JPS62139525A - Photoscanning device - Google Patents

Photoscanning device

Info

Publication number
JPS62139525A
JPS62139525A JP28024985A JP28024985A JPS62139525A JP S62139525 A JPS62139525 A JP S62139525A JP 28024985 A JP28024985 A JP 28024985A JP 28024985 A JP28024985 A JP 28024985A JP S62139525 A JPS62139525 A JP S62139525A
Authority
JP
Japan
Prior art keywords
lens
plane
light beam
scanning
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28024985A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
隆史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP28024985A priority Critical patent/JPS62139525A/en
Publication of JPS62139525A publication Critical patent/JPS62139525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dot-Matrix Printers And Others (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To obtain a small-sized, low-cost, and high-performance scanning lens by using a single lens which is so constituted rotationally symmetrically so that both surfaces are made aspherical and also has a surface inclination correcting function. CONSTITUTION:Projection light from a light source is converged only in the sagittal direction through both a collimator and a cylindrical lens which are not shown in a figure and forms its image linearly nearby a mirror surface SM. The luminous flux is deflected at an equal angular speed in a tangential plane by the rotation of a polygon mirror 5 and reflected at an angle theta of deflection corresponding to the rotation of the mirror 5. Then, the luminous flux after passing through a scanning lens 1 forms its image on a scanned plane 7 at a point T1 whose coordinate value Y is proportional to the angle theta of deflection. The lens 1 has such distortion characteristics that the luminous flux moves on the plane at the equal speed and is the single lens which has both surfaces S1 and S2 made asymmetrical and one or both surfaces made rotationally asymmetrical so that the curvature of field of the luminous flux on the plane 7 is zero or almost zero, so an excellent image formation spot is obtained without any aberration. Further, the scanning lens is constituted which provides wide-angle deflection and is short in optical axis length, so plastic can be used as a lens medium. Thus, the small-sized, low-cost, and high-performance scanning lens is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザービームプリンタ等(用いられる光走査
装置に関する。さらに詳しくは走査レンズ系に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical scanning device used in a laser beam printer or the like. More particularly, the present invention relates to a scanning lens system.

〔発明の技術的背景〕[Technical background of the invention]

レーザービーム等を高速に偏向走査して画像情報を記録
するレーず−ビームプリンタは、高速、高解は度、低騒
音と^う優れ九特徴を有しており、小型化低価格化が進
むにつれ急速にその需要を増してきてiる。そこで、そ
の重侠な酵改要票である光誉き込みヘッドとして、光走
査装置に対しても小型化低価格化の安来は大きい1光走
査装置は大きくわけて光源と偏向器と走査レンズ系とか
ら成るか、中でも走査レンズ系の単純化は小型化低価格
化に有効である。走査レンズ系は偏向器の回#waにあ
わせて走査面上で元スポットが等速で移動するような歪
み、例えば偏向器が回転多面鏡であって光ビームが等角
速度偏向されている時は偏向角θと像高Yが比例するよ
うな歪みを有し、かつ短資〒面上の^たる所で光スポッ
トを所望の径に均一に結像するl!S!能を有さなけれ
ばならない。
Laser beam printers, which record image information by deflecting and scanning laser beams at high speed, have nine outstanding features: high speed, high resolution, and low noise, and are becoming smaller and cheaper. The demand for it is increasing rapidly. Therefore, as an optical head, which is an important improvement point, Yasugi's ability to reduce the size and cost of the optical scanning device is large.The optical scanning device can be broadly divided into a light source, a deflector, and a scanning lens. In particular, simplifying the scanning lens system is effective in reducing the size and cost. The scanning lens system is distorted so that the original spot moves at a constant speed on the scanning surface in accordance with the rotation #wa of the deflector, for example, when the deflector is a rotating polygon mirror and the light beam is deflected at a constant angular velocity. It has a distortion such that the deflection angle θ is proportional to the image height Y, and uniformly forms a light spot to a desired diameter everywhere on the tanshi surface. S! must have the ability.

さらに回転多面鏡偏向器の場合には多[1[T鏡の各面
の傾きのばらつき(面倒れ誤差)t−補償するための面
倒れ補正機能も必螢となる。これらの機能を兼ね備えた
解鐵力の高い高性能な走査用レンズは従来必然的に大型
、複雑で高価なものにならざるt−得なかった。
Furthermore, in the case of a rotating polygonal mirror deflector, a surface tilt correction function is also required to compensate for variations in the tilt of each surface of the mirror (surface tilt error) t-. Conventionally, a high-performance scanning lens with a high resolution ability that combines these functions has inevitably been large, complicated, and expensive.

〔従来の技術〕[Conventional technology]

そこで特開昭54−98627.特開昭55−772’
l 、’?開昭58−5706.等に開示されているよ
うに走査用レンズの本玉化が試みられている。ところが
、特開昭54−98627では正弦振動特性を有する偏
向器に対してはその回動特注を利用して形状等のパラメ
ータの種々の値について幅広く良好に収差補正が可能で
あるが、高速性等の点から現在最も広く使用されている
回転多面鏡偏向器の等角速度回動特性に対してはそれに
対応するために非球面化しているものの特殊な場合とし
てきわめて限られた条件でしか使用できず、光学系の寸
法、光源、心安とするドツト径等の種々の要求に柔軟に
対応することができない。
Therefore, JP-A-54-98627. Japanese Patent Publication No. 55-772'
l,'? Kaisho 58-5706. Attempts have been made to develop a scanning lens as disclosed in et al. However, in Japanese Patent Application Laid-Open No. 54-98627, aberrations can be corrected widely and well for various values of parameters such as shape by using custom rotation for a deflector with sinusoidal vibration characteristics, but it is not possible to correct aberrations at high speed. For these reasons, the rotating polygonal mirror deflector, which is currently most widely used, has an aspherical surface to accommodate the constant angular velocity rotation characteristics, but it can only be used under extremely limited conditions as a special case. First, it is not possible to flexibly respond to various requirements such as the dimensions of the optical system, the light source, and the diameter of the dots that can be used safely.

