剤は気体状で、前記の堆積膜形
成用の原料物質の気体と共に所望の流量と供給圧を与え
られて反応空間内に導入されて前記原料物質と混合衝突
することで接触をし、前記原料物質に酸化作用をして励
起状態の前駆体を含む複数種の前駆体を効率的に生成す
る。生成される励起状態の前駆体及び他の前駆体は、少
なくともそのいずれか1つが形成される堆積膜の構成要
素の供給源として働く。
These halogen-based oxidants are in gaseous form, and are introduced into the reaction space together with the gaseous raw material for forming the deposited film at a desired flow rate and supply pressure, and mixed and collided with the raw material. The raw material is brought into contact with the raw material and oxidized to efficiently generate a plurality of types of precursors including excited state precursors. The excited state precursors and other precursors that are generated serve as a source of components for the deposited film in which at least one of them is formed.

生成される前駆体は分解して又は反応して別の励起状態
の前駆体又は別の励起状態にある前駆体になって、或い
は必要に応じてエネルギーを放出はするがそのままの形
IEで成膜空間に配設された基体表面に触れることで三
次元ネットワーク構造の堆積膜が作成される。
The precursors produced may decompose or react to form another excited state precursor or a precursor in another excited state, or may optionally be formed in the form IE, albeit releasing energy. A deposited film with a three-dimensional network structure is created by touching the surface of the substrate disposed in the film space.

本発明に於いては、堆積nり形成プロセスが円滑に進行
し、高品質で所望の物理特性を有する膜が形成される可
く、成膜因子としての、原料物質及びハロゲン系酸化剤
の種類と組み合せ、これ等の混合比、混合時の圧力、流
量、成膜空間内圧、ガスの流量、成膜温度(基体温度及
び雰囲気温度)が所望に応じて適宜選択される。
In the present invention, the type of raw materials and halogen-based oxidizing agent are used as film-forming factors so that the deposition process can proceed smoothly and a film with high quality and desired physical properties can be formed. The mixing ratio, the pressure during mixing, the flow rate, the internal pressure of the film forming space, the flow rate of gas, and the film forming temperature (substrate temperature and ambient temperature) are appropriately selected as desired.

これ等の成膜因子は有機的に関連し、単独で決定される
ものではなく相互関連の下に夫々に応じて決定される。
These film-forming factors are organically related and are not determined independently, but are determined depending on each other in relation to each other.

本発明に於いて、反応空間に導入される堆積膜形成用の
気体状原料物質と気体状ハロゲン系酸化剤との量の割合
は、上記成膜因子の中間速する成膜因子との関係に於い
て適宜所望に従って決められるが、導入Ii、量比で、
好ましくは、l/20〜too/1が適当であり、より
好ましくは115〜50/1とされるのが望ましい。
In the present invention, the ratio of the amounts of the gaseous raw material for forming a deposited film and the gaseous halogen-based oxidizing agent introduced into the reaction space is determined based on the relationship between the film-forming factors and the intermediate speed of the above-mentioned film-forming factors. Although it can be determined as desired, the introduction Ii, the quantitative ratio,
Preferably, the ratio is suitably 1/20 to too/1, more preferably 115 to 50/1.

反応空間に導入される際の混合時の圧力としては前記気
体状原料物質と前記気体状ハロゲン系酸化剤との化学的
接触を確率的により高める為には、より高い方が良いが
、反応性を考慮して適宜所望に応じて最適値を決定する
のが良い。
The pressure at the time of mixing when introduced into the reaction space is preferably higher in order to increase the probability of chemical contact between the gaseous raw material and the gaseous halogen-based oxidizing agent. It is preferable to determine the optimum value as desired by considering the following.

前記混合時の圧力としては、上記の様にして決められる
が、夫々の導入時の圧力として、好ましくはlXl0−
7気圧〜10気圧、より好ましくはI X 10−6気
圧〜3気圧とされるのが望ましい。
The pressure at the time of mixing is determined as described above, but the pressure at the time of each introduction is preferably lXl0-
It is desirable that the pressure be 7 atm to 10 atm, more preferably I x 10-6 atm to 3 atm.

