JPS62139520A - Photoscanning device - Google Patents

Photoscanning device

Info

Publication number
JPS62139520A
JPS62139520A JP28024685A JP28024685A JPS62139520A JP S62139520 A JPS62139520 A JP S62139520A JP 28024685 A JP28024685 A JP 28024685A JP 28024685 A JP28024685 A JP 28024685A JP S62139520 A JPS62139520 A JP S62139520A
Authority
JP
Japan
Prior art keywords
lens
light beam
plane
scanning
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28024685A
Other languages
Japanese (ja)
Other versions
JPH0760221B2 (en
Inventor
Takashi Suzuki
隆史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP60280246A priority Critical patent/JPH0760221B2/en
Publication of JPS62139520A publication Critical patent/JPS62139520A/en
Publication of JPH0760221B2 publication Critical patent/JPH0760221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a small-sized, high performance, and low-cost scanning device by using a single lens which has such distortion characteristics that luminous flux deflected by rotation characteristics of a deflector move on a scanned plane at an equal speed and also have aspherical surfaces as both surfaces. CONSTITUTION:The luminous flux emitted by a light source is reflected by a mirror surface SM at an angle theta of deflection corresponding to the rotation of a polygon mirror 5. A scanning lens 1 is so set as to form the image of the luminous flux on the scanned plane at a point T1 whose coordinate value Y is proportional to the angle theta of deflection. Then, the lens 1 has such distortion characteristics that the luminous flux deflected by the rotation characteristics of the polygon mirror 5 moves on the scanned plane at the equal speed and is the single lens whose surfaces are both made aspherical so that the curvature of image of the luminous flux at an optional position on the scanned plane is zero or almost zero.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザービームプリンタ等に用いられる光走査
装置に関する。さらに詳しくは走査レンズ系に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical scanning device used in a laser beam printer or the like. More specifically, it relates to a scanning lens system.

〔発明の技術的背景〕[Technical background of the invention]

レーザービーム等を高速に偏向走査して画像情報を記録
するレーザービームプリンタは、高速、高解像度、低騒
音という優れた特徴を有しており、小型化低価格化が進
むにつれ急速にその需要を増してきている。そこで、そ
の重要な構成要素である光書き込みヘッドとして、光走
査装置に対しても小型化低価格化の要求は大きい。光走
査装置は大きくわけて光源と偏向器と走査レンズ系とか
ら成るが、中でも走査レンズ系の単純化は小型化低価格
化に有効である。
Laser beam printers, which record image information by deflecting and scanning laser beams at high speed, have excellent features such as high speed, high resolution, and low noise, and as they become smaller and cheaper, demand for them is rapidly increasing. It is increasing. Therefore, as an optical writing head, which is an important component of the optical scanning device, there is a strong demand for smaller size and lower cost. An optical scanning device is mainly composed of a light source, a deflector, and a scanning lens system, and simplifying the scanning lens system is effective in reducing the size and cost.

走査レンズ系は偏向器の回動特性にあわせて走査面上で
光スポットが等速で移動するような歪み、例えば偏向器
が回転多面Qであって光ビームが等角速度偏向されてい
る時は偏向角θと像高Yが比例するような歪みを有し、
かつ走査平面上のいたる所で光スポットを所望の径に均
一に結像する機能を有さなければならない。さらに回転
多面鏡偏向器の場合には多面鏡の各面の傾きのばらつき
(面倒れ誤差)を補償するための面倒れ補正機能も必要
となる。これらの機能を兼ね備えた解像力の高い高性能
な走査用レンズは従来必然的に大型・複雑で高価なもの
にならざるを得なかった。
The scanning lens system is distorted so that the light spot moves at a constant speed on the scanning surface according to the rotational characteristics of the deflector. For example, when the deflector is a rotating polygon Q and the light beam is deflected at a constant angular velocity. It has a distortion such that the deflection angle θ and the image height Y are proportional,
It must also have the ability to uniformly image a light spot to a desired diameter everywhere on the scanning plane. Furthermore, in the case of a rotating polygon mirror deflector, a surface tilt correction function is also required to compensate for variations in the tilt of each surface of the polygon mirror (surface tilt error). Conventionally, high-performance scanning lenses with high resolution that combine these functions have inevitably been large, complicated, and expensive.

〔従来の技術〕[Conventional technology]

そこで特開昭54−98627、特開昭55−7727
、特開昭58−5706等に開示されているように走査
用レンズの単玉化が試みられている。
Therefore, JP-A-54-98627 and JP-A-55-7727
, Japanese Unexamined Patent Publication No. 58-5706, attempts have been made to make the scanning lens into a single lens.

ところが、特開昭54−98627 では正弦振動特性
を有する偏向器に対してはその回動特性を利用して形状
等のパラメータの種々の値について幅広く良好に収差補
正が可能であるが、高速性等の点から現在最も広く使用
されている回転多面鏡偏向器の等角速度回動特性に対し
てはそれに対応するために非球面化しているものの特殊
な場合としてきわめて限られた条件でしか使用できず、
光学系の寸法、光源、必要とするドツト径等の種々の要
求に柔軟に対応することができない。
However, in Japanese Patent Application Laid-Open No. 54-98627, it is possible to effectively correct aberrations for various values of parameters such as shape by using the rotational characteristics of a deflector having sinusoidal vibration characteristics, but it is difficult to perform high-speed correction. For these reasons, the rotating polygonal mirror deflector, which is currently most widely used, has an aspherical surface to accommodate the constant angular velocity rotation characteristics, but it can only be used under extremely limited conditions as a special case. figure,
It is not possible to flexibly respond to various requirements such as the dimensions of the optical system, the light source, and the required dot diameter.

また、特開昭55−7727では平凸レンズでfθレン
ズを構成しているが、像面湾曲等の点で良好な結像性能
を有しているとはいい難い。
Further, in Japanese Patent Application Laid-Open No. 55-7727, an fθ lens is constructed with a plano-convex lens, but it cannot be said to have good imaging performance in terms of field curvature and the like.

また、特開昭58−5706では正のパワーを有するメ
ニスカスレンズでfθレンズを構成しているが、球欠像
面湾曲の点で問題があり、これを解消するために面倒れ
補正光学系を兼ねる円筒レンズを付加しなくてはならな
い。さらに、上記3例はすべて面倒れ補正機能を付与す
るためには新たにレンズを付加しなければならず、結局
単玉レンズでなくなってしまう。また光軸長を長くとっ
て偏向角を狭めることによって収差を評容範囲内に収め
ることは可能であるが、光学系全体が大型化するため好
葦しくない。
In addition, in JP-A-58-5706, the fθ lens is constructed with a meniscus lens having positive power, but there is a problem in terms of spherical field curvature. A cylindrical lens that also serves as a lens must be added. Furthermore, in all of the above three examples, a new lens must be added in order to provide a surface tilt correction function, and in the end, it is no longer a single lens. Furthermore, it is possible to keep the aberrations within the evaluation range by increasing the optical axis length and narrowing the deflection angle, but this is not desirable because the entire optical system becomes larger.

ところで、小型化低価格化を考えるうえでレンズの材質
も重要な問題である。従来走査用レンズの材質にはガラ
スが用いられているが回折限界の性能を要求される光学
系であって要求精度が高いため、研摩等の製造コストが
高くつく。そこでポリメチルメタイリレート(PMMA
 )ポリカーボネートポリスチレン等のプラスチックを
レンズ媒質に用いれば、射出成形による大量生産が可能
となるため極めて安価に製造できる。ところが光学プラ
スチック材料は種類が少なくしかもガラスに比べ高屈折
率のものがない。従ってレンズ枚数の削減や光学系の小
型化がガラスに比べより困難である。
Incidentally, the material of the lens is also an important issue when considering miniaturization and cost reduction. Conventionally, glass has been used as a material for scanning lenses, but since they are optical systems that require diffraction-limited performance and require high precision, manufacturing costs such as polishing are high. Therefore, polymethylmethylate (PMMA)
) If a plastic such as polycarbonate polystyrene is used as the lens medium, mass production by injection molding becomes possible, and the lens can be manufactured at an extremely low cost. However, there are only a few types of optical plastic materials, and none have a higher refractive index than glass. Therefore, it is more difficult to reduce the number of lenses and downsize the optical system than with glass.

