JPS62139802A - Production of metallic powder - Google Patents

Production of metallic powder

Info

Publication number
JPS62139802A
JPS62139802A JP28252585A JP28252585A JPS62139802A JP S62139802 A JPS62139802 A JP S62139802A JP 28252585 A JP28252585 A JP 28252585A JP 28252585 A JP28252585 A JP 28252585A JP S62139802 A JPS62139802 A JP S62139802A
Authority
JP
Japan
Prior art keywords
roll
powder
collars
body part
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28252585A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Murakawa
村川 義行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP28252585A priority Critical patent/JPS62139802A/en
Publication of JPS62139802A publication Critical patent/JPS62139802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce extremely fine powder at a high yield by constituting a roll of a body part having collars in the state of bringing a molten metal into collision against the roll rotating at a high speed to grind the metal to pulverized powder. CONSTITUTION:The inside of a vacuum vessel 1 is evacuated to about <=1Torr pressure. A metallic material 3 to be ground is melted by the plasma generated by a plasma gun 2 so as to collide against the roll 4 rotating at a high speed, by which the material is splashed and ground. The collars (b) are attached to the positions approximately symmetrical with the body part a' of the roll 4 as a center. Ruggedness is preliminarily formed to the surfaces of the collars (b), then the material collides again against the collars (b) after the material is ground by the collision against the body part a'. The material is thereby resplashed and divided and the extremely fine metallic powder is obtd. The mush finer metallic powder is obtd. at a high yield if the surface of the body part a' is formed to a projecting shape (drum shape).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属または合金(以下金属という)の粉末の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing powder of metal or alloy (hereinafter referred to as metal).

〔従来の技術〕[Conventional technology]

金属粉末の大量生産方法は、(イ)固体原料を機械的に
粉砕する。(ロ)溶融金属をガスまたは液体を媒体とし
て噴霧する。(ハ)溶融金属を高速運動する物体の表面
に衝突させ、微細融滴化し凝固させる。
The method for mass production of metal powder is (a) mechanically crushing solid raw materials. (b) Spraying molten metal using gas or liquid as a medium. (c) The molten metal collides with the surface of an object moving at high speed, forming fine molten droplets and solidifying them.

及びに)その他の方法に大別出来る。(and) other methods.

本発明は、(ハ)の方法に係るものであり、高速運動す
る物体をロール表面とすることにより、設備を簡易化出
来る利点を有する。従来の回転ロール。
The present invention relates to the method (c), and has the advantage that the equipment can be simplified by using the roll surface as the object moving at high speed. Traditional rotating roll.

による粉末化の機構は、高速回転しているロール表面に
溶融金属を落下させ、その落下速度よりも著しく速いロ
ール周速度によって溶融金属を負圧にすることKより、
キャピテーシ鷲ンを発生させ溶融金属を微細に分断する
ものである。本発明でいう真空または低圧とは、 1T
orr以下程度以下力をいいこの圧力は、高品位粉末性
状を得るために必要な圧力条件である。このような低圧
下では。
The mechanism of pulverization is to drop the molten metal onto the surface of a roll rotating at high speed, and create a negative pressure on the molten metal by using a peripheral speed of the roll that is significantly faster than the falling speed.
It generates capitivity and breaks the molten metal into fine pieces. The vacuum or low pressure in the present invention is 1T
This pressure, which refers to a force of about orr or less, is a pressure condition necessary to obtain high-quality powder properties. Under such low pressure.

ロールの高速回転によるキャビテーク9フ発生は期待出
来ず、したがって従来の方法では落下された融滴な微細
に分断する効果が十分でな(、ノズ)から流出する連続
した溶湯流に適用する場合はもちろん、ノズルによる溶
湯の汚染を防止する等のため、固体原料を高エネルギー
密度の熱源で加熱して溶融し、小融滴として直接落下供
給する場合にも、十分:(微細な製品粉末を高収率で得
ることが出来なかった。
Cavitake cannot be expected to occur due to the high-speed rotation of the rolls, and therefore, when applied to a continuous flow of molten metal flowing out from a nozzle, the conventional method is not effective enough to break up the fallen molten droplets into fine pieces. Of course, in order to prevent contamination of the molten metal by the nozzle, it is also sufficient to heat the solid raw material with a high energy density heat source to melt it and directly drop it as small molten droplets. It was not possible to obtain a good yield.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来のロール回転による粉末製造方法を改良
して、十分に微細な金属粉末製品を高収率で生産する方
法を提供することを目的とするものである。
An object of the present invention is to provide a method for producing sufficiently fine metal powder products at a high yield by improving the conventional powder production method using roll rotation.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、ロールが、供給された溶融金属を衝突微細化
する胴部、および該胴部で微細化された融滴を受けてさ
らに衝突微細化する前記胴部に一体的に設けられたソバ
部からなることを特徴とするものである。
The present invention provides a roll that includes a body that atomizes the supplied molten metal by collision, and a soba that is integrally provided with the body that receives the molten droplets that have been atomized by the body and further atomizes the metal by colliding. It is characterized by consisting of parts.