成膜空間内の圧力、即ち、その表面に成膜される基体が
配設されている空間内の圧力は、反応空間に於いて生成
される励起状態の前駆体(E)及び場合によって該前駆
体(E)より派生的に生ずる前駆体(D)が成膜に効果
的に寄与する様に適宜所望に応じて設定される。
The pressure in the film-forming space, that is, the pressure in the space where the substrate on which the film is to be formed is disposed, is the pressure of the excited state precursor (E) generated in the reaction space and, if necessary, the precursor. The precursor (D) derived from the precursor (E) is appropriately set as desired so as to effectively contribute to film formation.

成膜空間の内圧力は、成膜空間が反応空間と開放的に連
続している場合には、堆積膜形成用の基体状原料物質と
気体状ハロゲン系酸化剤との反応空間での導入圧及び流
量との関連に於いて1例えば差動排気或いは、大型の排
気装置の使用等の工夫を加えて調整することが出来る。
When the film forming space is open and continuous with the reaction space, the internal pressure of the film forming space is the pressure introduced into the reaction space between the substrate-like raw material for forming the deposited film and the gaseous halogen oxidant. In relation to the flow rate, it is possible to adjust the flow rate by, for example, using a differential exhaust system or a large exhaust system.

或いは、反応空間と成膜空間の連結部のコンダクタンス
が小さい場合には、成膜空間に適当な排気装置を設け、
該装置の排気量を制御することで成膜空間の圧力を調整
することが出来る。
Alternatively, if the conductance of the connection between the reaction space and the film-forming space is small, an appropriate exhaust system may be provided in the film-forming space.
By controlling the exhaust volume of the device, the pressure in the film forming space can be adjusted.

又、反応空間と成膜空間が一体的になっていて、反応位
置と成膜位置が空間的に異なるだけの場合には、前述の
様に差動排気するか或いは、排気能力の充分ある大型の
排気装置を設けてやれば良い。
In addition, if the reaction space and film-forming space are integrated and the reaction position and film-forming position are only spatially different, use differential pumping as described above or use a large-scale pump with sufficient exhaust capacity. It is best to install an exhaust system.

上記のようにして成膜空間内の圧力は、反応空間に導入
される気体状原料物質と気体状/Xロゲン酸化剤の導入
圧力との関係に於いて決められるが、好ましくは0.0
OITorr 〜to。
As described above, the pressure in the film forming space is determined based on the relationship between the gaseous raw material introduced into the reaction space and the pressure of introduction of the gaseous/X-rogen oxidizing agent, and is preferably 0.0
OITorr~to.

To r r 、より好ましくは0.0ITorr〜3
0Torr、最適には0.05〜10Torrとされる
のが望ましい。
Torr, more preferably 0.0ITorr to 3
It is desirable to set it to 0 Torr, most preferably 0.05 to 10 Torr.

ガスの流量に就いては、反応空間への前記堆積膜形成用
の原料物質及びハロゲン系酸化剤の導入の際にこれ等が
均一に効率良く混合され、前記前駆体(E)が効率的に
生成され且つ成膜が支障なく適切になされる様に、ガス
導入口と基体とガス排気口との幾何学的配置を考慮して
設計される必要がある。この幾何学的な配置の好適な例
の1つが第1図に示される。
Regarding the flow rate of the gas, when the raw material for forming the deposited film and the halogen-based oxidizing agent are introduced into the reaction space, they are mixed uniformly and efficiently, and the precursor (E) is efficiently The geometrical arrangement of the gas inlet, the substrate, and the gas outlet must be designed in consideration of the geometric arrangement of the gas inlet, the substrate, and the gas outlet so that the gas can be generated and the film can be formed properly without any problems. One preferred example of this geometry is shown in FIG.