これらの点を総合して、材質の屈折率によらず単玉でし
かも光軸長が短くても収差を良好に補正できるような、
自由度の大きなレンズ形状が望まれることがわかる。
Combining these points, we have created a lens that can effectively correct aberrations even with a single lens and short optical axis length, regardless of the refractive index of the material.
It can be seen that a lens shape with a large degree of freedom is desired.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

本発明は上述のような問題点に鑑みてなされたもので、
その目的は、小型で低価格、しかも高性能な光走査装置
とくに走査用レンズを提供することである。
The present invention was made in view of the above-mentioned problems.
The purpose is to provide a compact, low-cost, and high-performance optical scanning device, especially a scanning lens.

上記の目的のため、本発明の光走査装置は、細い光束を
出射する光源と、該光束を所定の方向に偏向走査する偏
向器と、該偏向器で偏向された光束を被走査平面上に結
像させる走査用レンズとを備え、前記走査用レンズは、
前記偏向器の固有の回動特性で偏向された光束が被走査
平面上では等速で移動する歪み特性を有し、かつ被走査
平面上の任意の位置における光束の像面湾曲収差が零ま
たはほとんど零となる如く両面が非球面で構成された単
玉レンズであることを特徴とする。また望ましくは前記
光源から出射された細い光束は平行光束であることを特
徴とする。
For the above purpose, the optical scanning device of the present invention includes a light source that emits a narrow light beam, a deflector that deflects and scans the light beam in a predetermined direction, and a light beam deflected by the deflector that directs the light beam onto a scanned plane. and a scanning lens for forming an image, the scanning lens comprising:
The light beam deflected by the inherent rotational characteristic of the deflector has a distortion characteristic that moves at a constant speed on the scanned plane, and the field curvature aberration of the light beam at any position on the scanned plane is zero or It is characterized by being a single lens with aspherical surfaces on both sides so that the angle is almost zero. Preferably, the narrow light beam emitted from the light source is a parallel light beam.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光走査装置は、細い光束を出射する光源と、該
光束を所定の方向に偏向走査する偏向器と、該偏向器で
偏向された光束を被走査平面上に結像させる走査用レン
ズとを備え、前記走査用レンズは、前記偏向器の固有の
回動特性で偏向された光束が被走査平面上では等速で移
動する歪み特性を有し、かつ被走査平面上の任意の位置
における光束の像面湾曲収差が零またはほとんど零とな
る如く両面が非球面で構成された単玉レンズであること
全特徴とする。
The optical scanning device of the present invention includes a light source that emits a narrow light beam, a deflector that deflects and scans the light beam in a predetermined direction, and a scanning lens that forms an image of the light beam deflected by the deflector on a scanned plane. The scanning lens has a distortion characteristic in which the light beam deflected by the inherent rotational characteristic of the deflector moves at a constant speed on the scanned plane, and The lens is characterized in that it is a single lens with aspherical surfaces on both surfaces so that the field curvature aberration of the light beam in the lens is zero or almost zero.

〔実施例〕〔Example〕

本発明の原理を第1図、第2図、第5図、第4図を用い
て以下に説明する。
The principle of the present invention will be explained below using FIGS. 1, 2, 5, and 4.

走査用レンズは、前述したように偏向器によって等角速
度あるいは正弦振動等の回動特性で偏向されている光束
を被走査平面上に像面湾曲なく結像しまた被走査平面上
で像点が等速で走査されるような歪みを与える機能を有
する。例えば偏向器が回転多面鐘であれば、第1図に示
されるように光源から出射した光束は両面8M によっ
て多面鏡5の回転に応じた偏向角θで反射されている。
As mentioned above, the scanning lens forms an image of the light beam, which is deflected by the deflector at a constant angular velocity or rotational characteristic such as sinusoidal vibration, on the scanned plane without curvature of field, and also forms an image point on the scanned plane. It has the function of applying distortion so that it is scanned at a constant speed. For example, if the deflector is a rotating polygonal bell, the light beam emitted from the light source is reflected by both surfaces 8M at a deflection angle θ corresponding to the rotation of the polygonal mirror 5, as shown in FIG.

走査用レンズ1はこの光束を被走査平面上で座標値Yが
偏向角θと比例した点TIに結像するよう設定される。
The scanning lens 1 is set so as to focus this light beam on the scanned plane at a point TI whose coordinate value Y is proportional to the deflection angle θ.

本発明の走査用レンズは以下に述べる原理に基づいて第
1図に示す81s 82の両面において非球面の特長が
高度に利用された、収差が少なくしかも広角偏向が可能
な単玉レンズである。
The scanning lens of the present invention is a single-lens lens that has few aberrations and is capable of wide-angle deflection, in which the features of aspherical surfaces are highly utilized on both sides of the 81s 82 shown in FIG. 1 based on the principle described below.

本発明に係るレンズ面形状の第1の構成原理は、走査さ
れる光束が非常に細いと仮定して、光束を主光線の位置
と方向と結像距離のパラメータのみで表し、レンズ面上
のある一点はそこを通る主光線のみについて方向あるい
は結像距離を変化させるべく傾きと曲率が定められてい
る、ということである。これを収差補正の考え方でいえ
ば、球面収差とコマ収差を無視して像面湾曲収差と歪曲
収差を高次の項まで含めて完全に補正するということを
意味する。上述の仮定はレーザービームプリンタ等の走
査光学系では一般に十分成立する。
The first principle of construction of the lens surface shape according to the present invention is to assume that the scanned light beam is very thin, express the light beam only by the parameters of the position and direction of the principal ray, and the imaging distance, and One point is that the inclination and curvature are determined to change the direction or imaging distance only for the chief ray that passes through it. In terms of aberration correction, this means ignoring spherical aberration and coma and completely correcting field curvature and distortion, including higher-order terms. The above assumption generally holds true in scanning optical systems such as laser beam printers.

さらに走査レンズ系は、任意の偏光角で偏向された光束
の主光線は必ず同一平面上にある(これを子午面と呼ぶ
)から、光束が非常に細いこととあわせて、面上で傾き
と曲率が指定される点は、子午面とレンズ面が交わった
曲線上だけでよいことがわかる。従って本発明の第2の
構成原理は子午面上に曲線を創成して、その曲線上の任
意の点において子午面内の傾きと曲率とが前述の走査用
レンズの目的を達しており、さらに曲線上の任意の点に
おいて主光線を含み子午面に垂直な断面(球欠断面と呼
ぶ)の曲率が与えられれば面が形成できたとすることで
ある。
Furthermore, in a scanning lens system, the principal ray of a light beam deflected at a given polarization angle is always on the same plane (this is called a meridional plane), so in addition to the fact that the light beam is very narrow, it is possible to It can be seen that the curvature can be specified only on the curve where the meridian plane intersects the lens surface. Therefore, the second principle of construction of the present invention is to create a curve on the meridian plane, and at any point on the curve, the inclination and curvature in the meridian plane achieve the purpose of the scanning lens described above, and It is assumed that a surface can be formed if the curvature of a cross section containing the chief ray and perpendicular to the meridian plane (referred to as a truncated cross section) is given at any point on the curve.

ただし、子午方向の傾きと曲率はそれを連続的に接続し
て子午面内のレンズ面位置を形成するためそれぞれ独立
には定められないが、球欠断面曲率はそれらとは独立に
扱える。従って、子午面内のレンズ面形状のみについて
上記第1第2の構成原理を適用した光学系も当然本発明
の範囲に含まれることは明らかである。
However, since the inclination and curvature in the meridian direction are continuously connected to form the lens surface position in the meridian plane, they cannot be determined independently from each other, but the curvature of the spherical section can be treated independently from them. Therefore, it is clear that an optical system to which the first and second configuration principles described above are applied only to the lens surface shape in the meridian plane is also included within the scope of the present invention.

以下、第2図の斜視図を用いて本発明に係るレンズの構
成原理を具体的に説明する。
Hereinafter, the principle of construction of the lens according to the present invention will be specifically explained using the perspective view of FIG.

