JPH0645887B2 - Deposited film formation method - Google Patents

Deposited film formation method

Info

Publication number
JPH0645887B2
JPH0645887B2 JP60282203A JP28220385A JPH0645887B2 JP H0645887 B2 JPH0645887 B2 JP H0645887B2 JP 60282203 A JP60282203 A JP 60282203A JP 28220385 A JP28220385 A JP 28220385A JP H0645887 B2 JPH0645887 B2 JP H0645887B2
Authority
JP
Japan
Prior art keywords
deposited film
gaseous
film
gas
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60282203A
Other languages
Japanese (ja)
Other versions
JPS62139877A (en
Inventor
恵志 斉藤
政昭 広岡
純一 半那
勇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60282203A priority Critical patent/JPH0645887B2/en
Publication of JPS62139877A publication Critical patent/JPS62139877A/en
Publication of JPH0645887B2 publication Critical patent/JPH0645887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited

Description

【発明の詳細な説明】 〔従来の技術〕 本発明は、半導体膜、絶縁体膜、導体膜等の非晶性の或
は結晶性の機能性薄膜、殊に能動性或いは受動性の半導
体デバイス、光半導体デバイス或いは太陽電池や電子写
真用の感光デバイスなどの用途に有用な堆積膜の形成法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an amorphous or crystalline functional thin film such as a semiconductor film, an insulator film, and a conductor film, particularly an active or passive semiconductor device, The present invention relates to a method for forming a deposited film that is useful for applications such as optical semiconductor devices, solar cells, and photosensitive devices for electrophotography.

堆積膜の形成には、真空蒸着法,プラズマCVD法,熱
CVD法,光DVD法,反応性スパツタリング法,イオ
ンプレーテイング法などが試みられており、一般的に
は、プラズマCVD法が広く用いられ、企業化されてい
る。
A vacuum deposition method, a plasma CVD method, a thermal CVD method, an optical DVD method, a reactive sputtering method, an ion plating method, and the like have been tried for forming the deposited film, and the plasma CVD method is generally widely used. Have been commercialized.

而乍ら、これ等堆積膜形成法によって得られる堆積膜は
より高度の機能が求められる電子デバイスや光電子デバ
イスへの適用が求められていることから電気的,光学的
特性及び、繰返し使用での疲労特性あるいは使用環境特
性、更には均一性,再現性を含めて生産性,量産性の点
において更に総合的な特性の向上を図る余地がある。
However, since the deposited films obtained by these deposited film forming methods are required to be applied to electronic devices and optoelectronic devices that require higher functions, electrical and optical characteristics and repeated use There is room to improve the overall characteristics in terms of fatigue characteristics, usage environment characteristics, and productivity and mass productivity including uniformity and reproducibility.

その中でも、例えば電気的,光学的特性が各用途を充分
に満足させ得るものを発現させることが出来るという点
で、カルコゲナイド膜の場合には現状では加熱真空蒸着
法によって形成することが最良とされている。
Among them, for example, in the case of a chalcogenide film, it is currently the best to form it by a heating vacuum evaporation method in that it can express what has electrical and optical characteristics that can sufficiently satisfy each application. ing.

而乍ら、堆積膜の応用用途によっては、大面積化,膜厚
の均一性,膜品質の均一性を十分に満足させて、再現性
のある量産化を図らねばならないため、加熱真空蒸着法
による堆積膜の形成においては、高真空が必要で量産装
置に多大な設備投資が必要となり、またその量産の為の
管理項目も複雑になり、管理許容幅も狭くなり、装置の
調整も微妙であることから、これらのことが、今後改善
すべき問題点として指摘されている。
However, depending on the application of the deposited film, it is necessary to fully satisfy the requirements for large area, film thickness uniformity, and film quality uniformity, and to achieve reproducible mass production. The formation of a deposited film by means of a high vacuum requires a large amount of capital investment for mass production equipment, the management items for mass production are complicated, the control allowance is narrow, and the adjustment of equipment is delicate. Therefore, these are pointed out as problems to be improved in the future.

上述の如く、機能成膜の形成において、その実用可能な
特性の確保と、均一性を維持させながら低コストな装置
で量産化できる堆積膜の形成方法を開発することが切望
されている。
As described above, in forming a functional film, it has been earnestly desired to develop a method for forming a deposited film that can ensure practical properties and can be mass-produced by a low-cost device while maintaining uniformity.

〔目的〕〔Purpose〕

本発明の目的は、上述した堆積膜形成法の欠点を除去す
ると同時に、従来の形成方法によらない新規な堆積膜形
成法を提供するものである。
An object of the present invention is to eliminate the above-mentioned drawbacks of the deposited film forming method, and at the same time provide a novel deposited film forming method which does not depend on the conventional forming method.

本発明の他の目的は、省エネルギー化を計ると同時に膜
品質の管理が容易で大面積に亘って均一特性の堆積膜が
得られる堆積膜形成法を提供するものである。
Another object of the present invention is to provide a deposited film forming method which can save energy and can easily control the film quality and can obtain a deposited film having uniform characteristics over a large area.

本発明の更に別の目的は、生産性,量産性に優れ、高品
質で電気的,光学的,半導体的等の物理特性に優れた膜
が簡便に得られる堆積膜形成法を提供することでもあ
る。
Still another object of the present invention is to provide a deposited film forming method which is excellent in productivity and mass productivity, and which can easily obtain a film having high quality and excellent physical properties such as electrical, optical and semiconductor properties. is there.