成膜時の基体温度(Ts)としては、使用されるガス種
及び形成される堆積膜の種数と要求される特性に応じて
1個々に適宜所望に従って設定されるが、非晶質の膜を
得る場合には好ましくは室温から200℃、より好まし
くは室温〜100 ’Cとされるのが望ましい、殊に半
導体性や光導電性等の特性がより良好なカルコゲナイド
化合物堆積膜を形成する場合には、基体温度(T s)
は室温〜70°Cとされるのが望ましい。また、多結晶
の膜を得る場合には、好ましくは100〜zoo’c、
より好ましくは100〜150°Cとされるのが望まし
い。
The substrate temperature (Ts) during film formation is set as desired depending on the type of gas used, the number of types of deposited film to be formed, and the required characteristics. The temperature is preferably from room temperature to 200°C, more preferably from room temperature to 100'C, especially when forming a chalcogenide compound deposited film with better properties such as semiconductivity and photoconductivity. is the substrate temperature (Ts)
It is desirable that the temperature is between room temperature and 70°C. In addition, when obtaining a polycrystalline film, preferably 100 to zoo'c,
More preferably, the temperature is 100 to 150°C.

成膜空間の雰囲気温度(Tat)としては。As for the atmospheric temperature (Tat) in the film forming space.

生成される前記前駆体(E)及び前記前駆体(D)が成
膜に不適当な化学種に変化せず、且つ効率良く前記前駆
体(E)が生成される様に基体温度(Ts)との関連で
適宜所望に応じて決められる。
The substrate temperature (Ts) is adjusted so that the precursor (E) and the precursor (D) to be generated do not change into chemical species unsuitable for film formation, and the precursor (E) is efficiently generated. It can be determined as desired in relation to the above.

本発明に於いて使用される基体としては、形成される堆
積膜の用途に応じて適宜所望に応じて選択されるのであ
れば導電性でも電気絶縁性であっても良い。導電性基体
としては、例えば、NiCr、ステアL/ス、AM、C
r、Mo。
The substrate used in the present invention may be electrically conductive or electrically insulating, as long as it is appropriately selected depending on the intended use of the deposited film to be formed. Examples of the conductive substrate include NiCr, Steer L/S, AM, C
r, Mo.

Au、I r、Nb、Ta、V、Ti、Pt、Pd等の
金属又はこれ等の合金が挙げられる。
Examples include metals such as Au, Ir, Nb, Ta, V, Ti, Pt, and Pd, and alloys thereof.

電気絶縁性基体としては、ポリエステル、ポリエチレン
、ポリカーボネート、セルローズアセテート、ポリプロ
ピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリス
チレン、ポリアミド等の合成樹脂のフィルム又はシート
、ガラス、セラミック、紙等が通常使用される。これら
の電気絶縁性基体は、好適には少なくともその一方の表
面が導電処理され、該導電処理された表面側に他の層が
設けられるのが望ましい。
As the electrically insulating substrate, films or sheets of synthetic resins such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, ceramic, paper, etc. are usually used. Preferably, at least one surface of these electrically insulating substrates is subjected to a conductive treatment, and another layer is preferably provided on the conductive treated surface side.

例えばガラスであれば、その表面がNiCr、AI、C
r、Mo、Au、I r、Nb、Ta、V、Ti、Pt
、Pd、In2O3,5n02、ITO(I n203
+5no2)等のンX?膜を設ける事によって導電処理
され、或いはポリエステルフィルム等の合成樹脂フィル
ムであれば、NiCr、Ai、Ag、Pb、Zn、Ni
、Au、  Cr 、 Mo 、 I  r、  Nb
、  Ta、 V。
For example, if it is glass, its surface may be NiCr, AI, or C.
r, Mo, Au, I r, Nb, Ta, V, Ti, Pt
, Pd, In2O3,5n02, ITO(I n203
+5no2) etc.? NiCr, Ai, Ag, Pb, Zn, Ni
, Au, Cr, Mo, Ir, Nb
, Ta, V.