第1図において光束(Li−1)は面S1 によって光
束(L2) に変換される。光束(Li)のTiから測
った結像距離全子午光束でgmi、球欠光束でgsi 
 とする。一般にgmi  とgsi  は等しくない
。前述したように光束は非常に細いので光束(Li) 
 を扱うとき、主光#Lci  と子午、球欠それぞれ
の結像距離gmi、 gsiだけを考え八ばよい。さて
、面S1を通過後の主光1Lxiの方向は面SiのTr
、ivに・おける法線方向e1で制御することができる
。また面si を通過後の結像距離gni。
In FIG. 1, a light beam (Li-1) is converted into a light beam (L2) by a surface S1. Imaging distance measured from Ti of luminous flux (Li) gmi for total meridional luminous flux, gsi for spherical luminous flux
shall be. Generally gmi and gsi are not equal. As mentioned above, the luminous flux is very thin, so the luminous flux (Li)
When dealing with , it is only necessary to consider the principal light #Lci and the imaging distances gmi and gsi of the meridian and the meridian, respectively. Now, the direction of the principal light 1Lxi after passing through the surface S1 is Tr of the surface Si.
, iv can be controlled by the normal direction e1 at . Also, the imaging distance gni after passing through the plane si.

gsiは面siのTiにおける子午断面曲率半径Rmi
と球欠断面曲率半径Rsiで制御することができる。従
っである角度で偏向された光束1本を走査平面上で等速
走査が実現できる位置に結像させる機能をレンズ面上の
1点の位置とその微分量(法線方向と曲率)で持たせる
ことができたわけで、それを連綿させて任意の角度で偏
向された光束に対応したレンズ面上の各点に上記の機能
を持たせれば目的とする走査用レンズ形状が定するわけ
である。これが前述の第1の構成原理である。
gsi is the radius of curvature Rmi of the meridian section in Ti of surface si
It can be controlled by the radius of curvature Rsi of the spherical section. Therefore, it has the function of focusing a single beam of light deflected at a certain angle to a position on the scanning plane where uniform speed scanning can be realized, depending on the position of a single point on the lens surface and its differential amount (normal direction and curvature). Therefore, if we connect them in a row and give the above function to each point on the lens surface that corresponds to the light beam deflected at an arbitrary angle, the desired scanning lens shape can be determined. . This is the first configuration principle mentioned above.

さて、前述したように主光線Lci  等は子午面上を
離れないため、面siの法線方向ベクトルtiも子午面
内にあシ面の傾きを表す自由度として第2図に示す光軸
と法線ベクトルのなす角αiの1自由度でよい。また面
Siの子午断面曲率は面の傾きαiの微分量であり、面
の瓢きαiは面siの子午面上の位置の微分量であるか
ら、結局子午面方向の面の知きと曲率を指定することは
微分方程式を解いて子午面上の2次元曲線を創成するこ
とと同じ意味を持つことがわかる。また、球欠断面曲率
は上記曲線に影響を与えず決定されるものであるから、
曲線が創成された後その曲線上の各点についてそれぞれ
決定される。これが第2の構成原理である。
Now, as mentioned above, since the chief ray Lci etc. do not leave the meridian plane, the normal direction vector ti of the surface si also corresponds to the optical axis shown in FIG. One degree of freedom is sufficient, which is the angle αi formed by the normal vector. Also, the curvature of the meridional section of the surface Si is the differential amount of the inclination αi of the surface, and the curve αi of the surface is the differential amount of the position of the surface si on the meridian plane. It can be seen that specifying has the same meaning as solving a differential equation and creating a two-dimensional curve on the meridian plane. In addition, since the spherical cross-sectional curvature is determined without affecting the above curve,
After the curve is created, each point on the curve is determined individually. This is the second construction principle.

以上述べた構成原理より走査用レンズが実現できるわけ
であるが、それが両非球面の単レンズで実現可能である
ことを第3図の原理図を用いて説明する。第6図におい
て紙面は子午面を表している。
A scanning lens can be realized based on the above-mentioned construction principle, and the fact that it can be realized with a single lens having both aspherical surfaces will be explained using the principle diagram in FIG. 3. In FIG. 6, the plane of the paper represents the meridian plane.

まず子午面内について考える。いま拘束したいのは主光
線Lcと非走査平面S!の交点1.の座標値Y!とTx
が結像点であることの2自由度である。
First, let's consider the meridian plane. What we want to constrain now is the principal ray Lc and the non-scanning plane S! Intersection 1. The coordinate value Y! and Tx
are the two degrees of freedom of being the imaging point.

例えば任意の角度θで偏向されている光束の走査ti−
位tYXを拘束するために面の傾きα1を面上の全位置
で指定し、それに従って滑らかに面を接続した形状は境
界条件(例えば光軸との交点Plの座標値Xl  とそ
こでの傾きが0であること)を指定すれば、Slのよう
に1通シに定″1シ、その面での曲率半径Rmlを指定
することはできず、光束は被走査平面上にない点Txで
結像してしまう。逆に、結像点を拘束するために面の曲
半半& Rm tを面上の全位置で指定すれば同様に面
の傾きαlを指定することはできない。このように光線
の持つパラメータのうちある1つの自由度を偏向角θの
任意の値で拘束するためには1つの面が必要であるから
、今、上述の2自由度を拘束するために、最低2面のレ
ンズ面が必要となる。
For example, scanning ti- of a light beam deflected at an arbitrary angle θ
In order to constrain the position tYX, the inclination α1 of the surface is specified at all positions on the surface, and the shape in which the surfaces are smoothly connected according to the boundary condition (for example, the coordinate value Xl of the intersection point Pl with the optical axis and the inclination there) 0), it is not possible to specify the radius of curvature Rml on that surface with a constant value of 1 for each line like Sl, and the light beam will be converged at a point Tx that is not on the scanned plane. On the other hand, if you specify the curved half & Rm t of the surface at all positions on the surface in order to constrain the imaging point, you cannot specify the slope αl of the surface in the same way.In this way, the ray One surface is required to constrain one degree of freedom among the parameters possessed by an arbitrary value of the deflection angle θ. Therefore, in order to constrain the two degrees of freedom mentioned above, at least two surfaces are required. A lens surface is required.

つぎに球欠光束について考えると、拘束したいのは球欠
方向結像距離gstの一自由度であって、これは子牛面
内で拘束した状態すなわち曲線の形状を保存したまま、
子午面上の曲線にそれと垂直な方向に曲率をつけること
で制御できるため、前述の2面に新たに面を付は加える
必要はない。
Next, considering the spherical beam, what we want to constrain is one degree of freedom of the spherical direction imaging distance gst, which is constrained within the calf plane, that is, while preserving the shape of the curve,
Since it can be controlled by adding curvature to the curve on the meridian plane in a direction perpendicular to it, there is no need to add a new surface to the two surfaces mentioned above.

従って必要なレンズ面は2面で、単玉レンズでよいこと
がわかる。また2面ともレンズ面の全位置で傾き、曲率
が指定された面であるから単玉レンズは両非球面でなけ
ればならない。
Therefore, it can be seen that only two lens surfaces are required, and a single lens is sufficient. Furthermore, since both surfaces are inclined at all positions of the lens surface and have specified curvature, a single lens must have both aspherical surfaces.

さて、ここで上述の構成の単玉非球面レンズの面の対称
性について考えてみる。子午面内に創成された2曲線を
光軸等例らかの軸を中心にして回転させると球欠方向の
曲率半径の自由度が失われてしまう。従って回転対称性
を持たせると球欠光束の結像を制御できす球欠像面湾曲
収差が生じる。
Now, let's consider the symmetry of the surface of the single aspherical lens configured as described above. If two curves created in the meridian plane are rotated about an axis such as the optical axis, the degree of freedom of the radius of curvature in the direction of the sphere will be lost. Therefore, if rotational symmetry is provided, the imaging of the spherical beam cannot be controlled and spherical field curvature aberration occurs.

面対称性については、光束が常に子午面上にあるので明
らかに子午面について対称であり、また光軸を通る光束
を偏向角Oとして偏向角がθの光束と一〇の光束とは同
じ条件であるから光軸を含み子午面と垂直な平面につい
ても対称である。このように本発明の走査用レンズは対
称面が2面ある以外は対称性がないことによって球欠像
面湾曲収差、子午作面湾曲収差、歪曲特性収差の完全な
補正が可能となっている。
Regarding plane symmetry, since the light flux is always on the meridian plane, it is obviously symmetrical about the meridian plane, and the light flux passing through the optical axis has a deflection angle of O, and the light flux with a deflection angle of θ is the same as the light flux with a deflection angle of 10. Therefore, it is also symmetrical about the plane that includes the optical axis and is perpendicular to the meridian plane. As described above, since the scanning lens of the present invention has no symmetry except for the presence of two planes of symmetry, it is possible to completely correct spherical field curvature aberration, meridional plane curvature aberration, and distortion characteristic aberration. .