〔問題点を解決するための手段〕 上記目的を達成する本発明の堆積膜形成法は、堆積膜形
成用の気体状原料物質と、該原料物質に酸化作用をする
性質を有する気体状ハロゲン系酸化剤と、を反応空間内
に導入して化学的に接触させることで励起状態の前駆体
を生成し、該前駆体の堆積膜構成要素の供給源として成
膜空間内にある基体上に堆積膜を形成することを特徴と
する。
[Means for Solving Problems] A method for forming a deposited film according to the present invention, which achieves the above object, is a gaseous raw material for forming a deposited film, and a gaseous halogen-based material having a property of oxidizing the raw material. An excited state precursor is generated by introducing an oxidizing agent into the reaction space and chemically contacting them, and the precursor is deposited on the substrate in the film formation space as a supply source of the deposited film constituents. It is characterized in that a film is formed.

〔作用〕[Action]

上記の本発明の堆積膜形成法によれば、省エネルギー化
と同時に大面積化,膜厚均一性,膜品質の均一性を十分
満足させて管理の簡素化と量産化を図り、量産装置に多
大な設備投資も必要とせず、またその量産の為の管理項
目も明確になり、管理許容幅も広く、装置の調整も簡単
になる。
According to the above-described deposited film forming method of the present invention, energy saving as well as large area, film thickness uniformity, and film quality uniformity are sufficiently satisfied to simplify management and mass production, and to be used in a mass production apparatus. It does not require a large capital investment, the management items for its mass production are clarified, the management allowance range is wide, and the adjustment of the device is easy.

本発明の堆積膜形成法に於いて、使用される堆積膜形成
用の気体状原料物質は、気体状ハロゲン系酸化剤との化
学的接触により酸化作用をうけるものであり、目的とす
る堆積膜の種類,特性,用途等によって所望に従って適
宜選択される。本発明に於いては、上記の気体状原料物
質及び気体状ハロゲン系酸化剤は、化学的接触をする際
に気体状とされるものであれば良く、通常の場合は、気
体でも液体でも固体であっても差支えない。
In the deposited film forming method of the present invention, the gaseous raw material used for forming the deposited film is subjected to an oxidative action by chemical contact with a gaseous halogen-based oxidant, and the desired deposited film is obtained. It is appropriately selected according to the desired type, characteristics, application, etc. In the present invention, the above-mentioned gaseous raw material and gaseous halogen-based oxidizing agent may be those that are made gaseous when they are chemically contacted, and in the usual case, they are gas, liquid or solid. But it doesn't matter.

堆積膜形成用の原料物質あるいはハロゲン系酸化剤が液
体又は固体である場合には、Ar,He,N,H
のキヤリアーガスを使用し、必要に応じては熱も加えな
がらバブリングを行なって反応空間に堆積膜形成用の原
料物質及びハロゲン系酸化剤を気体状として導入する。
When the raw material for forming the deposited film or the halogen-based oxidant is a liquid or a solid, a carrier gas such as Ar, He, N 2 or H 2 is used, and bubbling is performed while adding heat as necessary. As a result, the raw material for forming the deposited film and the halogen-based oxidizing agent are introduced into the reaction space in a gaseous state.

この際、上記気体状原料物質及び気体状ハロゲン系酸化
剤の分圧及び混合比は、キヤリアーガスの流量あるいは
堆積膜形成用の原料物質及び気体状ハロゲン系酸化剤の
蒸気圧を調節することにより設定される。
At this time, the partial pressure and mixing ratio of the gaseous raw material and the gaseous halogen-based oxidant are adjusted by adjusting the flow rate of the carrier gas or the vapor pressure of the raw material for forming the deposited film and the gaseous halogen-based oxidant. Is set.

本発明に於いて使用される堆積膜形成用の原料物質とし
ては、例えば、カルコゲナイド系の堆積膜を得るのであ
れば、カルコゲナイド系原素の水素化物または、塩素化
物、有機金属化合物等が有効なものとして挙げることが
出来る。
As a raw material for forming a deposited film used in the present invention, for example, if a chalcogenide-based deposited film is obtained, a hydride of a chalcogenide-based element, a chlorinated compound, an organometallic compound, or the like is effective. Can be listed as a thing.

具体的にはSe系化合物としては、SeH,SeCl
,Se(CH,Se(C,Se
などを有効な原料物質として挙げることが出きる。
Specifically, Se-based compounds include SeH 2 and SeCl.
2, Se (CH 3) 2 , Se (C 2 H 5) 2, Se 2 B
It is possible to cite r 2 and the like as effective raw materials.

S系化合物としては、SH,SCl,SCl
SOCl,SFなどを有効な原料物質として挙げる
ことが出きる。
Examples of the S-based compound include SH 2 , SCl 2 , S 2 Cl 2 ,
SOCl 2 , SF 6 and the like can be cited as effective raw materials.

Te系化合物としては、TeH,Te(CH
Te(Cなどを有効な原料物質として挙げる
ことが出きる。
Te-based compounds include TeH 2 , Te (CH 3 ) 2 ,
Te (C 2 H 5 ) 2 and the like can be mentioned as effective raw materials.

As系化合物としてはAsH,AsCl,AsBr
,As(CH,As(C,As(C
,As(OCH,As(OC
,As(OC,As(OCなど
を有効な原料物質として挙げることが出きる。
As-based compounds include AsH 3 , AsCl 3 , and AsBr.
3, As (CH 3) 3 , As (C 2 H 5) 3, As (C
6 H 5 ) 3 , As (OCH 3 ) 3 , As (OC 2 H 5 ).
3 , As (OC 3 H 7 ) 3 , As (OC 4 H 9 ) 3 and the like can be mentioned as effective raw materials.