ま之、特開昭55−7727ではモ凸レンズでfoレン
ズを構成しているが、像面湾曲等の点で良好な結@性能
を有して^るとはいい難い。
However, in Japanese Patent Application Laid-Open No. 55-7727, the fo lens is constructed with a mo-convex lens, but it cannot be said that it has good focusing performance in terms of field curvature, etc.

また、特開昭58−5706では正のパワーを有するメ
ニスカスレンズでfoレンズt[[It、ているが、球
欠慮面湾曲の点で問題があり1.これを解消するために
面倒れ補正光学系を兼ねる円筒レンズを付加しなくては
ならない、さらに、上記3列はすべて面倒れ補正機能を
付与するためIcは新たにレンズを付加しなければなら
ず、結局単玉レンズを付加しなければならず、結局拳玉
レンズでなくなってしまう、ま九光軸長を長くとって偏
向角を狭めることによって収差を許容範囲内に収めるこ
とは可能であるが、光学系全体が大型化するため好箇し
くなi。
Furthermore, in Japanese Patent Application Laid-Open No. 58-5706, a meniscus lens with positive power is used as a fo lens t[[It], but there is a problem in terms of curvature of the spherical truncated surface.1. To solve this problem, it is necessary to add a cylindrical lens that also serves as a surface tilt correction optical system.Furthermore, in order to provide all three rows mentioned above with a surface tilt correction function, a new lens must be added to the Ic. However, it is possible to keep the aberrations within the allowable range by increasing the optical axis length and narrowing the deflection angle. , which is difficult because the entire optical system becomes larger.

ところで、小型化低価格化を考えるうえでレンズの材質
も重要な問題である。従来走査用レンズの材質には、ガ
ラスが用匹られているが回折限界の性能を要求される光
学系であって要求精度が高いため、研ll1等の製造コ
ストが高くり〈、そこでポリメチルメタクリレ−)(P
MMA)、ポリカーボネート、ポリスチレン等のプラス
チックをレンズ媒質に用いれば、射出改形による大址生
産が可能となるため甑めて安価VcW造できる。ところ
が光学プラスチック材料は種類が少なくしかもガラスに
比べ高屈折率のものがなw、iってレンズ枚数の削減や
光学系の小型化がガラスに比べより困難である。
Incidentally, the material of the lens is also an important issue when considering miniaturization and cost reduction. Conventionally, glass has been used as the material for scanning lenses, but since the optical system requires diffraction-limited performance and the required precision is high, manufacturing costs such as polishing are high. methacrylate) (P
If plastics such as MMA), polycarbonate, and polystyrene are used as the lens medium, large-scale production by injection modification becomes possible, and thus inexpensive VcW manufacturing can be achieved. However, there are only a few types of optical plastic materials, and none of them have a higher refractive index than glass, so it is more difficult to reduce the number of lenses and downsize the optical system than with glass.

これらの点を総合して、材質の屈折率によらず電工でし
かも光軸長が短くても収差を良好に補正できるような、
自由度の大きなレンズ形状が望まれることがわかる。
Taking all of these points into account, we have developed a system that can effectively correct aberrations regardless of the refractive index of the material and even with short optical axis lengths.
It can be seen that a lens shape with a large degree of freedom is desired.

(発明の解決しようとする問題点〕 本発明は上述のような問題点に鑑みてなされたもので、
その目的は、小型で低価格、しかも高性能な光走査装置
とくに走査用レンズを提供することである。
(Problems to be solved by the invention) The present invention has been made in view of the above-mentioned problems.
The purpose is to provide a compact, low-cost, and high-performance optical scanning device, especially a scanning lens.

上記の目的のため、本発明の光走査装置tは、細−光束
を出射する光源と、該光束t−衿角速度で偏向走査する
回転多面鏡偏向器と、該光束を前記回転多面鏡の鏡面付
近で偏向面に平行な線状に結像する線状結像光学系と、
該偏向器で偏向された光束を被走査モ面上に結像させる
走査用レンズとを備え、前記走査用レンズセ、被走査〒
面上での光軸から結mmiまでの距離Yと偏向角θとが
完全ま九はほぼ完全に比的し、かり被短資モ面上の任意
の位置における光束の球欠鍔面湾曲収差と子午像面湾曲
収差の両方が零またはほとんど零になる如く両面が非球
面であって片面もしくは両面が回転非対称に構成された
面倒れ補正機能を’firfる単玉レンズであるととt
−特mとする。
For the above purpose, the optical scanning device t of the present invention includes a light source that emits a narrow light beam, a rotating polygon mirror deflector that deflects and scans the light beam t at a collar angular velocity, and a rotating polygon mirror deflector that deflects and scans the light beam at a mirror surface of the rotating polygon mirror. a linear imaging optical system that forms a linear image parallel to the deflection plane in the vicinity;
a scanning lens for forming an image of the light beam deflected by the deflector on the surface to be scanned;
The distance Y from the optical axis to the focal length mm on the surface is almost completely proportional to the deflection angle θ. It is a single lens that has aspherical surfaces on both sides and has a rotationally asymmetrical surface tilt correction function on one or both surfaces so that both meridional field curvature aberrations are zero or almost zero.
-Special feature.