以下本発明の走査用単玉側非球面レンズの形状を実現す
る具体的方法を第4図の原理図を用いて説明する。まず
、子午面上の2曲線の創成方法を説明する。第4図に示
すようにレンズ面5h82はそれぞれ光軸との交点P1
.P2から曲線に沿った距離81,112とその点での
光軸に垂直な方向からの傾き角α1.α2との関係で規
定されている。
A specific method for realizing the shape of the single lens side aspherical lens for scanning according to the present invention will be explained below using the principle diagram of FIG. 4. First, a method for creating two curves on the meridian plane will be explained. As shown in FIG. 4, each lens surface 5h82 intersects with the optical axis P1.
.. Distance 81, 112 along the curve from P2 and inclination angle α1 from the direction perpendicular to the optical axis at that point. It is defined in relation to α2.

これを直交座標で表現し直すと、面St、82について
、それぞれP 1. P 2を原点として光軸をX軸、
レンズの高さ方向をy軸とすると、点Pl、P2の座標
値(X 1 * 71 ) p (x2 r ’l 2
 )はとなる。
Reexpressing this in orthogonal coordinates, for the planes St and 82, P1. With P2 as the origin, the optical axis is the X axis,
If the height direction of the lens is the y-axis, the coordinate values of points Pl and P2 (X 1 * 71) p (x2 r 'l 2
) becomes.

いま、第4図に示すように、光軸上の出射点FMから偏
向角θ、子午結像距離gmoで出射した光束Li(i−
0,1,2)が面St、82とそれぞれTl。
Now, as shown in FIG. 4, a luminous flux Li(i-
0, 1, 2) are the planes St, 82 and Tl, respectively.

T2で、像面S!とTIで交わるとし、以下のように光
束の出射位島、出射方向を表わす。すなわちとする。さ
らに面Sl、S2のT!、T2での子午断面曲率半径を
それぞれRms 、 Rm2とし、また、光束Ll、L
2の子午結像距離をgm t + gm zとする。
At T2, image plane S! and intersect at TI, and the emission position island and emission direction of the luminous flux are expressed as follows. That is to say. Furthermore, T of surface Sl, S2! , the radius of curvature of the meridional section at T2 is Rms and Rm2, respectively, and the luminous fluxes Ll and L
Let the meridian imaging distance of 2 be gm t + gm z.

以上の記述方法に従って、前述したレンズ形状の構成原
理を定式化することができる。定式化を以下に示す6項
目に分けて説明する。
According to the above description method, the principle of construction of the lens shape described above can be formulated. The formulation will be explained by dividing it into the following six items.

■ 面St、82と光束の交点において面の傾きKよっ
て光束の方向を制御する。
(2) The direction of the light beam is controlled by the inclination K of the surface at the intersection of the surface St, 82 and the light beam.

■ 面81.82と光束の交点において面の曲率によっ
て光束の結像距離を制御する。
(2) The imaging distance of the light beam is controlled by the curvature of the surface at the intersection of the surfaces 81 and 82 with the light beam.

■ 面と光束の交点の座標が等しい。■ The coordinates of the intersection of the surface and the luminous flux are equal.

■ 面上の各点は滑らかに連続している。■ Each point on the surface is smoothly continuous.

■ 光束は走査平面上に結像する。■ The light beam forms an image on the scanning plane.

■ 走査平面上で結像点は等速走査される。■ The imaging point is scanned at a constant speed on the scanning plane.

■の屈折面の傾さと光束の方向の関係は、よく知られた
屈折の法則をSt 、82面とLl、L2の交点につい
て適用することによって 5in(α1−〇)=nsin(αl−θt)  :S
s面 (3)n s in(α2−θt)=sin(α
2−02)  :S2面 (4)と表わせる。ただしn
はレンズ媒質の屈折率である。
The relationship between the inclination of the refractive surface and the direction of the luminous flux in (2) can be determined by applying the well-known law of refraction to the intersections of the St, 82 planes and Ll, L2. :S
s-plane (3) n s in(α2-θt)=sin(α
2-02): S2 side It can be expressed as (4). However, n
is the refractive index of the lens medium.

■の面の曲率と光束の結像距離の関係は、細い光束があ
る曲率を持った面に斜め入射した時の子午結像距離の関
係式k S を面、82面に適用してgm”   3°
o−go    Rms    8、面が得られる。
The relationship between the curvature of the surface and the imaging distance of the light beam in (2) can be determined by applying the relational expression k S of the meridional imaging distance when a thin light beam is obliquely incident on a surface with a certain curvature to the surface 82 gm" 3°
o-go Rms 8, surface obtained.

■については、前出の(1)式で計算される面位置の直
交座標値と前出の(2)式をもとに計算される光線の屈
折点の直交座標値が等しいとおいて、の関係がある。た
だしX t l’j面S1  と元軸の交点のX座標値
% X2は面S2  と光軸の交点のX座襟値である。
Regarding (2), assuming that the orthogonal coordinate value of the surface position calculated using the above equation (1) and the orthogonal coordinate value of the refraction point of the ray calculated based on the above equation (2) are equal, then There is a relationship. However, the X coordinate value %X2 of the intersection of the X t l'j plane S1 and the original axis is the X coordinate value of the intersection of the plane S2 and the optical axis.

■について、面が連続している条件は、(7)〜(10
)式中の積分が可能であるということである。また面が
滑らかである条件は、面の傾きαl、α2が微分可能で
あるということであって dα1−ニーo11 丁τ−帥l dα21 d82  Rxn2(13 なる関係がある。
Regarding ■, the conditions that the surfaces are continuous are (7) to (10
) is possible. Further, the condition for the surface to be smooth is that the inclinations αl and α2 of the surface are differentiable, and the following relationship exists: dα1−knee o11 dingτ−帥l dα21 d82 Rxn2(13).

■の走査平面上で像点が等速走査される条件は像面と光
束の交点(X■、Xt)が Xt=12cosθz+1te08θt+ji’oco
sθ    u3Yt=lzsinθz+ 1.5in
ol+16sinθ    Q4の関係があって、かつ
走査勲位fil Y Iは、偏向器の回動特性 θ−F(τ)              αSを用い
て αG Y r =K @F−”(θ) となる。ただしFlはFの逆関数、τは時間のパラメー
タ、Kは適当な比例定数である。例えば今、回動特性が
等角速度偏向であった場合、F’ (τ)=ωτ  ω
:角速度     面であるから =fθ  f=−匹一二定数      αlω と書ける。また03式のX は走査面のX座標で光軸長
を表している。
The condition for the image point to be scanned at a constant speed on the scanning plane (①) is that the intersection of the image plane and the light beam (X■, Xt) is
sθ u3Yt=lzsinθz+ 1.5in
There is a relationship of ol + 16 sin θ Q4, and the scanning rank fil Y I becomes αG Y r = K @F-” (θ) using the rotation characteristic θ-F(τ) αS of the deflector. However, Fl is an inverse function of F, τ is a time parameter, and K is an appropriate proportionality constant.For example, if the rotation characteristic is constant angular velocity deflection, F' (τ) = ωτ ω
: Angular velocity Since it is a surface, it can be written as = fθ f = -12 constant αlω. Also, X in equation 03 represents the optical axis length in the X coordinate of the scanning plane.

■の走査平面上で結像する条件は、(6)式中の子午光
束結像距離gm2がαJ%a4式で表われる12に等し
ければ満足される。即ち gmz=12                   
 19以上のようにして本発明に係るレンズ形状の構成
原理が(31(4) (5) (61(7) (8)(
91(it) (itl (+213 (14(IS 
Q9 ノ14式で定式化されたわけだが、以下これらを
計算することによって実際にレンズ面形状が何らかの形
で直接表現できることを述べる。式中に現れた変数のう
ち偏向角θ、初期子午結像距離gmoは出射時に与えら
れており既知である。また光軸長Xry面S1.S2の
光軸との交点位置X t 、 X z 、等速走査の定
数には偏向角θによらない定数値である。
The condition (2) of forming an image on the scanning plane is satisfied if the meridional beam imaging distance gm2 in equation (6) is equal to 12 expressed by the equation αJ%a4. That is, gmz=12
19 As described above, the construction principle of the lens shape according to the present invention is (31(4) (5) (61(7) (8)(
91 (it) (itl (+213 (14 (IS)
Although it has been formulated using Equation 14 of Q9, it will be explained below that by calculating these, the shape of the lens surface can actually be directly expressed in some form. Among the variables appearing in the equation, the deflection angle θ and the initial meridional imaging distance gmo are given at the time of emission and are known. Also, the optical axis length Xry plane S1. The intersection positions X t and X z with the optical axis of S2 and constant speed scanning constants are constant values that are independent of the deflection angle θ.