〔作用〕[Effect]

従来のロール回転法に用いられるロール形状は単純な円
筒または円板状であり、そのため0例え1f円筒状ロー
ルでは、第3図に示すように衝突した融滴は回転軸に直
角な方向のみならず左右(軸)方向に飛散する割合が多
く、粉末の飛散方向とロール回転方向とが大きく角度が
異なるため、十分な飛散速度が得られず微細に分断され
難い。このため、ロール表面と融滴の摩擦抵抗を増大す
るため。
The roll shape used in the conventional roll rotation method is a simple cylinder or disk, so for example, with a 1f cylindrical roll, the colliding molten droplets can only move in the direction perpendicular to the rotation axis, as shown in Figure 3. Since a large proportion of the powder is scattered in the left-right (axial) direction, and the angle between the direction of powder scattering and the direction of rotation of the roll is greatly different, a sufficient scattering speed cannot be obtained and it is difficult to divide the powder into fine pieces. This increases the frictional resistance between the roll surface and the molten droplet.

従来、ロール表面を凹凸にしたり、凹形(つつみ形)の
ロール形状にする例もあるが、十分満足する効果とはな
っていない。
Conventionally, there have been examples in which the roll surface has been made uneven or has a concave (tsutsumi-shaped) roll shape, but this has not resulted in a sufficiently satisfactory effect.

本発明によると1例えば、ロールは融滴が衝突する胴部
を中心として、はy左右対称な位置にソバを設けた場合
、一旦胴部に衝突し、左右に飛散した融滴はツバに再衝
突するため、さらに微細に分断される。
According to the present invention, 1. For example, if the roll is provided with buckwheat at a symmetrical position with respect to the body where the molten droplets collide, the molten droplets that once collided with the body and scattered left and right will return to the brim. As they collide, they are further divided into smaller pieces.

本発明はさらに上記分断効果を増強するため。The present invention further enhances the above-mentioned dividing effect.

ツバはその融滴が衝突する面を凹凸状にする。さらにま
た胴部の表面形状を凸形(太鼓形)にし。
The brim creates an uneven surface on which the molten droplets collide. Furthermore, the surface shape of the body is made convex (drum-shaped).

金属融滴が一旦胴部表面に衝突した後、加速されてツバ
に再衝突し再飛散分断される確率を多くすること等によ
り、一層間収率で微細な粉末を製造することが出来る。
By increasing the probability that the molten metal droplet once collides with the surface of the body and then is accelerated and re-collides with the brim to be re-splattered and fragmented, it is possible to produce fine powder with a higher interlayer yield.

これらの効果を第1図および第3図により説明する。第
3図は前記のように、従来方法、および第1図A、Bは
1本発明の方法によるそれぞれロール表面に融滴が衝突
し飛散する様子を示すものである。従来法は、ロール表
面に衝突した融滴は左右に飛散し分断効果は少ない。そ
れに対して、第1図Aは左右に飛散した融滴の多くは加
速された状態でツバに衝突し再飛散し細く分断される。
These effects will be explained with reference to FIGS. 1 and 3. As mentioned above, FIG. 3 shows the conventional method, and FIGS. 1A and 1B show how the molten droplets collide with the roll surface and scatter according to the method of the present invention. In the conventional method, the molten droplets that collide with the roll surface scatter to the left and right, and the breaking effect is small. On the other hand, in FIG. 1A, most of the molten droplets scattered left and right collide with the brim in an accelerated state, are scattered again, and are divided into thin pieces.

第1図Bは、ロール面を凸形とすることにより、左右に
飛散する確率が大きくされ、より高収率で微細粉末を製
造することが出来る。
In FIG. 1B, by making the roll surface convex, the probability of scattering from side to side is increased, and fine powder can be produced at a higher yield.