c問題点を解決する友めの手段〕 本発明の光走査装置は、細い光束を出射する光源と、該
光束上等角速度で偏向走査する回転多面鏡偏向器と、該
光束t−前記回転多面鏡の鏡面付近で偏向面上に平行な
線状に結像する線状結像光学系と、該偏向器で偏向され
た光束を披走企モ面上に結像させる走査用レンズとを備
え、前記走企用レンズは、被走奔干面上での光軸から結
は位置までの距離Yと偏向角θとが完全またはほぼ完全
に比列し、かつ被走査平面上の任意の位置における光束
の球欠像面湾曲収差と子午廉直湾曲収差の両方が零また
はほとんどvrニなる如く両面が非球面であって片面も
しくは両面が回転非対称に構成された面倒れ補正機能を
宵する巣玉レンズであることを′?!j鑓とする。
A companion means for solving the problem C] The optical scanning device of the present invention includes a light source that emits a narrow light beam, a rotating polygon mirror deflector that deflects and scans the light beam at a constant angular velocity, and a rotating polygon mirror deflector that deflects and scans the light beam at a constant angular velocity. It is equipped with a linear imaging optical system that forms a linear image parallel to the deflection surface near the mirror surface of the mirror, and a scanning lens that forms an image of the light beam deflected by the deflector onto the scanning surface. , the scanning lens is such that the distance Y from the optical axis to the position on the scanning plane is completely or almost perfectly proportional to the deflection angle θ, and the scanning lens can be used at any position on the scanning plane. Both surfaces are aspherical and one or both surfaces are configured rotationally asymmetrically so that both the spherical field curvature aberration and the meridional rectangular curvature aberration of the light beam are zero or almost VR2. ′′ to be a jade lens? ! j.

c本発明の原理〕 本発明の原理を飢1図、凱2図、@3図、第4図を用い
て以下に説明する。
cPrinciple of the present invention] The principle of the present invention will be explained below using Figure 1, Figure 2, Figure @3, and Figure 4.

走愛用レンズは、前述したように回転多面鏡偏向器によ
って等角速度で偏向されている光束倉破走奔乎面上Vc
鐵面湾曲なく結像しまた被走査平面上で酸点が吟速で走
査されるような歪みを与える@能を有する。
As mentioned above, the running lens is a light beam deflected at a constant angular velocity by a rotating polygonal mirror deflector.
It forms an image without curvature of the iron surface, and has the ability to give distortion so that the acid spot is scanned at a high speed on the scanned plane.

すなわち、第1図に示されるように、光源から出射した
光束は鏡面8Mによって多面鏡5の回転に応じた偏向角
Uで反射されている。走査用レンズ1はこの光束を波走
変千面上で座標直Yが偏向角θと比例した点TIl’l
:結峰するよう設定される。
That is, as shown in FIG. 1, the light beam emitted from the light source is reflected by the mirror surface 8M at a deflection angle U corresponding to the rotation of the polygon mirror 5. The scanning lens 1 directs this light flux to a point TIl'l on the wave travel plane where the coordinate axis Y is proportional to the deflection angle θ.
: Set to end.

本発明の走査用レンズは以下に述ベム原理に基づいて簿
1図に示T Sl n S2の両面において非球面の特
長が高度に利用された、収差が少なくしかも広角偏向が
可能な単玉レンズである。
The scanning lens of the present invention is based on the Bem principle described below and is a single-lens lens that highly utilizes the aspherical features on both sides of T Sl n S2 shown in Figure 1, and is capable of wide-angle deflection with little aberration. It is.

本発明に係るレンズ面形状の窮1の#1図原理は、走査
される光束が非常に細いと仮定して、光束を主光線の位
置と方向と結像距離のパラメータのみで表し、レンズ面
上のある一点はそこを通る主光線のみにつiて方向ある
vhは結像距離を変化させるべく傾きと曲率が定められ
ている。ということである、これを収差補正の考え方で
いえば1球面収差とコマ収差を無視して像面湾曲収差と
歪曲収差?高次の項まで含めて完全に補正するというこ
とを意味する。上述の仮定はレーザービームプリンタ等
の走査光学系では一般に十分成立する。
The principle of #1 diagram of the lens surface shape according to the present invention is based on the assumption that the scanned light beam is very thin, expresses the light beam only by the parameters of the position and direction of the principal ray, and the imaging distance, and A certain point on the top has a direction i with respect to only the chief ray passing through it, vh, and its inclination and curvature are determined so as to change the imaging distance. So, if we think about this in terms of aberration correction, we can ignore spherical aberration and coma aberration, and calculate field curvature aberration and distortion aberration. This means that it is completely corrected, including even higher-order terms. The above assumption generally holds true in scanning optical systems such as laser beam printers.