勿論、これ等の原子物質は1種のみならず2種以上混合
して使用することも出来る。
Of course, these atomic substances may be used not only in one kind but also in a mixture of two or more kinds.

本発明に於いて使用されるハロゲン系酸化剤は、反応空
間内に導入される際気体状とされ、同時に反応空間内に
導入される堆積膜形成用の気体状原料物質に化学的接触
だけで効果的に酸化作用をする性質を有するもので、F
,Cl,Br,I等のハロゲンガス、発生期状
態の弗素,塩素,臭素等が有効なものとして挙げること
が出来る。
The halogen-based oxidant used in the present invention is gasified when introduced into the reaction space, and at the same time, only by chemical contact with a gaseous raw material for forming a deposited film which is introduced into the reaction space. It has the property of effectively oxidizing, and F
Halogen gas such as 2 , Cl 2 , Br 2 and I 2 , nascent fluorine, chlorine, bromine and the like can be cited as effective ones.

これ等のハロゲン系酸化剤は気体状で、前記の堆積膜形
成用の原料物質の気体と共に所望の流量と供給圧を与え
られて反応空間内に導入されて前記原料物質と混合衝突
することで接触をし、前記原料物質に酸化作用をして励
起状態の前駆体を含む複数種の前駆体を効率的に生成す
る。生成される励起状態の前駆体及び他の前駆体は、少
なくともそのいずれか1つが形成される堆積膜の構成要
素の供給源として働く。
These halogen-based oxidants are gaseous, and are introduced into the reaction space at a desired flow rate and supply pressure together with the gas of the raw material for forming the deposited film, and are mixed and collided with the raw material. The raw materials are brought into contact with each other and oxidized to efficiently generate a plurality of precursors including excited precursors. The excited state precursors and other precursors that are produced serve as a source of constituents of the deposited film, at least one of which is formed.

生成される前駆体は分解して又は反応して別の励起状態
の前駆体又は別の励起状態にある前駆体になって、或い
は必要に応じてエネルギーを放出はするがそのままの形
態で成膜空間に配設された基体表面に触れることで三次
元ネツトワーク構造の堆積膜が作成される。
The generated precursor decomposes or reacts to become a precursor in another excited state or a precursor in another excited state, or releases energy as necessary but forms a film as it is. A deposited film having a three-dimensional network structure is created by touching the surface of the substrate arranged in the space.

本発明に於いては、堆積膜形成プロセスが円滑に進行
し、高品質で所望の物理特性を有する膜が形成される可
く、成膜因子としての、原料物質及びハロゲン系酸化剤
の種類と組み合せ、これ等の混合比、混合時の圧力,流
量,成膜空間内圧,ガスの流量,成膜温度(基体温度及
び雰囲気温度)が所望に応じて適宜選択される。これ等
の成膜因子は有機的に関連し、単独で決定されるもので
はなく相互関連の下に夫々に応じて決定される。本発明
に於いて、反応空間に導入される堆積膜形成用の気体状
原料物質と気体状ハロゲン系酸化剤との量の割合は、上
記成膜因子の中関連する成膜因子との関係に於いて適宜
所望に従って決められるが、導入流量比で、好ましく
は、1/20〜100/1が適当であり、より好ましく
は1/5〜50/1とされるのが望ましい。
In the present invention, the deposited film forming process proceeds smoothly, and a film having high quality and desired physical properties can be formed. A combination, a mixing ratio of these, a pressure at the time of mixing, a flow rate, a film forming space internal pressure, a gas flow rate, and a film forming temperature (a substrate temperature and an atmospheric temperature) are appropriately selected as desired. These film forming factors are organically related, and are not determined individually but are determined according to each other under mutual relation. In the present invention, the ratio of the amounts of the gaseous raw material substance for forming a deposited film and the gaseous halogen-based oxidant introduced into the reaction space is related to the film forming factors related to the above film forming factors. In this case, the introduction flow rate ratio is preferably from 1/20 to 100/1, more preferably from 1/5 to 50/1, although it can be determined as desired.

反応空間に導入される際の混合時の圧力としては前記気
体状原料物質と前記気体状ハロゲン系酸化剤との化学的
接触を確率的により高める為には、より高い方が良い
が、反応性を考慮して適宜所望に応じて最適値を決定す
るのが良い。前記混合時の圧力としては、上記の様にし
て決められるが、夫々の導入時の圧力として、好ましく
は1×10-7気圧〜10気圧、より好ましくは1×10-6気圧
〜3気圧とされるのが望ましい。
The pressure at the time of mixing when introduced into the reaction space is preferably higher in order to stochastically enhance the chemical contact between the gaseous raw material and the gaseous halogen-based oxidant, but the reactivity is higher. Considering the above, it is preferable to appropriately determine the optimum value as desired. The pressure at the time of mixing is determined as described above, but the pressure at the time of introducing each is preferably 1 × 10 −7 atm to 10 atm, more preferably 1 × 10 −6 atm to 3 atm. It is desirable to be done.