従って未知数は残ったθ!、θ2.αl、α2g”11
S2 + gml * gmz +l O+ll IH
A 2 y’ml tRm2 gYlの14個であって
、前出の14式はすべて独立であるから、連立方程式は
解けて上記14変数は例えば偏向角θの関数として表現
できる。従って例えば而S1を表現する時は傾きC1と
光軸から面に沿った距離sl の関伊を偏向角θrパラ
メータとして対応させればよい。
Therefore, the unknown remains θ! , θ2. αl, α2g”11
S2 + gml * gmz +l O+ll IH
A 2 y'ml tRm2 gYl, and all of the above 14 equations are independent, so the simultaneous equations can be solved and the above 14 variables can be expressed as a function of the deflection angle θ, for example. Therefore, for example, when expressing S1, it is sufficient to make the slope C1 correspond to the distance sl along the plane from the optical axis as the deflection angle θr parameter.

ところで、上述の14元連立方程式は非線形でかつ微分
項と積分項を含んでいるため、直接解くことはできず数
値解法音用いなければならない。
By the way, since the above-mentioned 14-element simultaneous equations are nonlinear and include differential terms and integral terms, they cannot be solved directly and must be solved numerically.

数値解法としては棹々考えられ本発明はそれを限定する
ものではないが、ここでは一実施例として、微分ベクト
ル場における数値積分の方法で実際にこの方程式が数値
計算で解はレンズ形状が決定できることを示しておく。
As a numerical solution method, the present invention is not limited to this, but as an example, this equation is actually numerically calculated by the method of numerical integration in a differential vector field, and the solution is determined by the lens shape. Show what you can do.

微分ベクトル場で解くとは、方程式をすべて微分形式で
表して現在の変数の値はすべて既知としてそれぞれの変
数の増分(微分変数)を計算して次の変数の値を求める
というものである。前出14式を整理して微分形で弄す
と% (3N41式は(dα1−dθ)cos(α!−
〇)=n(dα、−aθ、)cos(αl−θl)囚n
(dα2−dθ1)cos(C2−θ1 )=(dα2
−dθ2)cos(C2−θ2)   C2シf51 
(61式とull圓式をあわせてncos”(C1−0
1)  cos”(cll−〇)dst +gm、dS
”= gmo 1a (ncos(C1−θ)−Cos(C1−θ月dα12
3cos”(C2−θ2)   Cos2(C2−θ1
)ds□+gmz   ””   gms−11 (cos(αz #z)−n(os(C2−θ1))d
α、     aただしg+y11は@0式を連立させ
て消去する。
Solving using a differential vector field means expressing all equations in differential form, assuming that all current variable values are known, and calculating the increment of each variable (differential variable) to find the value of the next variable. If we rearrange the above equation 14 and play with the differential form, we get % (3N41 equation is (dα1-dθ)cos(α!-
〇)=n(dα,-aθ,) cos(αl-θl) prisoner n
(dα2-dθ1)cos(C2-θ1)=(dα2
-dθ2)cos(C2-θ2) C2shif51
(C1-0
1) cos” (cll-〇) dst +gm, dS
”= gmo 1a (ncos(C1-θ)-Cos(C1-θmonthdα12
3cos”(C2-θ2) Cos2(C2-θ1
)ds□+gmz ”” gms-11 (cos(αz #z)-n(os(C2-θ1))d
α, a However, g+y11 eliminates @0 equation simultaneously.

また(7)〜(10)式は dlocosθ−1o s 1nOdθ=sinα1d
sI(24dlosinθ+1ocosθdθ=cos
αldB、        WdltcosθH−dl
sinθ1dθ++dlocosθ−d、)sinθd
θ=sinα2ds2     C1 dl+sinθ++1.cosθ1dθ1+dgos 
inθ+l(、cosθdθ=cosα2ds2   
  @ +1314式は o=d72cosθ2−12s+nθ2dθ2+dl!
1coslJ+ −d、sinθ1dθ++dloco
sθ−dosinθdO@dY+−d12!l inθ
z+12cosθ2dθ2+dl+sinθl+1、c
aSθ1dθ++d6osinθ+1ocos(jdθ
    (ハ)00式は dY+ =K (F ’(θ))°dθとなる。09式
は単に代入すれば良い。■〜(至)式のうち未知である
微分変数はdθ2.dθ2.dαt、dα2゜ds1y
ds2+dlQ+djffl+d12+dY!であって
、上(J〜CIQ式は(ハ)の式を連立させて1 (i
Mの式にしたものが2次の方程式である旬外はすべて1
次であるがら容易に解けて、既知の微分変数dθによっ
て例えばd fj s=pθl(θl、θ2.αl・C
2HSl r 32 H〕o、ls、112)・dθ 
(31)のように表現できる。これより例えばθlは、
θ a、=  Fo、dθ+θ01(5?)と積分すれば偏
向角θをパラメータとして表現できる。ただしθ1 は
初期値である。実際の計算は初期値をθ!、θ2.α1
.α2.31.82については0゜1o、11.I2に
ついては前出のXt 、X2 、Xr O値を用いて 1o=X 11=X2 −XI            (品)1
2  =Xx−X2 として、数値積分によって計算できる。
Also, equations (7) to (10) are dlocosθ−1os 1nOdθ=sinα1d
sI(24dlosinθ+1ocosθdθ=cos
αldB, WdltcosθH−dl
sinθ1dθ++dlocosθ−d,)sinθd
θ=sinα2ds2 C1 dl+sinθ++1. cosθ1dθ1+dgos
inθ+l(, cosθdθ=cosα2ds2
@ +1314 formula is o=d72cosθ2-12s+nθ2dθ2+dl!
1coslJ+ -d, sinθ1dθ++dloco
sθ−dosinθdO@dY+−d12! l inθ
z+12cosθ2dθ2+dl+sinθl+1,c
aSθ1dθ++d6osinθ+1ocos(jdθ
(c) Equation 00 becomes dY+ = K (F'(θ))°dθ. Equation 09 can be simply substituted. ■The unknown differential variable in the equations is dθ2. dθ2. dαt, dα2゜ds1y
ds2+dlQ+djffl+d12+dY! , the above (J to CIQ equations are 1 (i
All out-of-order equations where the formula for M is a quadratic equation are 1.
Although the following is easily solved, for example, d fj s=pθl(θl, θ2.αl・C
2HSl r 32 H]o, ls, 112)・dθ
It can be expressed as (31). From this, for example, θl is
By integrating θ a,=Fo,dθ+θ01 (5?), the deflection angle θ can be expressed as a parameter. However, θ1 is an initial value. In the actual calculation, the initial value is θ! , θ2. α1
.. For α2.31.82, 0°1o, 11. For I2, using the Xt, X2, and Xr O values mentioned above, 1o=X 11=X2 -XI
2 = Xx-X2, it can be calculated by numerical integration.

さて、以上のようにして本発明のレンズ形状の子午面上
曲線が具体化されるわけだが、具体化下る過程で現れた
定数n Xi lX2 +X+ + gmo  * K
ばそのまま本発明のレンズ形状のとりうる自由度となる
。すなわち、ある適当な定数の組(x”t 、x:。
Now, as described above, the curve on the meridian plane of the lens shape of the present invention is materialized, and the constant n Xi lX2 +X+ + gmo * K that appeared in the process of materialization.
This is the degree of freedom that the lens shape of the present invention can take. That is, some suitable set of constants (x"t, x:.

X t r g mo r K )の1つについて1つ
のレンズ形状が存在するわけであり、轟然本発明はこれ
らすべてのものを含んでいる。
There is one lens shape for each one of X tr g mor K ), and the present invention obviously includes all of these shapes.

なお、子午初期結像距離gooを無限大に設定する。す
なわち走査用レンズに入射する前の子午光束を平行光束
としておけば、ビーム径等が制御し易く取扱い易い光学
系となる。本発明の走査用レンズは上述のように平行光
束に対しても当然適用可能である。
Note that the meridian initial imaging distance goo is set to infinity. In other words, if the meridional light flux before entering the scanning lens is made into a parallel light flux, the beam diameter etc. can be easily controlled, resulting in an optical system that is easy to handle. The scanning lens of the present invention is naturally applicable to parallel light beams as described above.

さて次に、球欠結像距離を制御する球欠断面曲率半径R
3s、RBzの決定方法全貌明する。
Now, next, the radius of curvature R of the spherical section that controls the spherical imaging distance
The entire method for determining 3s and RBz will be explained.