〔実施例〕〔Example〕

第2図は熱源として真空プラズマを用いた場合の例であ
る。真空槽1には、天井部にプラズマ銃2、側壁部に原
料金属3をその先端がプラズマガン2の正面となるよう
にチャッキングした原料駆動装置、原料金J/43の先
端の直下部にロール4゜下部に粉末回収槽6が、それぞ
れ設けられている。
FIG. 2 is an example in which vacuum plasma is used as the heat source. In the vacuum chamber 1, there is a plasma gun 2 on the ceiling, a raw material drive device that chucks the raw metal 3 on the side wall so that its tip is in front of the plasma gun 2, and a raw material drive device directly below the tip of the raw material J/43. A powder recovery tank 6 is provided at the bottom of each roll 4.

真空槽lは排気ロアを経て図示しない排気系に接−統さ
れる。なお5はプラズマ銃2の電源装置である。上記装
置により1本発明の効果を確認した。
The vacuum chamber 1 is connected to an exhaust system (not shown) via an exhaust lower. Note that 5 is a power supply device for the plasma gun 2. The effects of the present invention were confirmed using the above device.

金属原料3を、材質t N tooの直径40iIjI
φ、長さ7001mの棒材とし、プラズマ出力30KW
、真空槽】内は圧力TOTorrのAr雰囲気とした。
The metal raw material 3 has a diameter of 40iIjI of material tN too.
φ, 7001m long bar, plasma output 30KW
The interior of the vacuum chamber was an Ar atmosphere with a pressure of TOTorr.

ロール4は銅製水冷、直径300wRx 400 ii
l+長さでツバなしく第3図)とし、  11000R
Pで回転した。この条件で得られた金属粉末は、100
μm以下の収率が約50%であった。
Roll 4 is copper water-cooled, diameter 300wRx 400 II
l + length without brim (Fig. 3), 11000R
Rotated with P. The metal powder obtained under these conditions was 100
The yield of less than μm was about 50%.

次にロール4をツバ付き(第14A)にし、他はと記と
同一条件としたところ、得られた金属粉末は、lool
xm以下の収率が約70%であった。さらに同様条件で
ロール4をツバ付き凸形(第1図−B)としたところ、
金属粉末の収率は、  100μm以下で約80%と増
加し本発明1(よるツバおよびロール形状の効果が確認
された。
Next, roll 4 was made with a brim (No. 14A), and the other conditions were the same as described above, and the obtained metal powder was
The yield of xm or less was about 70%. Furthermore, when the roll 4 was made into a convex shape with a flange (Fig. 1-B) under the same conditions,
The yield of metal powder increased to about 80% when the diameter was 100 μm or less, confirming the effect of the collar and roll shape of the present invention 1.

以上の実施例は、溶融金属の供給を固体金属の局部加熱
による融溶で行うもので述べたが、この方法は低圧雰囲
気中で行わt7.かつ溶融金属が耐火物ノズル、タンデ
ィシュ等から構成される装置がなく、高品位の金属粉末
の製造に有効である。
In the above embodiment, the molten metal was supplied by melting the solid metal by local heating, but this method was carried out in a low pressure atmosphere at t7. In addition, there is no equipment in which the molten metal is composed of a refractory nozzle, tundish, etc., and it is effective for producing high-grade metal powder.

しかし1本発明の効果はこれらに限定されるものではな
く、ノズル等を介して溶融金属を供給する場合の分断効
果不足の解決にも有効である。
However, the effects of the present invention are not limited to these, and are also effective in solving the problem of insufficient splitting effect when molten metal is supplied through a nozzle or the like.

また上記実施例では熱源をプラズマで行うもので述べた
が本発明はこれに限定されるものではない。
Further, in the above embodiments, plasma is used as the heat source, but the present invention is not limited to this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のロールの形状を説明する図。 第2図は本発明の詳細な説明する図、第3図は従来のロ
ール形状の例およびそれによる飛沫の飛行を示す図であ
る。 l:真空槽、2:プラズマ銃、3:原料金属。 4:ロール、5:電源、6:粉末回収槽、7:排気ロ、
α、α:胴部、bニッパ部。 も l 目 A          B ζ)            ぐ−) 第2図
FIG. 1 is a diagram explaining the shape of the roll of the present invention. FIG. 2 is a diagram explaining the present invention in detail, and FIG. 3 is a diagram showing an example of a conventional roll shape and the flight of droplets due to it. 1: Vacuum chamber, 2: Plasma gun, 3: Raw metal. 4: Roll, 5: Power supply, 6: Powder collection tank, 7: Exhaust hole,
α, α: Body part, b nipper part. Figure 2