成膜空間内の圧力、即ち、その表面に成膜される基体が
配設されている空間内の圧力は、反応空間に於いて生成
される励起状態の前駆体(E)及び場合によって該前駆
体(E)より派生的に生ずる前駆体(D)が成膜に効果
的に寄与する様に適宜所望に応じて設定される。
The pressure in the film-forming space, that is, the pressure in the space where the substrate on which the film is to be formed is disposed, is the precursor (E) in the excited state generated in the reaction space and the precursor in some cases. The precursor (D) derived from the body (E) is appropriately set as desired so as to effectively contribute to film formation.

成膜空間の内圧力は、成膜空間が反応空間と開放的に連
続している場合には、堆積膜形成用の基体状原料物質と
気体状ハロゲン系酸化剤との反応空間での導入圧及び流
量との関連に於いて、例えば差動排気或いは、大型の排
気装置の使用等の工夫を加えて調整することが出来る。
The internal pressure of the film formation space is the pressure introduced into the reaction space between the base material for forming a deposited film and the gaseous halogen-based oxidant when the film formation space is open and continuous with the reaction space. In relation to the flow rate and the flow rate, it is possible to make adjustments by adding, for example, differential exhaust or using a large exhaust device.

或いは、反応空間と成膜空間の連結部のコンダクタンス
が小さい場合には、成膜空間に適当な排気装置を設け、
該装置の排気量を制御することで成膜空間の圧力を調整
することが出来る。
Alternatively, when the conductance of the connecting portion between the reaction space and the film formation space is small, an appropriate exhaust device is provided in the film formation space,
The pressure in the film forming space can be adjusted by controlling the exhaust amount of the apparatus.

又、反応空間と成膜空間が一体的になっていて、反応位
置と成膜位置が空間的に異なるだけの場合には、前述の
様に差動排気するか或いは、排気能力の充分ある大型の
排気装置を設けてやれば良い。
Further, when the reaction space and the film formation space are integrated and the reaction position and the film formation position are spatially different from each other, differential evacuation as described above or a large size with sufficient evacuation capacity is performed. It suffices if an exhaust device is provided.

上記のようにして成膜空間内の圧力は、反応空間に導入
される気体状原料物質と気体状ハロゲン酸化剤の導入圧
力との関係に於いて決められるが、好ましくは0.001T
orr〜100Torr,より好ましくは0.01Torr
〜30Torr,最適には0.05〜10Torrとされる
のが望ましい。
As described above, the pressure in the film forming space is determined by the relationship between the gaseous source material introduced into the reaction space and the introduction pressure of the gaseous halogen oxidant, and preferably 0.001 T
orr to 100 Torr, more preferably 0.01 Torr
-30 Torr, optimally 0.05-10 Torr is desirable.

ガスの流量に就いては、反応空間への前記堆積膜形成用
の原料物質及びハロゲン系酸化剤の導入の際にこれ等が
均一に効率良く混合され、前記前駆体(E)が効率的に
生成され且つ成膜が支障なく適切になされる様に、ガス
導入口と基体とガス排気口との幾何学的配置を考慮して
設計される必要がある。この幾何学的な配置の好適な例
の1つが第1図に示される。
Regarding the gas flow rate, when the raw material for forming the deposited film and the halogen-based oxidizing agent are introduced into the reaction space, these are uniformly and efficiently mixed, and the precursor (E) is efficiently mixed. In order for the gas to be generated and the film to be formed properly without any trouble, it must be designed in consideration of the geometrical arrangement of the gas inlet, the substrate, and the gas outlet. One suitable example of this geometric arrangement is shown in FIG.

成膜時の基体温度(Ts)としては、使用されるガス種
及び形成される堆積膜の種数と要求される特性に応じ
て、個々に適宜所望に従って設定されるが、非晶質の膜
を得る場合には好ましくは室温から200℃、より好ま
しくは室温〜100℃とされるのが望ましい。殊に半導
体性や光導電性等の特性がより良好なカルコゲナイド化
合物堆積膜を形成する場合には、基体温度(Ts)は室
温〜70℃とされるのが望ましい。また、多結晶の膜を
得る場合には、好ましくは100〜200℃、より好ま
しくは100〜150℃とされるのが望ましい。
The substrate temperature (Ts) at the time of film formation is individually set as desired according to the gas species used, the number of species of the deposited film to be formed and the required characteristics. In order to obtain, it is preferable that the temperature is from room temperature to 200 ° C, more preferably from room temperature to 100 ° C. In particular, when forming a chalcogenide compound deposited film having better semiconductor properties and photoconductivity, the substrate temperature (Ts) is preferably room temperature to 70 ° C. Further, when a polycrystalline film is obtained, the temperature is preferably 100 to 200 ° C, more preferably 100 to 150 ° C.

成膜空間の雰囲気温度(Tat)としては、生成される
前記前駆体(E)及び前記前駆体(D)が成膜に不適当
な化学種に変化せず、且つ効率良く前記前駆体(E)が
生成される様に基体温度(Ts)との関連で適宜所望に
応じて決められる。
As the ambient temperature (Tat) of the film formation space, the generated precursor (E) and the precursor (D) do not change into chemical species unsuitable for film formation, and the precursor (E) is efficiently generated. ) Is appropriately determined as desired in relation to the substrate temperature (Ts).