さらに走査レンズ系は、任意の偏向角で偏向された光束
の主光線は必ず同一平面上にある(これを子午面と呼ぶ
)から、光束が非常に細いこととあわせて、1lilr
上で傾きと曲率が指定される点は、子午面とレンズ面が
交わった曲線上だけでよiことがわかる。従って本発明
の何2のFs改原理は子午面上に曲線を創成して、その
曲線上の任意の点において子午面内の傾きと曲率とが前
述の走査用レンズの目的を達しており、さらに曲線上の
任意の点において主光線を倉み子午面に垂直な断面(球
欠断面と呼ぶ)の曲率が与えられれば面が形成できたと
することである。
Furthermore, in a scanning lens system, the chief ray of a light beam deflected at any deflection angle is always on the same plane (this is called the meridian plane), so in addition to the fact that the light beam is very narrow,
It can be seen that the points where the inclination and curvature are specified above are only on the curve where the meridian plane intersects the lens surface. Therefore, the second Fs modification principle of the present invention is to create a curve on the meridian plane, and at any point on the curve, the inclination and curvature in the meridian plane achieve the purpose of the scanning lens described above. Furthermore, it is assumed that a surface can be formed if the chief ray is given the curvature of a cross section perpendicular to the Kurami meridian (called a spherical cross section) at any point on the curve.

たソし、子午方向の傾きと曲率はそれを連続的に接続し
て子午面内のレンズ面位置を形5X、″rるためそれぞ
れ独立VCハ定められないが球欠断面曲率はそれらとは
独立に扱える。従って、子午面内のレンズ面形状のみに
つ^て上記端1.窮2の構成原理を適用した光学系も当
然本発明の範囲に含まれることは明らかである。
However, since the inclination and curvature in the meridian direction are connected continuously and the position of the lens surface in the meridian plane is shaped like Therefore, it is obvious that the scope of the present invention also includes an optical system to which the above-mentioned construction principles of 1. and 2. are applied only to the lens surface shape in the meridian plane.

以下、第2図の斜視図を用いて本発明に係るレンズの隣
氏原理を具体的に説明する。
Hereinafter, the Tonari principle of the lens according to the present invention will be specifically explained using the perspective view of FIG.

飢1図において光束(II−j−tlは面8iVCよっ
て光束(Lm)に変換される。光束(Lj)のT<から
測った結像距離を子午光束でgmj 、球欠光束でgs
iとする。一般にgmiとgsiは等しくな匹、前述し
たように光束は非常に細めので光束(Ljlを扱う時、
主光線Lciと子午0球欠それぞれの結像距離Q?7H
agsiだけを考えればよi、さて、lTi1Si1に
通過後の主光線Lciの方向は、面SZのτ<Kおける
法線方向a4で制御することができる。また面s7を通
過後の結像距離gmi 、 gs4は面s6のT6にお
ける子午断面曲率半径Rmiと球欠断面曲率半径Rsi
で制御することができる。従っである角度で偏向された
光束1本を走査平面上で等速走査が実現できる位置に結
像させる機能をレンズ面上の1点の位置とその微分量(
法線方向と曲率)で持たせることができたわけで、それ
を連続させて任意の角度で偏向された光束に対応したレ
ンズ面との各点に上記の機能を持たせれば目的とする走
査用レンズ形状が定まるわけである。これが前述の第1
のFs構成原理ある。
In Figure 1, the luminous flux (II-j-tl is converted to a luminous flux (Lm) by the surface 8iVC. The imaging distance measured from T< of the luminous flux (Lj) is gmj for the meridional luminous flux and gs for the spherical luminous flux.
Let it be i. In general, gmi and gsi are equal, and as mentioned above, the luminous flux is very narrow, so when dealing with the luminous flux (Ljl,
The imaging distance Q of the chief ray Lci and the meridian zero sphere? 7H
Now, the direction of the chief ray Lci after passing through lTi1Si1 can be controlled by the normal direction a4 of the surface SZ where τ<K. In addition, the imaging distance gmi and gs4 after passing through the surface s7 are the radius of curvature Rmi of the meridian section at T6 and the radius of curvature Rsi of the spherical section of the surface s6.
can be controlled with. Therefore, the function of focusing a single beam of light deflected at a certain angle to a position on the scanning plane where uniform speed scanning can be realized is determined by the position of a point on the lens surface and its differential amount (
Therefore, by making it continuous and providing the above function at each point with the lens surface corresponding to the light beam deflected at an arbitrary angle, it can be used for the purpose of scanning. This determines the lens shape. This is the first
There is a principle of Fs construction.

さて、前述したように主光線Lci等は子午面上を離れ
ないため、面81■法線方向ベクトルGiも子午面内に
あり面の傾きを表す自由度として第2図に示す光軸と法
線ベクトルのなす角αiの1自由度でよりり、また面8
iの子牛断面曲率は直の頌きαiの微分量であり1面の
傾きαiFi面a4面子4面上の位置の微分量であるか
ら、結局子午直方向の面の傾きと曲率を指定することは
微分方程t、t−解いて子午面上の2次元曲線を創成す
ることと同じ意味を持つことがわかる。また、球欠断面
曲率は上記曲線に影響を与えず決定されるものであるか
ら1曲線が創成された後その曲線上の各点についてそれ
ぞれ決定される。これが嬉2の晴成原理である。
Now, as mentioned above, since the chief ray Lci etc. do not leave the meridian plane, the surface 81 ■ normal direction vector Gi is also within the meridian plane, and the optical axis and normal direction vector Gi shown in FIG. It is twisted with one degree of freedom of the angle αi formed by the line vector, and the surface 8
The calf cross-sectional curvature of i is the differential amount of the straight line αi, and the differential amount of the position on the 4th surface of the 1st plane αiFi plane a4, so in the end it specifies the inclination and curvature of the plane in the meridian direction. It can be seen that this has the same meaning as creating a two-dimensional curve on the meridian plane by solving the differential equations t, t-. Furthermore, since the curvature of the spherical section is determined without affecting the curve, it is determined for each point on the curve after one curve is created. This is the Harunari principle of Joy 2.