Ti、Pt等の金属で真空蒸着、電子ビーム蒸着、スパ
ッタリング等で処理し、又は前記金属でラミネート処理
して、その表面が導電処理される。支持体の形状として
は1円筒状、ベルト状、板状等、任意の形状とし得、所
望によって、その形状が決定される。
The surface is treated with a metal such as Ti or Pt by vacuum evaporation, electron beam evaporation, sputtering, etc., or laminated with the metal to make the surface conductive. The shape of the support may be any shape, such as a cylinder, a belt, or a plate, and the shape is determined according to desire.

基体は、基体と膜との密着性及び反応性を考慮して上記
の中より選ぶのが好ましい。更に両者の熱膨張の差が大
きいと膜中に多量の歪が生じ、良品質の膜が得られない
場合があるので。
The substrate is preferably selected from the above in consideration of the adhesion and reactivity between the substrate and the membrane. Furthermore, if the difference in thermal expansion between the two is large, a large amount of distortion will occur in the film, and a good quality film may not be obtained.

両者の熱膨張の差が近接している基体を選択して使用す
るのが好ましい。
It is preferable to select and use substrates whose thermal expansion differences are close to each other.

又、基体の表面状態は、膜の構造(配向)や錐状組織の
発生に直接関係するので、所望の特性が得られる様な膜
構造と膜組織となる様に基体の表面を処理するのが望ま
しい。
In addition, the surface condition of the substrate is directly related to the structure (orientation) of the film and the occurrence of cone-shaped structures, so it is important to treat the surface of the substrate so that it has a film structure and structure that provides the desired properties. is desirable.

第1図は本発明の堆積膜形成法を具現するに好適な装置
の1例を示すものである。
FIG. 1 shows an example of an apparatus suitable for implementing the deposited film forming method of the present invention.

第1図に示す堆積膜形成装置は、装置本体、排気系及び
ガス供給系の3つに大別される。
The deposited film forming apparatus shown in FIG. 1 is roughly divided into three parts: an apparatus main body, an exhaust system, and a gas supply system.

装置本体には、反応空間及び成膜空間が設けられている
The apparatus main body is provided with a reaction space and a film forming space.

101〜108.128,129はそれぞれ、成膜する
際に使用されるガスが充填されているボンベ、101a
 〜108a、128a。
101 to 108, 128 and 129 are cylinders filled with gas used in film formation, and 101a
~108a, 128a.

129aは夫々ガス供給パイプ、101b〜108b、
128b、129bは夫々各ボンベからのガスの流量調
整用のマスフローコントローラー、101C〜108c
、128c。
129a are gas supply pipes, 101b to 108b,
128b and 129b are mass flow controllers for adjusting the flow rate of gas from each cylinder, respectively, and 101C to 108c.
, 128c.

129Cはそれぞれガス圧力計、101d〜108d1
28d、129d及び1O1e〜108e 、128e
 、129eは夫々バルブ。
129C are gas pressure gauges, 101d to 108d1
28d, 129d and 1O1e-108e, 128e
, 129e are valves respectively.

101f N108f、128f、129fは夫々対応
するガスボンベ内の圧力を示す圧力計である。
101f, N108f, 128f, and 129f are pressure gauges that indicate the pressure inside the corresponding gas cylinder, respectively.

120は真空チャンバーであって、上部にガス導入用の
配管が設けられ、配管の下流に反応空間が形成される構
造を有し、且つ該配管のガス排出口に対向して、基体1
18が設置される様に基体ホールダー112が設けられ
た成膜空間が形成される構造を有する。ガス導入用の配
管は、三重同心円配置構造となっており、中よりガスボ
ンベ101,102よりのガスが導入される第1のガス
導入管109、ガスボンベ103〜105よりのガスが
導入される第2のカス導入管110、及びガスボンベ1
06〜108.128,129よりのガスが導入される
第3のガス導入管111を有する。
Reference numeral 120 denotes a vacuum chamber, which has a structure in which a pipe for introducing gas is provided at the upper part and a reaction space is formed downstream of the pipe.
It has a structure in which a film forming space is formed in which a substrate holder 112 is provided such that a substrate holder 18 is installed therein. The gas introduction pipes have a triple concentric arrangement structure, with a first gas introduction pipe 109 into which gas from gas cylinders 101 and 102 is introduced, and a second gas introduction pipe into which gas from gas cylinders 103 to 105 is introduced. waste introduction pipe 110 and gas cylinder 1
It has a third gas introduction pipe 111 into which gases from 06 to 108, 128, and 129 are introduced.