本発明に於いて使用される基体としては、形成される堆
積膜の用途に応じて適宜所望に応じて選択されるのであ
れば導電性でも電気絶縁性であっても良い。導電性基体
としては、例えば、NiCr、ステンレス、Al、C
r、Mo、Au、Ir、Nb、Ta、V、Ti、Pt、
Pd等の金属又はこれ等の合金が挙げられる。
The substrate used in the present invention may be either conductive or electrically insulating as long as it is appropriately selected according to the intended use of the deposited film to be formed. As the conductive substrate, for example, NiCr, stainless steel, Al, C
r, Mo, Au, Ir, Nb, Ta, V, Ti, Pt,
Examples include metals such as Pd and alloys thereof.

電気絶縁性基体としては、ポリエステル、ポリエチレ
ン、ポリカーボネート、セルローズアセテート、ポリプ
ロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ
スチレン、ポリアミド等の合成樹脂のフイルム又はシー
ト、ガラス、セラミツク、紙等が通常使用される。これ
らの電気絶縁性基体は、好適には少なくともその一方の
表面が導電処理され、該導電処理された表面側に他の層
が設けられるのが望ましい。
As the electrically insulating substrate, a film or sheet of synthetic resin such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene and polyamide, glass, ceramics, paper and the like are usually used. It is preferable that at least one surface of these electrically insulating substrates is subjected to a conductive treatment, and another layer is provided on the surface subjected to the conductive treatment.

例えばガラスであれば、その表面がNiCr、Al、C
r、Mo、Au、Ir、Nb、Ta、V、Ti、Pt、
Pd、In、SnO、ITO(In+S
nO)等の薄膜を設ける事によって導電処理され、或
いはポリエステルフイルム等の合成樹脂フイルムであれ
ば、NiCr、Al、Ag、Pb、Zn、Ni、Au、
Cr、Mo、Ir、Nb、Ta、V、Ti、Pt等の金
属で真空蒸着、電子ビーム蒸着、スパツタリング等で処
理し、又は前記金属でラミネート処理して、その表面が
導電処理される。支持体の形状としては、円筒状、ベル
ト状、板状等、任意の形状とし得、所望によって、その
形状が決定される。
For example, in the case of glass, the surface is NiCr, Al, C
r, Mo, Au, Ir, Nb, Ta, V, Ti, Pt,
Pd, In 2 O 3 , SnO 2 , ITO (In 2 O 3 + S
nO 2 ), a conductive film is provided by a thin film, or a synthetic resin film such as a polyester film is NiCr, Al, Ag, Pb, Zn, Ni, Au,
The surface is subjected to a conductive treatment by treatment with a metal such as Cr, Mo, Ir, Nb, Ta, V, Ti, Pt by vacuum vapor deposition, electron beam vapor deposition, sputtering, or the like, or by laminating with the metal. The shape of the support may be any shape such as a cylindrical shape, a belt shape and a plate shape, and the shape is determined as desired.

基体は、基体と膜との密着性及び反応性を考慮して上記
の中より選ぶのが好ましい。更に両者の熱膨張の差が大
きいと膜中に多量の歪が生じ、良品質の膜が得られない
場合があるので、両者の熱膨張の差が近接している基体
を選択して使用するのが好ましい。
The substrate is preferably selected from the above in consideration of the adhesion and reactivity between the substrate and the film. Furthermore, if the difference in thermal expansion between the two is large, a large amount of strain may occur in the film, and a good quality film may not be obtained. Therefore, select and use a substrate with a close difference in thermal expansion between the two. Is preferred.

又、基体の表面状態は、膜の構造(配向)や錐状組織の
発生に直接関係するので、所望の特性が得られる様な膜
構造と膜組織となる様に基体の表面を処理するのが望ま
しい。
Further, since the surface condition of the substrate is directly related to the structure (orientation) of the film and the generation of the conical structure, it is necessary to treat the surface of the substrate so that the film structure and the film structure can obtain desired characteristics. Is desirable.

第1図は本発明の堆積膜形成法を具現するに好適な装置
の1例を示すものである。
FIG. 1 shows an example of an apparatus suitable for embodying the deposited film forming method of the present invention.

第1図に示す堆積膜形成装置は、装置本体、排気系及び
ガス供給系の3つに大別される。
The deposited film forming apparatus shown in FIG. 1 is roughly divided into three parts: an apparatus main body, an exhaust system and a gas supply system.

装置本体には、反応空間及び成膜空間が設けられてい
る。
A reaction space and a film formation space are provided in the apparatus body.

101〜108,128,129はそれぞれ、成膜する
際に使用されるガスが充填されているボンベ、101a
〜108a,128a,129aは夫々ガス供給パイ
プ、101b〜108b,128b,129bは夫々各
ボンベからのガスの流量調整用のマスフローコントロー
ラー、101c〜108c,128c,129cはそれ
ぞれガス圧力計、101d〜108d128d,129
d及び101e〜108e,128e,129eは夫々
バルブ、101f〜108f,128f,129fは夫
々対応するガスボンベ内の圧力を示す圧力計である。
101 to 108, 128, and 129 are cylinders 101a each filled with a gas used for film formation.
˜108a, 128a, 129a are gas supply pipes, 101b˜108b, 128b, 129b are mass flow controllers for adjusting the flow rate of gas from each cylinder, 101c˜108c, 128c, 129c are gas pressure gauges, and 101d˜108d128d. , 129
d and 101e to 108e, 128e and 129e are valves respectively, and 101f to 108f, 128f and 129f are pressure gauges showing the pressures in the corresponding gas cylinders.