以上述べ九儲収原理より走査用レンズが実現できるわけ
であるが、それが両非球面の嗅レンズで実現可能である
ことt−1!3図の原理図倉用いて説明する。嬉3図に
お−で紙面は子午o!irk表してhる。
A scanning lens can be realized based on the above-mentioned principle, and the fact that it can be realized with an olfactory lens having both aspherical surfaces will be explained using the principle diagram in Fig. t-1!3. Happy 3rd map - and the paper is meridian o! Irk is displayed.

まず子午面内にりiて考える。いま拘束した−のは主光
線り、と非短資モ面aXの交点TIの座標filてIと
TI’が結像点であることの2自由度である1例えば任
意の角度θで偏向されてiる光束の走介位置Y工を拘束
するために面の顔きα宜を11[Tとの全位置で指定し
、それに従って滑らかに面を接続した形状は境界条件(
例えば光軸との交点P1の座標1[X s とそこでの
傾きが0であること)を指定すれば、Slのように1通
りVC定まり、その面での曲率半径Rm lを指定する
ことはできず、光束は被短資モ面上にない点’l’ x
 Iで結像してしまう、逆に、結像点を拘束するために
面の曲率中径Rm lを面上の全位置で指定すれば同様
に酊の頌きα凰を指定することはできない、このようV
CC縁線持つパラメータのうちある1つの自由度を偏向
角θの任意の値で拘束するためKtilつの面が必要で
あるから、今、と述の2自由度を拘束するために、I&
低2面のレンズ面が必要となる。
First, think about being in the meridian plane. The ray we just constrained is the chief ray, and the coordinates of the intersection TI of the non-transparent plane aX are the two degrees of freedom, where I and TI' are the imaging points. In order to constrain the travel position Y of the light beam i, we specify the face angle α of the surface at all positions with 11
For example, if you specify the coordinate 1 of the intersection point P1 with the optical axis (X s and the slope there is 0), VC is determined in one way like Sl, and you can specify the radius of curvature Rm l on that surface. The point 'l' where the luminous flux is not on the target plane x
The image will be formed at I. Conversely, if you specify the medium radius of curvature Rm l of the surface at all positions on the surface in order to constrain the imaging point, you cannot similarly specify α-o. , like this V
In order to constrain one degree of freedom among the parameters of the CC edge line to an arbitrary value of the deflection angle θ, Ktil surfaces are required, so in order to constrain the two degrees of freedom mentioned above, I &
Two low lens surfaces are required.

つぎに球欠光束について考えると、拘束した^のは球欠
方向結像距離(181の一自由度であって、これは子午
面内で拘束した状態′f″なわち曲線の形状を保存した
まま、子午面上の曲線にそれと垂直な方向に曲率をつけ
ることで制御できるため、前述の2面に新たに面を付は
加える必要はない。
Next, considering the spherical beam, the constrained ^ is the spherical direction imaging distance (one degree of freedom of 181), which is the constrained state ``f'' in the meridian plane, that is, the shape of the curve is preserved. Since it can be controlled by adding curvature to the curve on the meridian plane in a direction perpendicular to it, there is no need to add a new surface to the two surfaces mentioned above.

従って必要なレンズ面に2面で、単玉レンズでよいこと
がわかる。また2面ともレンズ面の全位置で傾き、曲率
が指定された面であるから単玉レンズは両非球面でなけ
ればならない。
Therefore, it can be seen that a single lens with only two lens surfaces is sufficient. Furthermore, since both surfaces are inclined at all positions of the lens surface and have specified curvature, a single lens must have both aspherical surfaces.

さて、ここで上述の1!Eの巣玉、非球面レンズの直の
対称性について考えてみる。子午面内に創成された2曲
線を光軸等何らかの軸を中心にして回転させると球欠方
向の曲率半径の自由度が失われてしまう、従って回転対
称性を持たせると球欠光束の結像を制御できす球欠像面
湾曲収差が生じる0面対称性については、光束が常に子
午面上にあるので明らかに子午直について対称であり、
また光軸を通る光束を偏向角0として偏向角がθの光束
と一〇の光束とは同じ条件であるから元軸を含み子午面
と垂直な平面について本対称である。
Now, here is the above 1! Let's consider the direct symmetry of E's nest and aspherical lenses. If two curves created in the meridian plane are rotated around some axis such as the optical axis, the degree of freedom of the radius of curvature in the direction of the sphere will be lost. Therefore, if rotational symmetry is given, the connection of the beam of the sphere will be reduced. Regarding zero-plane symmetry, which causes spherical field curvature aberration when controlling the image, since the light beam is always on the meridian plane, it is clearly symmetrical about the meridian,
Furthermore, assuming that the light flux passing through the optical axis has a deflection angle of 0, the light flux with a deflection angle of θ and the light flux with a deflection angle of 10 are under the same conditions, so they are perfectly symmetrical about a plane that includes the original axis and is perpendicular to the meridian plane.

このように本発明の走査用レンズは対称面が2面ある以
外は対称性がなりhことによって、球欠@面湾曲収差、
子午像面湾曲収差、歪曲%性収差の完全な補正が可能と
なっている。
In this way, the scanning lens of the present invention has symmetry except that there are two planes of symmetry, and as a result, spherical curvature aberration,
It is possible to completely correct meridional field curvature aberration and % distortion aberration.