Claims (1)

【特許請求の範囲】 1、真空または低圧不活性ガス雰囲気中で高速回転する
ロール表面に溶融金属を衝突させて微細融滴化する金属
粉末の製造方法において、ロールは胴部および該胴部で
微細化された融滴を受けてさらに微細化する前記胴部に
一体的に設けられたツバ部からなることを特徴とする金
属粉末の製造方法。 2、特許請求の範囲第1項において、ツバの融滴を受け
る側の表面を凹凸状にしたことを特徴とする金属粉末の
製造方法。 3、特許請求の範囲第1項または第2項において胴部を
凸形としたロールを用いることを特徴とする金属粉末の
製造方法。
[Claims] 1. A method for producing metal powder in which molten metal is made to collide with the surface of a roll rotating at high speed in a vacuum or low-pressure inert gas atmosphere to form fine molten droplets, the roll having a body and a metal powder in the body. 1. A method for producing metal powder, comprising: a brim portion integrally provided with the body portion that receives the micronized molten droplets and further micronizes them. 2. The method for producing metal powder according to claim 1, characterized in that the surface of the brim on the side that receives the molten droplets is made uneven. 3. A method for producing metal powder according to claim 1 or 2, characterized in that a roll having a convex body is used.
JP28252585A 1985-12-16 1985-12-16 Production of metallic powder Pending JPS62139802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28252585A JPS62139802A (en) 1985-12-16 1985-12-16 Production of metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28252585A JPS62139802A (en) 1985-12-16 1985-12-16 Production of metallic powder

Publications (1)

Publication Number Publication Date
JPS62139802A true JPS62139802A (en) 1987-06-23

Family

ID=17653587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28252585A Pending JPS62139802A (en) 1985-12-16 1985-12-16 Production of metallic powder

Country Status (1)

Country Link
JP (1) JPS62139802A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153063A (en) * 1988-10-05 1990-06-12 Uk Atomic Energy Authority Making of nitriding-alloy
CN104588675A (en) * 2015-02-16 2015-05-06 西安赛隆金属材料有限责任公司 Device and method for preparing spherical rare metal powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153063A (en) * 1988-10-05 1990-06-12 Uk Atomic Energy Authority Making of nitriding-alloy
CN104588675A (en) * 2015-02-16 2015-05-06 西安赛隆金属材料有限责任公司 Device and method for preparing spherical rare metal powder

Similar Documents

Publication Publication Date Title
JP5837731B2 (en) Apparatus and method for producing clean and rapidly solidified alloys
JP6463746B2 (en) Additional manufacturing method for parts by melting or sintering powder particles using high energy beam and powder suitable for target method / material combination
US4474604A (en) Method of producing high-grade metal or alloy powder
US4215084A (en) Method and apparatus for producing flake particles
KR101512772B1 (en) Method and atomizer apparatus for manufacturing metal powder
JPH0565562B2 (en)
JPS60211005A (en) Apparatus and method for spraying unstable molten liquid stream
US4154284A (en) Method for producing flake
CA3070371A1 (en) Method for cost-effective production of ultrafine spherical powders at large scale using thruster-assisted plasma atomization
CN105252009A (en) Manufacturing method for minuteness spherical titanium powder
EP0931611A2 (en) Manufacture of large diameter spray formed components
JP2014227591A (en) Apparatus and method for producing metal fine powder
US5124091A (en) Process for producing fine powders by hot substrate microatomization
RU2468891C1 (en) Method of making heat-resistant alloy pellets
EP3504020B1 (en) Low melting point metal or alloy powders atomization manufacturing processes
KR20160048262A (en) Method for producing a metal powder by using a rotating disk and gas atomization
US4242069A (en) Apparatus for producing flake
JPS62139802A (en) Production of metallic powder
JPH0754019A (en) Production of powder by multistage fissure and quenching
US2271264A (en) Process for the conversion of metals and metal alloys in finely divided form for themanufacture of dental amalgams
US5302182A (en) Method of preparing particles with a controlled narrow distribution
JPS60211003A (en) Method and apparatus for spraying molten liquid from nozzlesof adjacent arrangement system and product
JPS60228603A (en) Production of metallic powder
JPH0649512A (en) Device for producing gas-atomized metal powder
CN117753979B (en) Device for preparing metal powder with fine particle size by using coarse powder and application method thereof