120は真空チヤンバーであって、上部にガス導入用の
配管が設けられ、配管の下流に反応空間が形成される構
造を有し、且つ該配管のガス排出口に対向して、基体1
18が配置される様に基本ホールダー112が設けられ
た成膜空間が形成される構造を有する。ガス導入用の配
管は、三重同心円配置構造となっており、中よりガスボ
ンベ101,102よりのガスが導入される第1のガス
導入管109、ガスボンベ103〜105よりのガスが
導入される第2のガス導入管110、及びガスボンベ1
06〜108,128,129よりのガスが導入される
第3のガス導入管111を有する。
Reference numeral 120 denotes a vacuum chamber having a structure in which a gas introducing pipe is provided in an upper portion thereof, and a reaction space is formed in the downstream of the pipe, and the substrate 1 faces the gas outlet of the pipe.
It has a structure in which a film formation space in which the basic holder 112 is provided so that 18 is arranged is formed. The gas introduction pipe has a triple concentric circle arrangement structure, and the first gas introduction pipe 109 into which the gas from the gas cylinders 101 and 102 is introduced and the second gas from the gas cylinders 103 to 105 are introduced from the inside. Gas introduction pipe 110 and gas cylinder 1
It has the 3rd gas introduction pipe 111 into which gas from 06-108,128,129 is introduced.

各ガス導入管の反応空間へのガス排出には、その位置が
内側の管になる程基体の表面位置より遠い位置に配され
る設計とされている。即ち、外側の管になる程その内側
にある管を包囲する様に夫々のガス導入管が配設されて
いる。
For the gas discharge to the reaction space of each gas introduction pipe, it is designed such that the inner pipe is located farther from the surface position of the substrate. That is, the respective gas introduction pipes are arranged so that the outer pipes surround the inner pipes.

各導入管への管ボンベからのガスの供給は、ガス供給パ
イプライン123〜125によって夫々なされる。
The supply of gas from the pipe cylinders to the respective introduction pipes is performed by gas supply pipelines 123 to 125, respectively.

各ガス導入管、各ガス供給パイプライン及び真空チヤン
バー120は、メイン真空バルブ119を介して不図示
の真空排気装置により真空排気される。
The gas introduction pipes, the gas supply pipelines, and the vacuum chamber 120 are vacuum-exhausted by a vacuum exhaust device (not shown) via the main vacuum valve 119.

基体118は基体ホルダー112を上下に移動させるこ
とによって各ガス導入管の位置より適宜所望の距離に設
置される。
The substrate 118 is installed at a desired distance from the position of each gas introduction pipe by moving the substrate holder 112 up and down.

本発明の場合、この基体とガス導入管のガス排出口の距
離は、形成される堆積膜の種類及びその所望される特
性,ガス流量,真空チヤンバーの内圧等を考慮して適切
な状態になる様に決められるが、好ましくは、数mm〜
20cm、より好ましくは、5mm〜15cm程度とさ
れるのが望ましい。
In the case of the present invention, the distance between the substrate and the gas outlet of the gas introduction pipe is in an appropriate state in consideration of the type of the deposited film to be formed, its desired characteristics, the gas flow rate, the internal pressure of the vacuum chamber, etc. However, it is preferably several mm
It is desirable that the length is 20 cm, more preferably 5 mm to 15 cm.

113は、基体118を成膜時に適当な温度に加熱した
り、或いは、成膜前に基体118を予備加熱したり、更
には、成膜後、膜をアニールする為に加熱する基体加熱
ヒータである。
Reference numeral 113 denotes a substrate heating heater that heats the substrate 118 to an appropriate temperature during film formation, preheats the substrate 118 before film formation, and further heats after film formation to anneal the film. is there.

基体加熱ヒータ113は、導線114により電源115
により電力が供給される。
The substrate heater 113 is connected to the power source 115 via the conductor 114.
Is supplied with electric power.

116は、基体温度(Ts)の温度を測定する為の熱電
対で温度表示装置117に電気的に接続されている。
Reference numeral 116 is a thermocouple for measuring the temperature of the substrate temperature (Ts), which is electrically connected to the temperature display device 117.

以下、実施例に従って、本発明を具体的に説明する。Hereinafter, the present invention will be specifically described with reference to Examples.

実施例1 第1図に示す成膜装置を用いて、第1表に示す条件で堆
積膜を作成した。
Example 1 Using the film forming apparatus shown in FIG. 1, a deposited film was formed under the conditions shown in Table 1.

ボンベ101に充填されているSeHガスを流量7s
ccmでまたボンベ102に充填されているAsH
スを流量14sccmでガス導入管109より、ボンベ
106に充填されているFガスを流量20sccm,
ボンベ107に充填されているHeガスを流量40sc
cmでガス導入管111より真空チヤンバー102内に
導入した。
Flow rate of SeH 2 gas filled in the cylinder 101 is 7 s.
At a flow rate of 14 sccm, the AsH 3 gas with which the cylinder 102 is filled with ccm is fed through the gas introduction pipe 109 with a flow rate of 20 sccm with which the F 2 gas with which the bomb 106 is filled is filled.
He gas filling the cylinder 107 at a flow rate of 40 sc
It was introduced into the vacuum chamber 102 through the gas introduction pipe 111 in cm.

このとき、真空チヤンバー120内の圧力を真空バルブ
119の開閉度を調整して800mTorrにした。基
体に石英ガラス(15cm×15cm)を用いガス導入
口111と基体との距離は3cmに設定した。
At this time, the pressure in the vacuum chamber 120 was adjusted to 800 mTorr by adjusting the opening / closing degree of the vacuum valve 119. Quartz glass (15 cm × 15 cm) was used as the substrate, and the distance between the gas inlet 111 and the substrate was set to 3 cm.