以下、本発明の走査用電工両非球面レンズの形状を実現
する具体的方法を@4図の原理図を用いて説明する。ま
ず、子午面上の2曲線の創収方法tN5?、明する。嫡
4図に示すようにレンズ面81゜82はそれぞれ光軸と
の交点Pl* Ptから曲線に沿り九距離5laBNと
その点での光軸に:垂直な方向からの傾き角α1.αt
との関係で規定されてハる。これを直交座標で表現し直
すと、面81m”2にりいて、それぞれP*hPst原
点として光@tx軸、レンズの高さ方向をy軸とすると
、点PR6P1の座標値(Zt。us ) e (zt
 e yz)tl。
Hereinafter, a specific method for realizing the shape of the scanning electric double aspherical lens of the present invention will be described using the principle diagram shown in Fig. @4. First, how to create and collect two curves on the meridian plane tN5? , reveal. As shown in Fig. 4, the lens surfaces 81 and 82 are respectively 9 distances 5laBN along the curve from the intersection point Pl*Pt with the optical axis, and the angle of inclination α1 from the perpendicular direction to the optical axis at that point. αt
It is defined in relation to Reexpressing this in orthogonal coordinates, if we take the plane 81m''2 and take the light @tx axis as the origin and the lens height direction as the y axis, then the coordinate value of point PR6P1 (Zt.us) e (zt
e yz)tl.

r; 1 = (、”” 5inaldsly1=戸c
osα1d8N 、2=l・5ind2dB     ”1t * = 
I ” cosa2da@となる。
r; 1 = (,”” 5inaldsly1=door c
osα1d8N, 2=l・5ind2dB “1t*=
I” cosa2da@.

^ま、酊4図に示すよ5に%yt軸上の出射点りから偏
向角0.子午結像距離gmoで出射した九束Lj(j=
0.1.2)が面81m5Mとそれぞれ”16Tlで像
面S工とTIで交わるとし、以下のように光束の出射位
置、出射方向を表す、すなわちCO8θ PMTI =i0 Cs1ntl) cosθI T1T諺 = 、−シ凰 (、)          
        (2)aznθ工 C08#I Tx”=JsC−) IItBe@ とする、さらに面S1S!のT1+Tlでの子午断面曲
率半径をそれぞれI(ffil 、 R7FLlとし、
また、光束L1aL2の子午結像距離’t fjWNa
 (1msとする。
As shown in Figure 4, the deflection angle is 0.5 from the exit point on the yt axis. Nine bundles Lj (j=
0.1.2) intersects the surface 81m5M at 16Tl and the image plane S and TI, and the emission position and emission direction of the luminous flux are expressed as follows, that is, CO8θ PMTI = i0 Cs1ntl) cosθI T1T proverb = , -shio (,)
(2) aznθC08#I Tx"=JsC-)IItBe@, and further, let the radius of curvature of the meridian section at T1+Tl of the surface S1S! be I(ffil, R7FLl, respectively,
In addition, the meridional imaging distance 't fjWNa of the luminous flux L1aL2
(It is assumed to be 1ms.

以上の記述法に従って、前述し九レンズ形状の購収原理
を定式化することができる。定式化t−以下1c示す6
項目に分けて説明する。
According to the above description method, the purchasing principle of the nine lens shapes described above can be formulated. Formulation t - Below 1c shows 6
I will explain each item separately.

■面’le Smと光束の交点において面の傾きによっ
て光束の方向を制御する。
■The direction of the light beam is controlled by the inclination of the surface at the intersection of the surface 'le Sm and the light beam.

■母日1#S!と光束の交点において面の曲率によって
光束の結像距離を制御する。
■Mother's Day 1#S! The imaging distance of the beam is controlled by the curvature of the surface at the intersection of the beam and the beam.

0面と光束の交点の座標が等しい。The coordinates of the intersection of the zero plane and the light beam are the same.

■面上の各点は滑らかに連続している。■Each point on the surface is smoothly continuous.

■光束は走査モ面上に結像する。(2) The light beam forms an image on the scanning plane.

■走査乎面とで結像点は等速走査される。(2) The imaging point is scanned at a constant speed with the scanning plane.

■の屈折面の傾きと光束の方向の関係は、よく知られた
屈折の法則’it: ” 1a ” z面とIIl+L
lの交点について適用することによって s:in (a’1−θ) = nain(as−θ1
)=81面 (3)n8in (ffl−θ1)=ai
n(as−as):8a面 (4)と表わせる。九ソし
n’dレンズ媒質の屈折率である。
The relationship between the inclination of the refractive surface and the direction of the light beam in (■) is based on the well-known law of refraction: ``1a'' z plane and IIl+L
s:in (a'1-θ) = nain(as-θ1
) = 81 sides (3) n8in (ffl-θ1) = ai
It can be expressed as n (as-as): 8a plane (4). This is the refractive index of the lens medium.

■の面の曲率と光束の結像距離の関係は、細い光束があ
る曲率を持った面に斜め入射した時の子午結像距離の関
係式を81面、E38面に適用して°”−5) 8′“(6) が得られる。
The relationship between the curvature of the surface and the imaging distance of the light beam in (2) can be determined by applying the relational expression of the meridional imaging distance when a thin light beam obliquely enters a surface with a certain curvature to the 81st surface and the E38th surface. 5) 8′“(6) is obtained.