各ガス導入管の反応空間へのガス排出には、その位置が
内側の管になる程基体の表面位置より遠い位置に配され
る設計とされている。即瓢、外側の管になる程その内側
にある管を包囲する様に夫々のガス導入管が配設されて
いる。
Each gas introduction tube is designed to discharge gas into the reaction space so that the inner tube is located further away from the surface of the substrate. In general, the gas introduction pipes are arranged so that the outer pipes surround the inner pipes.

各導入管への管ボンベからのガスの供給は、ガス供給パ
イプライン123〜125によって夫々なされる。
Gas is supplied from the tube cylinder to each introduction pipe through gas supply pipelines 123 to 125, respectively.

各ガス導入管、各ガス供給パイプライン及び真空チャン
バー120は、メイン真空バルブ119を介して不図示
の真空排気装置により真空排気される。
Each gas introduction pipe, each gas supply pipeline, and the vacuum chamber 120 are evacuated via the main vacuum valve 119 by a vacuum evacuation device (not shown).

基体118は基体ホルダー112を上下に移動させるこ
とによって各ガス導入管の位置より適宜所望の距離に設
置される。
The base body 118 is installed at a desired distance from the position of each gas introduction pipe by moving the base body holder 112 up and down.

本発明の場合、この基体とガス導入管のガス排出口の距
離は、形成される堆積膜の種類及びその所望される特性
、ガス流量、真空チャンバーの内圧等を考慮して適切な
状態になる様に決められるが、好ましくは、数mm〜2
0cm、より好ましくは、5mm〜15cm程度とされ
るのが望ましい。
In the case of the present invention, the distance between the substrate and the gas outlet of the gas inlet pipe is determined appropriately by taking into consideration the type of deposited film to be formed, its desired characteristics, gas flow rate, internal pressure of the vacuum chamber, etc. It can be determined as desired, but preferably several mm to 2
It is desirable that the length be 0 cm, more preferably about 5 mm to 15 cm.

113は、基体118を成膜時に適当な温度に加熱した
り、或いは、成膜前に基体118を予備加熱したり、更
には、成膜後、膜をアニールする為に加熱する基体加熱
ヒータである。
Reference numeral 113 denotes a substrate heater that heats the substrate 118 to an appropriate temperature during film formation, preheats the substrate 118 before film formation, and further heats the substrate 118 to anneal the film after film formation. be.

基体加熱ヒータ113は、導線114により電源115
により電力が供給される。
The base heater 113 is connected to a power source 115 by a conductor 114.
Power is supplied by

116は、基体温度(Ts)の温度を測定する為の熱電
対で温度表示装置117に電気的に接続されている。
116 is a thermocouple for measuring the substrate temperature (Ts), and is electrically connected to the temperature display device 117.

以下、実施例に従って、本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained according to Examples.

実施例1 第1図に示す成膜装置を用いて、第1表に示す条件で堆
積膜を作成した。
Example 1 A deposited film was formed using the film forming apparatus shown in FIG. 1 under the conditions shown in Table 1.