基体温度(Ts)は表1に示す様に60°に設定した。The substrate temperature (Ts) was set to 60 ° as shown in Table 1.

この状態で56分間ガスを流すと、表1に示す様な膜厚
のAsxSe(1−x)(x=0.42)膜が基体上に堆積
した。
When gas was flown for 56 minutes in this state, an AsxSe (1-x) (x = 0.42) film having a film thickness as shown in Table 1 was deposited on the substrate.

又膜厚の分布むらは±5%以内におさまった。成膜した
AsxSe(1−x)(x=0.42)膜はいずれの試料も
電子線回折の非晶質であることが確認された。
The unevenness of the film thickness distribution was within ± 5%. It was confirmed that all the formed AsxSe (1-x) (x = 0.42) films were amorphous by electron diffraction.

各試料の非晶質AsxSe(1−x)(x=0.42)膜上
にAlのくし形電極(ギヤツプ長200μm)を蒸着
し、導電率測定用の試料を作成した。各資料を真空クラ
イオスタツト中にいれ電圧100Vを印加し、微少電流
計(YHP4140B)で電流を測定し、暗導電率(σ
d)を求めた。また600nm,0.3mw/cmの光
を照射し、光導電率(σp)を求めた。さらに光の吸収
より光学的バンドギヤツプ(E opt)を求めた。こ
れらの結果は表1に示した。
On the amorphous AsxSe (1-x) (x = 0.42) film of each sample, a comb-shaped electrode (gap length 200 μm) of Al was vapor-deposited to prepare a sample for conductivity measurement. A voltage of 100 V was applied to each material in a vacuum cryostat, the current was measured with a micro ammeter (YHP4140B), and the dark conductivity (σ
d) was determined. Further, light having a wavelength of 600 nm and 0.3 mw / cm 2 was irradiated to determine the photoconductivity (σp). Further, the optical bandgap (E G opt ) was determined from the absorption of light. The results are shown in Table 1.

実施例2 第1図に示す成膜装置を用いて第2表に示す条件で堆積
膜を作成した。
Example 2 A deposited film was formed under the conditions shown in Table 2 using the film forming apparatus shown in FIG.

成膜手順及び堆積膜の評価は実施例1と同様に行なっ
た。第2表に示す結果を得た。
The film forming procedure and the evaluation of the deposited film were performed in the same manner as in Example 1. The results shown in Table 2 were obtained.

実施例3 第1図に示す成膜装置を用いて第3表に示す条件で堆積
膜を作成した。
Example 3 Using the film forming apparatus shown in FIG. 1, a deposited film was formed under the conditions shown in Table 3.

成膜手順及び堆積膜の評価は実施例1と同様に行なっ
た。第2表に示す結果を得た。
The film forming procedure and the evaluation of the deposited film were performed in the same manner as in Example 1. The results shown in Table 2 were obtained.

実施例4 第1図に示す成膜装置を用いて第4表に示す条件で堆積
膜を作成した。
Example 4 A deposited film was formed under the conditions shown in Table 4 using the film forming apparatus shown in FIG.

成膜手順及び堆積膜の評価は実施例1と同様に行なっ
た。第3表に示す結果を得た。
The film forming procedure and the evaluation of the deposited film were performed in the same manner as in Example 1. The results shown in Table 3 were obtained.

〔効果〕 以上の詳細な説明及び各実施例より、本発明の堆積膜形
成法によれば、省エネルギー化を計ると同時に膜品質の
管理が容易で大面積に亘って均一物理特性の堆積膜が得
られる。又、生産性、量産性に優れ、高品質で電気的、
光学的、半導体的等の物理特性に優れた膜を簡便に得る
ことが出来る。
[Effect] From the above detailed description and each example, according to the deposited film forming method of the present invention, it is possible to achieve energy saving and at the same time easily control the film quality and to obtain a deposited film having uniform physical properties over a large area. can get. In addition, it has excellent productivity and mass productivity, high quality and electrical,
A film having excellent physical properties such as optical properties and semiconductor properties can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に用いた成膜装置の模式的概略
図である。 101〜108,128,129……ガスボンベ、 101a〜108a〜128a,129a……ガスの導
入管、 101b,108b,128b,129b……マスフロ
メーター、 101c〜108c,128c,129c……ガス圧力
計、 101d〜108d,128d,129d及び 101e〜108e,128e,129e……バルブ、 101f〜108f,128f,129f……圧力計、 109,110,111……ガス導入管、 112……基体ホルダー、 113……基体加熱用ヒーター、 116……基体温度モニター用熱電対、 118……基体、 119……真空排気バルブ、 を夫々表わしている。
FIG. 1 is a schematic diagram of a film forming apparatus used in an example of the present invention. 101-108,128,129 ... Gas cylinder, 101a-108a-128a, 129a ... Gas introduction pipe, 101b, 108b, 128b, 129b ... Mass flow meter, 101c-108c, 128c, 129c ... Gas pressure gauge , 101d to 108d, 128d, 129d and 101e to 108e, 128e, 129e ... Valve, 101f to 108f, 128f, 129f ... Pressure gauge, 109, 110, 111 ... Gas introduction pipe, 112 ... Substrate holder, 113 .., a heater for heating the substrate, 116, a thermocouple for monitoring the substrate temperature, 118, a substrate, 119, a vacuum exhaust valve, respectively.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 31/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01L 31/04