■については、前出のω式で計算される面位置の直交座
標直と前出のC)式をもとく計算される光線の屈折点の
直交座標筐が等しいとお−で、JoCO8θ−f”si
nαsds* +Xt      (7)υ J6sinθ= 、/51coaalds1     
    (8)一1/ICO8θ1+J6cosθ =
  /” 5ina2ds鵞+  Xs    (9)
Am s inθ1+Ik6sitrθ= f”cox
αzdll*    10の関係がある。たツレx1は
面H凰 と光軸の交点の2座標ffi 、xI tよ面
S!と元軸の交点のX座標1直でちる。
Regarding (2), if the orthogonal coordinates of the surface position calculated using the above ω formula and the orthogonal coordinates of the refraction point of the ray calculated based on the above C) formula are equal, then JoCO8θ−f” si
nαsds* +Xt (7)υ J6sinθ= , /51coaalds1
(8)-1/ICO8θ1+J6cosθ=
/” 5ina2ds goose+Xs (9)
Am s inθ1+Ik6sitrθ= f”cox
αzdll* There is a relationship of 10. The angle x1 is the two coordinates ffi of the intersection of the plane H 凰 and the optical axis, xI t and the plane S! The X coordinate of the intersection of the original axis and the original axis is one perpendicular.

■にりいて、面が連続している条件は、(7)〜((1
式中の積分が可能であるということである。また面が滑
らかである条件は、面の頌きC1,α冨が微分可能であ
るとiうことであって dJ  Rml なる関係がある。
■The conditions for continuous surfaces are (7) to ((1
This means that the integration in the equation is possible. Further, the condition for the surface to be smooth is that the value C1,α of the surface is differentiable, and there is a relationship dJ Rml.

■の短資平面上で像点が等速走奔される条件は像面と光
束の交点(XX、1工)が XI = 71608θx+A1cosθs+It6c
osθ   α3Y工= As 5inOt+Jt 5
inlj t +Ao sid    (14の関係が
あって、かつ走査点C[YItli%偏向器の回動¥f
注 θ=lF/τ)a!3 を用いて Y工== K、F” (θ)            
    αOとなる。たツレF″″1はFの逆関数、τ
は時間のパラメータ、Kは適当な比例定数である。今、
回動特性が等角速度偏向であるから、 F(τ)=ωτ ω:角速度       αつで、 YI=に、− ω =ffj  f=五:定数      (L8ω と書ける。また■弐のxIは走査面の2座標′r:光軸
長を表している。
The condition for the image point to run at a constant speed on the tansashi plane in (①) is that the intersection of the image plane and the light beam (XX, 1) is XI = 71608θx + A1 cos θs + It6c
osθ α3Y = As 5inOt+Jt 5
inlj t +Ao sid (There is a relationship of 14, and scanning point C[YItli% deflector rotation ¥f
Note θ=lF/τ)a! 3 using Y == K, F” (θ)
It becomes αO. The curve F″″1 is the inverse function of F, τ
is a time parameter and K is a suitable proportionality constant. now,
Since the rotation characteristic is constant angular velocity deflection, F(τ) = ωτ ω: angular velocity α, YI =, - ω = ffj f = 5: constant (L8ω). Also, xI in ■2 is the scanning plane 2 coordinates 'r: represents the optical axis length.

■の走査平面上で結隊する条件は、(6)式中の子午光
束結縁距離gm 2が4:3 、14式で表われるC2
に等しければ満足される。即ち gm 2 = A z               
(g以上のようにして本発明VC係るレンズ形状の溝戎
原理が(3)(4)(5) (6) (η(8) <9
)似) 1ll) C2t:3儂41609の14式で
定式「ヒされたわけだが、以下これらを計算することに
よって実際にレンズ面形状が何らかの杉で直接表現でき
ること金述べる9式中に現われた変数のうち偏向角θ、
初期子午結結像喘gm6は出射時に与えられており既知
である。
The conditions for uniting on the scanning plane of (2) are that the meridional beam joining distance gm 2 in equation (6) is 4:3, and C2 expressed by equation 14.
is satisfied if it is equal to . That is, gm 2 = A z
(g As above, the principle of groove cutting of the lens shape according to the VC of the present invention is (3) (4) (5) (6) (η(8) <9
) Similar) 1ll) C2t:3 The formula 14 of 41609 was rejected, but by calculating these, the lens surface shape can actually be expressed directly by some kind of cedar. Of which, the deflection angle θ,
The initial meridional image formation gm6 is given at the time of emission and is known.

また光軸長X19面S1m ”1の光軸との交点立置X
1+Xm等速走奔の定数には偏向角θによらない定数値
である。従って未知数は残った”Isθ2゜C1,C2
,81,82,gml、gLrrL!、A6,41.7
!、 Hm 1 、 R’In ! 、 Y工 の14
個であって、前出の14式はすべて独立であるから、連
立方程式は解けて上記14変数は囲えば偏向角θの関数
として表現できる。従って例えば面S1を表現する時は
傾きC1と光軸から面に沿った距離S1の関係を偏向角
θをパラメータとして対応させればよい。
Also, the optical axis length
1+Xm The constant of constant speed running is a constant value that does not depend on the deflection angle θ. Therefore, the unknowns remain ``Isθ2゜C1,C2
,81,82,gml,gLrrL! , A6, 41.7
! , Hm 1, R'In! , Y-ko 14
Since the above-mentioned 14 equations are all independent, the simultaneous equations can be solved and the above-mentioned 14 variables can be expressed as a function of the deflection angle θ by enclosing them. Therefore, for example, when expressing the surface S1, the relationship between the inclination C1 and the distance S1 along the surface from the optical axis may be made to correspond to the deflection angle θ as a parameter.