ポンベ101に充填されているSeH2ガスを流量7 
S c Cmでまたポンベ102に充填されているA 
sH3ガスを流量14secmでガス導入管109より
、ポンベ106に充填されているF2ガスを流量20S
CCmlポンベ107に充填されているHeガスを流量
405CCmでガス導入管111より真空チャンバー1
02内に導入した。
SeH2 gas filled in the pump 101 at a flow rate of 7
A which is also filled in the pump 102 with S c Cm
sH3 gas is supplied from the gas introduction pipe 109 at a flow rate of 14 seconds, and F2 gas filled in the pump 106 is supplied at a flow rate of 20 seconds.
He gas filled in the CCml pump 107 is introduced into the vacuum chamber 1 from the gas introduction pipe 111 at a flow rate of 405 CCm.
It was introduced in 2002.

このとき、真空チャンバー120内の圧力を真空バルブ
119の開閉度を調整して800mTorrにした。基
体に石芙ガラス(15cmX15cm)を用いガス導入
口111と基体との距離は3cmに設定した。
At this time, the pressure inside the vacuum chamber 120 was adjusted to 800 mTorr by adjusting the opening/closing degree of the vacuum valve 119. The base was made of stone-covered glass (15 cm x 15 cm), and the distance between the gas inlet 111 and the base was set to 3 cm.

基体温度(Ts)は表1に示す様に60’に設定した。The substrate temperature (Ts) was set at 60' as shown in Table 1.

この状態で56分間ガスを流すと、表1に示す様な膜厚
のAsxSe (1−x)(x=0.42)膜が基体上
に堆積した。
When gas was allowed to flow in this state for 56 minutes, an AsxSe (1-x) (x=0.42) film having the thickness shown in Table 1 was deposited on the substrate.

又膜厚の分布むらは±5%以内におざまった。Moreover, the unevenness in film thickness distribution was within ±5%.

成膜したAsxSe (1−x)(x=0.42)膜は
いずれの試料も電子線回折の非晶質であることが確認さ
れた。
It was confirmed that all the samples of the AsxSe (1-x) (x=0.42) film formed were amorphous by electron beam diffraction.

各試料の非晶質AsxSe (1−x)(x=0.42
)I+!2上にA文のくし形電極(ギャップ長200 
JLm)を蒸着し、導電率測定用の試料を作成した。各
資料を真空クライオスタット中にいれ電圧100Vを印
加し、微少電流計(YHP414OB)で電流を測定し
、暗導電率(a−d)を求めた。また600nm、0.
3mw / c m 2の光を照射し、光導電率(σP
)を求めた。さらに光の吸収より光学的バンドギャップ
(EcOPt)を求めた。これらの結果は表1に示した
Amorphous AsxSe (1-x) (x=0.42) for each sample
)I+! A comb-shaped electrode (gap length 200
JLm) was vapor-deposited to prepare a sample for conductivity measurement. Each sample was placed in a vacuum cryostat, a voltage of 100 V was applied, the current was measured with a microcurrent meter (YHP414OB), and the dark conductivity (a-d) was determined. Also, 600 nm, 0.
The photoconductivity (σP
) was sought. Furthermore, the optical band gap (EcOPt) was determined from the absorption of light. These results are shown in Table 1.

実施例2 第1図に示す成膜装置を用いて第2表に示す条件で堆積
膜を作成した。
Example 2 A deposited film was formed using the film forming apparatus shown in FIG. 1 under the conditions shown in Table 2.

成膜手順及び堆積膜の評価は実施例1と同様に行なった
。第2表に示す結果を得た。
The film formation procedure and evaluation of the deposited film were performed in the same manner as in Example 1. The results shown in Table 2 were obtained.

実施例3 第1図に示す成膜装置を用いて第3表に示す条件で堆積
膜を作成した。
Example 3 A deposited film was formed using the film forming apparatus shown in FIG. 1 under the conditions shown in Table 3.

成膜手順及び堆積膜の評価は実施例1と同様に行なった
。第3表に示す結果を得た。
The film formation procedure and evaluation of the deposited film were performed in the same manner as in Example 1. The results shown in Table 3 were obtained.

実施例4 第1図に示す成膜装置を用いて第4表に示す条件で堆積
膜を作成した。
Example 4 A deposited film was formed using the film forming apparatus shown in FIG. 1 under the conditions shown in Table 4.