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】堆積膜形成用のカルコゲナイド系原子を含
む気体状原料物質と、該原料物質に酸化作用をする性質
を有する気体状ハロゲン系酸化剤と、を反応空間内に導
入して接触させることで励起状態の前駆体を含む複数の
前駆体を化学的に生成し、これらの前駆体の内少なくと
も1つの前駆体を堆積膜構成要素の供給源として成膜空
間内にある基体上に堆積膜を形成することを特徴とする
堆積膜形成法。
1. A gaseous raw material containing chalcogenide atoms for forming a deposited film and a gaseous halogen-based oxidizing agent having a property of oxidizing the raw material are introduced into a reaction space and brought into contact with each other. Thereby chemically producing a plurality of precursors, including excited state precursors, and depositing at least one of these precursors on the substrate in the deposition space as a source of deposition film constituents. A deposited film forming method characterized by forming a film.
【請求項2】前記気体状原料物質は、水素化物である特
許請求の範囲第1項に記載の堆積膜形成法。
2. The deposited film forming method according to claim 1, wherein the gaseous source material is a hydride.
【請求項3】前記気体状原料物質は有機金属である特許
請求の範囲第1項に記載の堆積膜形成法。
3. The deposited film forming method according to claim 1, wherein the gaseous raw material is an organic metal.
【請求項4】前記気体状ハロゲン系酸化剤は、ハロゲン
ガスを含む特許請求の範囲第1項に記載の堆積膜形成
法。
4. The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains a halogen gas.
【請求項5】前記気体状ハロゲン系酸化剤は、弗素ガス
を含む特許請求の範囲第1項に記載の堆積膜形成法。
5. The method for forming a deposited film according to claim 1, wherein the gaseous halogen-based oxidizing agent contains fluorine gas.
【請求項6】前記気体状ハロゲン系酸化剤は、塩素ガス
を含む特許請求の範囲第1項に記載の堆積膜形成法。
6. The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains chlorine gas.
【請求項7】前記気体状ハロゲン系酸化剤は、弗素原子
を構成成分として含むガスである特許請求の範囲第1項
に記載の堆積膜形成法。
7. The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent is a gas containing a fluorine atom as a constituent component.
【請求項8】前記気体状ハロゲン系酸化剤は、発生期状
態のハロゲンを含む特許請求の範囲第1項に記載の堆積
膜形成法。
8. The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains halogen in a nascent state.
【請求項9】前記気体は、前記気体状原料物質と前記気
体状ハロゲン系酸化剤の前記反応空間への導入方向に対
して対向する位置に配設される特許請求の範囲第1項に
記載の堆積膜形成法。
9. The method according to claim 1, wherein the gas is arranged at a position opposed to a direction in which the gaseous raw material substance and the gaseous halogen-based oxidant are introduced into the reaction space. Method for forming deposited film.
【請求項10】前記気体状原料物質と前記気体状ハロゲ
ン系酸化剤は前記反応空間へ、多重管構造の輸送管から
導入される特許請求の範囲第1項に記載の堆積膜形成
法。
10. The method for forming a deposited film according to claim 1, wherein the gaseous raw material and the gaseous halogen-based oxidant are introduced into the reaction space through a transport pipe having a multi-tubular structure.
JP60282203A 1985-12-16 1985-12-16 Deposited film formation method Expired - Lifetime JPH0645887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60282203A JPH0645887B2 (en) 1985-12-16 1985-12-16 Deposited film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60282203A JPH0645887B2 (en) 1985-12-16 1985-12-16 Deposited film formation method

Publications (2)

Publication Number Publication Date
JPS62139877A JPS62139877A (en) 1987-06-23
JPH0645887B2 true JPH0645887B2 (en) 1994-06-15

Family

ID=17649409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60282203A Expired - Lifetime JPH0645887B2 (en) 1985-12-16 1985-12-16 Deposited film formation method

Country Status (1)

Country Link
JP (1) JPH0645887B2 (en)

Also Published As

Publication number Publication date
JPS62139877A (en) 1987-06-23

Similar Documents

Publication Publication Date Title
JPH0651909B2 (en) Method of forming thin film multilayer structure
JPH0746729B2 (en) Method of manufacturing thin film transistor
US5160543A (en) Device for forming a deposited film
JPH0645886B2 (en) Deposited film formation method
JPH084070B2 (en) Thin film semiconductor device and method of forming the same
JPH0645890B2 (en) Deposited film formation method
JPH0651906B2 (en) Deposited film formation method
JPH0645885B2 (en) Deposited film formation method
JPH0645888B2 (en) Deposited film formation method
JPH0645887B2 (en) Deposited film formation method
JPH0647734B2 (en) Deposited film formation method
JPH0645882B2 (en) Deposited film formation method
JPS62142778A (en) Formation of deposited film
JPH0645891B2 (en) Deposited film formation method
JPH0645883B2 (en) Deposited film formation method
JPH0651908B2 (en) Method of forming thin film multilayer structure
JP2637396B2 (en) Deposition film formation method
JP2637397B2 (en) Deposition film formation method
JP2704986B2 (en) Thin film semiconductor device and method of forming the same
JPH0651907B2 (en) Method of forming thin film multilayer structure
JPS63216331A (en) Formation of deposit film
JPH0645884B2 (en) Deposited film formation method
JP2547728B2 (en) Deposition film forming equipment
JPH0647729B2 (en) Deposited film formation method
JPH0645895B2 (en) Deposited film forming equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term