(5)(61式に細い光束が斜め入射した時の子午結像
距離の関係式を示したが、球欠結像距離については、 が成立つ、被走査平面上に球欠方向の結像点がある条件
は gsz−12(36) である。(34)、(35)、(3A)式によって球欠
断面曲率半径Rgl + R82が決定されるわけであ
るが、式中で1ovlLe12+αl、α2.θ、θl
、θ2は前述の方法によって子午面曲線がすでに決定さ
れているため既知でありs gsoは与えられているた
め未知数はgsltg82yR81、R,、の4個であ
る。従って方程式3個に対し冗長自由度があることにな
り、未知数のうち1つは適当に定めてよいことがわかる
(5) (Equation 61 shows the relational expression for the meridional imaging distance when a narrow beam of light is incident obliquely, but for the spherical imaging distance, the following holds true: Image formation in the spherical direction on the scanned plane The condition that there is a point is gsz-12 (36).The radius of curvature Rgl + R82 of the spherical section is determined by equations (34), (35), and (3A), and in the equation, 1ovlLe12+αl, α2 .θ, θl
, θ2 are known because the meridional curve has already been determined by the method described above, and s gso is given, so there are four unknowns: gsltg82yR81, R, . Therefore, there are redundant degrees of freedom for the three equations, and one of the unknowns can be determined appropriately.

例えば面形状の簡単化のため、R31を常に無限大にし
て(34)式の右辺第2項を0にすれば第1面は球欠方
向に曲率を持たない面になる。
For example, in order to simplify the surface shape, if R31 is always set to infinity and the second term on the right side of equation (34) is set to 0, the first surface becomes a surface that has no curvature in the spherical direction.

なお初期球欠結像距離gsoは任意に与えてよいが偏向
器が回転多面鏡の場合、 g80  ””  。
Note that the initial spherical imaging distance gso may be arbitrarily given, but if the deflector is a rotating polygon mirror, g80 ``''.

ととれば鏡面の反射点と走査点とが共役像点となって面
倒れ補正機能を持たせることかでさる。
In this case, the reflection point of the mirror surface and the scanning point become a conjugate image point, which has a tilt correction function.

〔実施例〕〔Example〕

本発明に係るレンズ形状の構成原理に基づいてレンズ面
形状を計算した実施例を第1表から第9表までと第5図
から第12図までに示す。
Examples of calculating lens surface shapes based on the principle of lens shape construction according to the present invention are shown in Tables 1 to 9 and FIGS. 5 to 12.

前述したように本発明のレンズ形状は、レンズ媒質の屈
折率n1初期結像距離gos レンズの第1面、第2面
が光軸と交わる位置x1.x2.光軸長X11走査速度
定数にの6個のパラメータをそれぞれ独立に変化させる
ことができ、1つのパラメータの値の組に対して1つの
レンズ形状が存在する。従って一見して全く異質の形状
と思われるような実施例が極めて多数存在し、それらす
べてを掲げることは不可能であるため、ここには代表的
な実施例を示すにとどめる。
As mentioned above, the lens shape of the present invention has the refractive index of the lens medium, n1, initial imaging distance, gos, the position where the first and second surfaces of the lens intersect with the optical axis, x1. x2. The six parameters of the optical axis length X11 scanning speed constant can be changed independently, and one lens shape exists for one parameter value set. Therefore, there are an extremely large number of embodiments that seem to have completely different shapes at first glance, and since it is impossible to list them all, only representative embodiments will be shown here.

以下に示す実施例に共通する計算条件は、Oレンズ媒質
の屈折率 n = 1.486Q偏向点から被走査平面
までの光軸長 X!  =  2  0  Om譚 ・偏向器は回転多面伊偏向器で等角速度偏向O初期子午
結像距離gmoは無限大。すなわち走査用レンズに入射
する前の光束は平行光束である。
The calculation conditions common to the examples shown below are: refractive index of the O lens medium n = 1.486Q optical axis length from the deflection point to the scanned plane X! = 2 0 The deflector is a rotating polygonal deflector with constant angular velocity deflection O. The initial meridional imaging distance gmo is infinite. That is, the light beam before entering the scanning lens is a parallel light beam.

O球欠断面曲率は第2面にのみ付与しである。The curvature of the O-spherical cutaway cross section is applied only to the second surface.

O初期球欠結像距離gsoはo0従って回転多面鏡の反
射点と走査点は共役像点となり、面倒れ補正機能が付与
されている。
The initial spherical defect forming distance gso is o0. Therefore, the reflection point and the scanning point of the rotating polygon mirror become conjugate image points, and a surface tilt correction function is provided.

である。It is.

なお本発明によるレンズ形状は簡単な数値や数式では表
現されず、例えば数値例として結果が求まる。そこで便
宜上、子午面上の曲線形状については周知の非球面係数
を用いた式 :ただしXは光軸をXMt1%面と光軸の交点を原点に
とったときのX座標価。
Note that the lens shape according to the present invention is not expressed by simple numerical values or formulas, but results are obtained as numerical examples, for example. Therefore, for convenience, a formula using well-known aspheric coefficients is used for the curve shape on the meridian plane: where X is the X coordinate value when the origin is the intersection of the optical axis with the XMt1% plane.

で表し、第2面の球欠断面曲率R32についてはR52
=Rsz+A3’ 十B)’ −+−cy +Dy +
Eyで表す。このように近似した時の真の形状からの誤
差は(LOO1チ〜Q、01チ程度である。
The curvature of the spherical cross section of the second surface R32 is expressed as R52.
=Rsz+A3'10B)' -+-cy +Dy +
Represented by Ey. The error from the true shape when approximated in this way is about (LOO1ch~Q,01ch).

第1表、第2表、第3表に第1面S1の子午平面上の曲
線形状を示す係数RmxyBt+C+°、D1.Etを
、第4衣、第5表、第6表に第2面S2の子午平面上の
曲線形状を示す係数Rm2+B2+C2+D2+E2を
、第7表、椰8表、第9表に球欠断面方向の曲率半径変
化を示す係数R二s A S * B S t C3+
 D S rEs を、パラメータθB、X1.X2を
変化させて計算した値を掲げる。ただし有効偏向角θ。
Tables 1, 2, and 3 show coefficients RmxyBt+C+°, D1. Et, the coefficient Rm2+B2+C2+D2+E2 showing the curve shape on the meridian plane of the second surface S2 in Table 4, Tables 5 and 6, and the curvature in the direction of the spherical section in Tables 7, 8 and 9. Coefficient R2s A S * B S t C3+ indicating radius change
D S rEs with parameters θB, X1. The values calculated by varying X2 are listed. However, the effective deflection angle θ.

は、前出(18)式の走査速度係数にのかわりに用いた
パラメータで、有効走査幅を200龍と定めると、であ
る。X t 、 X 2は前出のとおり、第1面S1 
第2面S2 が光軸と交わる点の位置である。なお、前
述の共通の計算条件のもとで、パラメータの組θ。、X
l、Xlの値が同じものは同一のレンズとなる。
is a parameter used in place of the scanning speed coefficient in equation (18) above, and assuming that the effective scanning width is 200 dragons. As mentioned above, X t and X 2 are the first surface S1
This is the position of the point where the second surface S2 intersects with the optical axis. Note that under the above-mentioned common calculation conditions, the parameter set θ. ,X
Lenses with the same values of l and Xl are the same lens.

さらに、衆に示した実施例中のいくつかのものについて
、子午面上の曲線形状の概観を、光路図とともに@5図
から第12図までに示した。ただし曲線は光軸について
対称であるため、光軸の逆側は省略しである。
Furthermore, for some of the embodiments shown in detail, the outline of the curved shape on the meridian plane is shown in Figures 5 to 12 along with optical path diagrams. However, since the curve is symmetrical about the optical axis, the side opposite to the optical axis is omitted.

ここで掲載された実施例はすべて本発明の構成原理に従
って、球欠像面湾曲収差、子午像面湾曲収差は完全に除
去されておす、マた歪み特性は走査点が等速移動するよ
うに完全に定められている。
All of the embodiments published here follow the construction principles of the present invention, with spherical field curvature aberration and meridional field curvature aberration completely eliminated, and distortion characteristics such that the scanning point moves at a constant speed. completely defined.

ただし、完全というのは理想的な状態であって実際のレ
ンズ形状には形状を算出する時の数値計算誤差、あるい
は製造誤差等のため像面湾曲収差、歪曲特性収差が多少
は生じる。もちろんそれらの収差にはある程度の許容範
囲があり、その範囲内であれば走査用レンズとして有効
であるから、本発明はそれらを除外するものではない。
However, perfection is an ideal state, and the actual lens shape has some degree of field curvature aberration and distortion characteristic aberration due to numerical calculation errors when calculating the shape or manufacturing errors. Of course, these aberrations have a certain tolerance range, and within that range, the lens is effective as a scanning lens, so the present invention does not exclude them.