成膜手順及び堆積膜の評価は実施例1と同様に行なった
。第3表に示す結果を得た。
The film formation procedure and evaluation of the deposited film were performed in the same manner as in Example 1. The results shown in Table 3 were obtained.

第1表 第2表 第3表 第   4   表 〔効果〕 以上の詳細な説明及び各実施例より1本発明の堆積膜形
成法によれば、省エネルギー化を計ると同時に膜品質の
管理が容易で大面積に亘って均一物理特性の堆積膜が得
られる。又、生産性、量産性に優れ、高品質で電気的、
光学的、半導体的等の物理特性に優れた膜を簡便に得る
ことが出来る。
Table 1 Table 2 Table 3 Table 4 [Effects] From the above detailed explanation and each example, the deposited film forming method of the present invention can save energy and at the same time easily control film quality. A deposited film with uniform physical properties over a large area can be obtained. In addition, it has excellent productivity and mass production, and is of high quality and electrical.
A film with excellent physical properties such as optical and semiconductor properties can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いた成膜装置の模式的概略
図である。 101〜108,128,129 一−−−−−−−−−ガスボンベ、 101a N108a 〜128a、129a−−−一
一一−−−−ガスの導入管、 101b、108b、128b、129b−−−−−一
−−−−マスフロメーター、101c N108c 、
128c、129c−一一一一−−−−−ガス圧力計。 101d−108d、128d、129d及び1 0 
1  e 〜1 08  e  、  128e  、
  129e−一一−−−−−−−バルブ、 101f−108f、128f、129f−−−−−−
一−−−圧力計、 109 、110 、111−−−−−−−−ガス導入
管。 112−−−−−−−−−一基体ホルダー。 113−−−−−−−−−一基体加熱用ヒーター、11
6−−−−−−−−−−基体温度モニター用熱電対。 118−−−−−−−−−一基体、 119−−−−−−−−−一貫空排気パルブ。 を夫々表わしている。
FIG. 1 is a schematic diagram of a film forming apparatus used in an example of the present invention. 101 to 108, 128, 129 1------ Gas cylinder, 101a N108a to 128a, 129a---111---Gas introduction pipe, 101b, 108b, 128b, 129b--- --1----Mass flow meter, 101c N108c,
128c, 129c-1111---Gas pressure gauge. 101d-108d, 128d, 129d and 10
1e to 108e, 128e,
129e-11------ Valve, 101f-108f, 128f, 129f------
1---Pressure gauge, 109, 110, 111---Gas introduction pipe. 112---------One base holder. 113---------Heater for heating one substrate, 11
6-------Thermocouple for monitoring substrate temperature. 118------One base, 119---Continuous air exhaust valve. respectively.

Claims (10)