ε al181”e・e―Φ嘲・9・e・0自・・響一偽石
3♀535♀♀♀♀ 皐♀♀♀3つ9♀ 3♀ooo♀
舅88?8ま88町■g85?’8呂8別稔88800
0000  000000  0000el   Q口
ooo   。
ε al181”e・e―Φmockery・9・e・0self・Kyoichi fake stone 3♀535♀♀♀♀ 皐♀♀♀three 9♀ 3♀ooo♀
Father-in-law 88?8 ma88 town ■g85? '8ro8betsuminor88800
0000 000000 0000el Qmouthooo.

第2表 45.40. 80.  227.44−.6081E
−06+3567E−09−+13526E−13,1
540E−16第3表 50.25.130.    B8.25−.2003
E−05,1280E−011−,4300E−12,
5433E−16cb リ  啼啼叩−豐啼啼啼すリ 
 啼嗜啼啼lす!啼!  リリ聾ηI!す呼第5表 45.’40. 80.  78Q、12−.1651
3E−06,3407E−■−,l[]44E−12,
4259E−16第6表 コリ+4:1+LJIJ+−Vt、tシ、J−4:1t
H5−uo、1!x42E−10−,1077E−13
,2405E−17第7表 40.40. 60.  18.E12 .2292E
−02−,3520E−05,7349E−0111−
,6105E−11,17+]2E−14第8表 45.40. 80.  20.91 .3000E−
03,2579E−05−,2011E−08,589
3E−12−,5341E−46第9表 50.25.L30.19.74.1700E−02−
,1144に一0コ+flL)LltlE−LFj−,
1tetjk;−ht、thot*−h。
Table 2 45.40. 80. 227.44-. 6081E
-06+3567E-09-+13526E-13,1
540E-16 Table 3 50.25.130. B8.25-. 2003
E-05, 1280E-011-, 4300E-12,
5433E-16cb Li Crying - Crying
Scream! Scream! Cry! Lily deaf ηI! Table 5 45. '40. 80. 78Q, 12-. 1651
3E-06, 3407E-■-, l[]44E-12,
4259E-16 Table 6 Cori+4:1+LJIJ+-Vt, tshi, J-4:1t
H5-uo, 1! x42E-10-, 1077E-13
, 2405E-17 Table 7 40.40. 60. 18. E12. 2292E
-02-, 3520E-05, 7349E-0111-
,6105E-11,17+]2E-14 Table 8 45.40. 80. 20.91. 3000E-
03,2579E-05-,2011E-08,589
3E-12-, 5341E-46 Table 9 50.25. L30.19.74.1700E-02-
, 1144 + flL) LltlE-LFj-,
1tetjk;-ht, thot*-h.

第13図に本発明に基づくレンズ形状の一実施例を用い
たレーザービームプリンタの光学系の全体像を表す斜視
図を示す。半導体レーザー2から出射した光束はコリメ
ータレンズ5で平行光束となり、シリンドリカルレンズ
4によって球欠方向にのみ収束させられて回転多面鏡偏
向器6の鋳面付近で線状結像する。光束は多面鏡5の回
転によって子午平面内で等角速度偏向され、本発明によ
る走査用レンズ1を通過した後、感光ドラム7上に結像
する。球欠方向については鏡面と感光ドラム面が共役結
像点となっており面倒れ補正系をなしている。像点は本
発明の走査用レンズ1によって感光ドラム7の軸方向−
等速走査され、像面湾曲なく直線上に結像する。この走
査1回につき感光ドラムが1ピツチだけ回転してそれが
繰返されることによって感光ドラム上に潜像が形成され
る。
FIG. 13 is a perspective view showing the overall optical system of a laser beam printer using an embodiment of the lens shape according to the present invention. The light beam emitted from the semiconductor laser 2 is turned into a parallel light beam by the collimator lens 5, and is converged only in the spherical direction by the cylindrical lens 4, forming a linear image near the casting surface of the rotating polygonal mirror deflector 6. The light beam is deflected at a constant angular velocity within the meridian plane by the rotation of the polygon mirror 5, passes through the scanning lens 1 according to the present invention, and then forms an image on the photosensitive drum 7. In the direction of the spherical defect, the mirror surface and the photosensitive drum surface form a conjugate imaging point, forming a surface tilt correction system. The image point is set in the axial direction of the photosensitive drum 7 by the scanning lens 1 of the present invention.
It scans at a constant speed and forms an image on a straight line without curvature of field. The photosensitive drum rotates by one pitch for each scan, and by repeating this rotation, a latent image is formed on the photosensitive drum.

〔効果〕〔effect〕

以上述べてきたように、本発明の光走査装置は走査用レ
ンズが、光束が被走査平面上で等速で移動するような歪
み特性を有し、かつ被走査平面上における光束の像面湾
曲収差が零またはほとんど零となる如く両面が非球面で
ある単玉レンズであるため、単玉であってもほとんど収
差がなくきわめて良好な結像スポットが得られまた広角
偏向で光軸長の短い走査用レンズが構成できる。また同
じ理由によりレンズ媒質が低屈折率であっても設計上の
伺らの支障にならず、従ってレンズ媒質のプラスチック
化が可能となる。従って小型で低価格、しかも高性能な
光走査装置を提供することができる。という効果を有す
る。
As described above, in the optical scanning device of the present invention, the scanning lens has distortion characteristics such that the light flux moves at a constant speed on the scanned plane, and the field curvature of the light flux on the scanned plane Since it is a single lens with aspherical surfaces on both sides so that the aberration is zero or almost zero, even with a single lens, there is almost no aberration and an extremely good imaging spot can be obtained.In addition, it has a wide angle deflection and a short optical axis length. A scanning lens can be constructed. Furthermore, for the same reason, even if the lens medium has a low refractive index, it does not interfere with the design, and therefore it becomes possible to use plastic as the lens medium. Therefore, it is possible to provide a compact, low-cost, and high-performance optical scanning device. It has this effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光走査装置の概その構成を示す原理図
、第2図は本発明のレンズ形状を構成する原理を説明す
るだめの原理図、第6図は本発明の走査用レンズが単玉
両非球面レンズで実現可能であることを説明するための
原理図、第4図は本発明の走査用レンズの形状を(資)
出する方法を説明するだめの原理図、第5図からW、1
2図までは本発明のレンズ形状の実施例をそれぞれ示し
た図、第13図は本発明の光走査装置全体の実施例を示
す斜視図である。 図中 1・・・走査用レンズ 2・・・半導体レーザー5・・
・多面@    6・・・回転多面鏡偏向器7・・・被
走査面(感光ドラム) 以上 出願人    七イコーエプソシ昧式会ル第1図 112図 第3図 第4図 第5図 ST 第7図 χ謬×1   χツメ2 第9図 ST ズ9Xl        :CりX2 第10図 第11図 F 第12図
Fig. 1 is a principle diagram showing the general structure of the optical scanning device of the present invention, Fig. 2 is a principle diagram illustrating the principle of configuring the lens shape of the present invention, and Fig. 6 is a principle diagram of the scanning lens of the present invention. Fig. 4 is a principle diagram for explaining that this can be realized with a single double aspherical lens, and shows the shape of the scanning lens of the present invention.
W, 1 from Figure 5, a diagram of the principle of dam explaining the method of
2 to 2 are diagrams showing embodiments of lens shapes of the present invention, and FIG. 13 is a perspective view showing an embodiment of the entire optical scanning device of the present invention. In the figure 1... Scanning lens 2... Semiconductor laser 5...
・Multi-facet @ 6...Rotating polygon mirror deflector 7...Scanned surface (photosensitive drum) Applicant: Seven Epson Symposium Fig. 1 112 Fig. 3 Fig. 4 Fig. 5 ST Fig. 7 χ error × 1 χ nail 2 Fig. 9 ST Z9Xl :Cri X2 Fig. 10 Fig. 11 F Fig. 12

Claims (2)