【特許請求の範囲】[Claims] (1)堆積膜形成用のカルコゲナイド系原子を含む気体
状原料物質と、該原料物質に酸化作用をする性質を有す
る気体状ハロゲン系酸化剤と、を反応空間内に導入して
接触させることで励起状態の前駆体を含む複数の前駆体
を化学的に生成し、これらの前駆体の内少なくとも1つ
の前駆体を堆積膜構成要素の供給源として成膜空間内に
ある基体上に堆積膜を形成することを特徴とする堆積膜
形成法。
(1) By introducing a gaseous raw material containing chalcogenide atoms for forming a deposited film and a gaseous halogen-based oxidizing agent having the property of oxidizing the raw material into a reaction space and bringing them into contact with each other. chemically generating a plurality of precursors including excited state precursors, and using at least one of the precursors as a source of a deposited film component to deposit a deposited film on a substrate in a deposition space; A deposited film forming method characterized by forming a deposited film.
(2)前記気体状原料物質は、水素化物である特許請求
の範囲第1項に記載の堆積膜形成法。
(2) The deposited film forming method according to claim 1, wherein the gaseous raw material is a hydride.
(3)前記気体状原料物質は有機金属である特許請求の
範囲第1項に記載の堆積膜形成法。
(3) The deposited film forming method according to claim 1, wherein the gaseous raw material is an organic metal.
(4)前記気体状ハロゲン系酸化剤は、ハロゲンンガス
を含む特許請求の範囲第1項に記載の堆積膜形成法。
(4) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent includes halogen gas.
(5)前記気体状ハロゲン系酸化剤は、弗素ガスを含む
特許請求の範囲第1項に記載の堆積膜形成法。
(5) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains fluorine gas.
(6)前記気体状ハロゲン系酸化剤は、塩素ガスを含む
特許請求の範囲第1項に記載の堆積膜形成法。
(6) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent includes chlorine gas.
(7)前記気体状ハロゲン系酸化剤は、弗素原子を構成
成分として含むガスである特許請求の範囲第1項に記載
の堆積膜形成法。
(7) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent is a gas containing fluorine atoms as a constituent component.
(8)前記気体状ハロゲン系酸化剤は、発生期状態のハ
ロゲンを含む特許請求の範囲第1項に記載の堆積膜形成
法。
(8) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains halogen in a nascent state.
(9)前記基体は、前記気体状原料物質と前記気体状ハ
ロゲン系酸化剤の前記反応空間への導入方向に対して対
向する位置に配設される特許請求の範囲第1項に記載の
堆積膜形成法。
(9) The deposition according to claim 1, wherein the substrate is disposed at a position opposite to the direction in which the gaseous raw material and the gaseous halogen-based oxidizing agent are introduced into the reaction space. Film formation method.
(10)前記気体状原料物質と前記気体状ハロゲン系酸
化剤は前記反応空間へ、多重管構造の輸送管から導入さ
れる特許請求の範囲第1項に記載の堆積膜形成法。
(10) The deposited film forming method according to claim 1, wherein the gaseous raw material and the gaseous halogen-based oxidizing agent are introduced into the reaction space from a transport pipe having a multi-tube structure.
JP60282203A 1985-12-16 1985-12-16 Deposited film formation method Expired - Lifetime JPH0645887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60282203A JPH0645887B2 (en) 1985-12-16 1985-12-16 Deposited film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60282203A JPH0645887B2 (en) 1985-12-16 1985-12-16 Deposited film formation method

Publications (2)

Publication Number Publication Date
JPS62139877A true JPS62139877A (en) 1987-06-23
JPH0645887B2 JPH0645887B2 (en) 1994-06-15

Family

ID=17649409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60282203A Expired - Lifetime JPH0645887B2 (en) 1985-12-16 1985-12-16 Deposited film formation method

Country Status (1)

Country Link
JP (1) JPH0645887B2 (en)

Also Published As

Publication number Publication date
JPH0645887B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
JPS62139876A (en) Formation of deposited film
JPH0645890B2 (en) Deposited film formation method
JPH0645885B2 (en) Deposited film formation method
JPS62139877A (en) Formation of deposited film
JPH0645888B2 (en) Deposited film formation method
JPS62142778A (en) Formation of deposited film
JPS62142780A (en) Formation of deposited film
JPH0645883B2 (en) Deposited film formation method
JPS62199771A (en) Formation of deposited film
JP2637396B2 (en) Deposition film formation method
JPS62228481A (en) Formation of deposited film
JPS63216331A (en) Formation of deposit film
JPH0645882B2 (en) Deposited film formation method
JPS6338581A (en) Functional deposited film forming device
JPS62196374A (en) Deposited film forming device
JPS62142777A (en) Formation of deposited film
JPS62151569A (en) Deposited film forming device
JPS62229825A (en) Deposit film forming method
JPS63136617A (en) Formation of deposited film
JPH0722131B2 (en) Deposited film forming equipment
JPS62158868A (en) Deposited film forming device
JPS63166214A (en) Deposition film forming method
JPS6347363A (en) Formation of functional deposited film
JPS6357774A (en) Formation of functional deposited film
JPS6299465A (en) Deposited film formation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term