【特許請求の範囲】[Claims] (1)細い光束を出射する光源と、該光束を所定の方向
に偏向走査する偏向器と、該偏向器で偏向された光束を
被走査平面上に結像させる走査用レンズとを備え、前記
走査用レンズは、前記偏向器の固有の回動特性で偏向さ
れた光束が被走査平面上では等速で移動する歪み特性を
有し、かつ被走査平面上の任意の位置における光束の像
面湾曲収差が零またはほとんど零となる如く両面が非球
面で構成された単玉レンズであることを特徴とする光走
査装置。
(1) A light source that emits a narrow light beam, a deflector that deflects and scans the light beam in a predetermined direction, and a scanning lens that forms an image of the light beam deflected by the deflector on a scanned plane; The scanning lens has a distortion characteristic in which the light beam deflected by the inherent rotational characteristic of the deflector moves at a constant speed on the scanned plane, and the image plane of the light beam at an arbitrary position on the scanned plane. An optical scanning device characterized in that it is a single lens having aspherical surfaces on both sides so that the curvature aberration is zero or almost zero.
(2)前記光源から出射された細い光束は前記走査用レ
ンズに入射する直前は平行光束であることを特徴とする
特許請求の範囲第1項記載の光走査装置。
(2) The optical scanning device according to claim 1, wherein the narrow light beam emitted from the light source is a parallel light beam immediately before entering the scanning lens.
JP60280246A 1985-12-13 1985-12-13 Optical scanning device Expired - Lifetime JPH0760221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60280246A JPH0760221B2 (en) 1985-12-13 1985-12-13 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60280246A JPH0760221B2 (en) 1985-12-13 1985-12-13 Optical scanning device

Related Child Applications (7)

Application Number Title Priority Date Filing Date
JP8132947A Division JP2671891B2 (en) 1996-05-28 1996-05-28 Optical scanning device
JP8132950A Division JP2671893B2 (en) 1996-05-28 1996-05-28 Recording device
JP8132946A Division JP2671890B2 (en) 1996-05-28 1996-05-28 Optical scanning device
JP8132949A Division JP2671892B2 (en) 1996-05-28 1996-05-28 Optical scanning device
JP8132951A Division JP2671894B2 (en) 1996-05-28 1996-05-28 Scanning lens
JP8132952A Division JP2671895B2 (en) 1996-05-28 1996-05-28 Optical scanning method
JP8132948A Division JP2621838B2 (en) 1996-05-28 1996-05-28 Optical scanning device

Publications (2)

Publication Number Publication Date
JPS62139520A true JPS62139520A (en) 1987-06-23
JPH0760221B2 JPH0760221B2 (en) 1995-06-28

Family

ID=17622333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60280246A Expired - Lifetime JPH0760221B2 (en) 1985-12-13 1985-12-13 Optical scanning device

Country Status (1)

Country Link
JP (1) JPH0760221B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210921A (en) * 1988-02-18 1989-08-24 Internatl Business Mach Corp <Ibm> Xerographic printer capable of compensating tilt errors and scan curve errors
US5563729A (en) * 1993-08-30 1996-10-08 Minolta Co., Ltd. Image forming light scanning apparatus
JPH08278459A (en) * 1994-11-30 1996-10-22 Samsung Electro Mech Co Ltd Optical scanner
JPH08320442A (en) * 1996-05-28 1996-12-03 Seiko Epson Corp Optical scanning device
US6137617A (en) * 1998-12-18 2000-10-24 Matsushita Electric Industrial Co., Ltd. Optical scanner, and image reading apparatus and image forming apparatus using the same
US7652786B2 (en) 2003-02-17 2010-01-26 Seiko Epson Corporation Device adapted for adjustment of scan position of light beam
US7817321B2 (en) 1994-09-06 2010-10-19 Canon Kabushiki Kaisha Scanning optical apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255726A (en) * 2003-02-26 2004-09-16 Seiko Epson Corp Image formation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487540A (en) * 1977-12-23 1979-07-12 Canon Inc Information processing terminal device
JPS5498627A (en) * 1978-12-27 1979-08-03 Canon Inc Optical scanning device
JPS57144518A (en) * 1981-03-03 1982-09-07 Canon Inc Scan optical system having fall compensating function
JPS57144517A (en) * 1981-03-03 1982-09-07 Canon Inc Scan optical system having fall compensating function
JPS60133416A (en) * 1983-12-22 1985-07-16 Ricoh Co Ltd Cylindrical lens for surface inclination correcting and scanning optical system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487540A (en) * 1977-12-23 1979-07-12 Canon Inc Information processing terminal device
JPS5498627A (en) * 1978-12-27 1979-08-03 Canon Inc Optical scanning device
JPS57144518A (en) * 1981-03-03 1982-09-07 Canon Inc Scan optical system having fall compensating function
JPS57144517A (en) * 1981-03-03 1982-09-07 Canon Inc Scan optical system having fall compensating function
JPS60133416A (en) * 1983-12-22 1985-07-16 Ricoh Co Ltd Cylindrical lens for surface inclination correcting and scanning optical system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210921A (en) * 1988-02-18 1989-08-24 Internatl Business Mach Corp <Ibm> Xerographic printer capable of compensating tilt errors and scan curve errors
US5721631A (en) * 1993-08-30 1998-02-24 Minolta Co., Ltd. Image forming light scanning apparatus
US5563729A (en) * 1993-08-30 1996-10-08 Minolta Co., Ltd. Image forming light scanning apparatus
US5926306A (en) * 1993-08-30 1999-07-20 Minolta Co., Ltd. Image forming light scanning apparatus
US5828480A (en) * 1993-08-30 1998-10-27 Minolta Co., Ltd. Image forming light scanning apparatus
US8681406B2 (en) 1994-09-06 2014-03-25 Canon Kabushiki Kaisha Scanning optical apparatus
US8213068B1 (en) 1994-09-06 2012-07-03 Canon Kabushiki Kaisha Scanning optical apparatus
US7817321B2 (en) 1994-09-06 2010-10-19 Canon Kabushiki Kaisha Scanning optical apparatus
US7898711B2 (en) 1994-09-06 2011-03-01 Canon Kabushiki Kaisha Scanning optical apparatus
US8610984B2 (en) 1994-09-06 2013-12-17 Canon Kabushiki Kaisha Scanning optical apparatus
US8068265B2 (en) 1994-09-06 2011-11-29 Canon Kabushiki Kaisha Scanning optical apparatus
US8115981B2 (en) 1994-09-06 2012-02-14 Canon Kabushiki Kaisha Scanning optical apparatus
JPH08278459A (en) * 1994-11-30 1996-10-22 Samsung Electro Mech Co Ltd Optical scanner
JP2671890B2 (en) * 1996-05-28 1997-11-05 セイコーエプソン株式会社 Optical scanning device
JPH08320442A (en) * 1996-05-28 1996-12-03 Seiko Epson Corp Optical scanning device
US6137617A (en) * 1998-12-18 2000-10-24 Matsushita Electric Industrial Co., Ltd. Optical scanner, and image reading apparatus and image forming apparatus using the same
US7990572B2 (en) 2003-02-17 2011-08-02 Seiko Epson Corporation Device adapted for adjustment of scan position of light beam
US7652786B2 (en) 2003-02-17 2010-01-26 Seiko Epson Corporation Device adapted for adjustment of scan position of light beam

Also Published As

Publication number Publication date
JPH0760221B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
US6141133A (en) Optical scanning device and a scanning lens therefor
KR920001122B1 (en) Laser scanning device and aspherical scanning lens
US5986791A (en) Optical scanning device and a scanning lens therefor
US5426298A (en) Optical scanner
JPS62139520A (en) Photoscanning device
JP4098851B2 (en) Manufacturing method of imaging mirror in scanning imaging optical system, scanning imaging optical system and optical scanning device
JPH0221565B2 (en)
JPS62138823A (en) Photoscanning device
JPH032815A (en) Ftheta lens system in optical scanner
JPH0563777B2 (en)
JP2621838B2 (en) Optical scanning device
JP2671891B2 (en) Optical scanning device
JPS62139521A (en) Photoscanning device
JP2671894B2 (en) Scanning lens
JP2671893B2 (en) Recording device
JP2671895B2 (en) Optical scanning method
JP3051671B2 (en) Optical scanning lens and optical scanning device
JPS62138826A (en) Photoscanning device
JP3421704B2 (en) Scanning imaging lens and optical scanning device
JPS62139525A (en) Photoscanning device
JPH08320442A (en) Optical scanning device
JPS62138825A (en) Photoscanning device
JP2671892B2 (en) Optical scanning device
JP3717656B2 (en) Optical scanning device and scanning imaging lens
JP3452294B2 (en) Optical scanning lens, scanning imaging lens, and optical scanning device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term