ところで、上述の14元連立方程式は非線形でかつ微分
項と積分項を含んでいるため、直接解くことはできず数
[直解法を用IAなければならなlA、数111!解法
としては1々考見られ本発明はそれを限定するものでは
ないが、ここでは−実施列として、微分ベクトル場にお
ける数値積分の方法で実際にこの方程式が数置計算で解
はレンズ形状が決定できること?示しておく。
By the way, since the above-mentioned 14-element simultaneous equations are non-linear and include differential terms and integral terms, they cannot be solved directly and must be solved using the direct solution method. One solution method can be considered, and the present invention is not limited thereto, but here, as a real matrix, this equation is actually numerically calculated using a method of numerical integration in a differential vector field, and the solution is that the lens shape is What can you decide? Let me show you.

微分ベクトルノ易で解くとは、方程式をすべて微分形式
で表して現在の変数の1直はすべて既知としてそれぞれ
の変数の増分(微分子数)を計算して次の変数の呟倉求
めると^うものである。前出14式を整理して微分形で
表すと、(3)(4)式は(dam −da)cos(
a !−リ= Qdtxl−da1 )cos(ds−
01)eOn(daz −dtl 1)cos(dx−
ds )= (dam −dtl 2)cos(C2−
da)8tJ(ω(6)式と(lj (12式金あわせ
て、(α凰−り)dB凰              
       ね−m6os(C2−θり)血、   
             ねりf L Qm tは(
ハ)(ハ)式を連立させて消去する。
Solving using differential vector equations means expressing all equations in differential form, assuming that all of the current variables are known, and calculating the increment (number of differential molecules) of each variable to find the next variable. It is something. If we rearrange Equation 14 and express it in differential form, Equations (3) and (4) become (dam − da) cos (
a! −ri= Qdtxl−da1 )cos(ds−
01) eOn(daz-dtl 1)cos(dx-
ds ) = (dam − dtl 2) cos(C2−
da) 8tJ(ω(6) formula and (lj (12 formulas together, (α-ri)dB-
Ne-m6os (C2-θri) blood,
Neri f L Qm t is (
C) (C) Eliminate simultaneous expressions.

また(7)〜10式は dB6 cosθ−ノ@sinθ411 = 8itw
r t dB t        e4M6sind+
、−1シ(1cogθdθ= cosαtcl!St 
                     (15d
llcosθr −At 5intj 1 dtJ 1
 +MocostJ−A65inedθ= 5ina 
2 dB 2till 5inlJ 1+L1 cas
tj 1411 t+ di(、5intj −1−、
#g cosθdtJ = C08(1! dB 2e
′7J tJ  14 t、 は 0=dltz cos(J 2−1p2 sid s 
+ #1 cosθビ右sinθldl’ t + u
 。
Also, equations (7) to 10 are dB6 cosθ-@sinθ411 = 8itw
r t dB t e4M6sind+
, -1 shi (1cogθdθ= cosαtcl!St
(15d
llcosθr −At 5intj 1 dtJ 1
+MocostJ-A65inedθ=5ina
2 dB 2till 5inlJ 1+L1 cas
tj 1411 t+ di(, 5intj -1-,
#g cosθdtJ = C08(1! dB 2e
'7J tJ 14 t, is 0=dltz cos(J 2-1p2 sid s
+ #1 cos θ bi right sin θ ldl' t + u
.

COBθ−!65itLtJdtJ         
      e)JdY工 ==  dJl2  si
nθ2+A2  costh、da2→てム−8tn”
 t+A1  cosθ1 dθl十dim 5itd
j +Ao cosθdl)            
  gxJCOXは dYI : K(F−’(θ))’dθ       
      (至)となる、 119式は単に代入すれ
ば良い、(イ)〜但)式のうち未知である微分子e!1
try da1 e d’ 2 # αd 1 sda
 2 @ d日t# d” 1 # di O# di
 1 e dJl 2 @ dYIであって、上(イ)
〜(イ)式は(2)(至)式を連立させて1個の式にし
たものが2次の方程式である以外はすべて1次であるか
ら容易に解けて、既知の微分変数dθによって例えば dtJl−Fθt(Otaθ鵞、C1,α2a S1m
 52aI10+A1*Am)・da        
           θ力のようKfi現できる。こ
れ上り列えばθ1は。
COBθ-! 65itLtJdtJ
e) JdY engineering == dJl2 si
nθ2+A2 cost, da2→temu-8tn”
t+A1 cosθ1 dθl ten dim 5itd
j +Ao cosθdl)
gxJCOX is dYI: K(F-'(θ))'dθ
Equation 119, which becomes (to), can be simply substituted into the unknown fine molecule e! 1
try da1 e d' 2 # αd 1 sda
2 @ d day t # d” 1 # di O # di
1 e dJl 2 @ dYI, upper (a)
~ Equation (a) can be easily solved because it is linear except that it is a quadratic equation by combining equations (2) and (to) into one equation, and can be easily solved using the known differential variable dθ. For example, dtJl−Fθt(Otaθ, C1, α2a S1m
52aI10+A1*Am)・da
Kfi can be expressed like θ force. If this goes up, θ1 is.

θ1−7“Fθ1dθ+θ?            
$2と積分すれば偏向角θをパラメータとして表現でき
る。たツレθ1 セ初期直である。実際の計算は初期匝
をθ1.θ2.α1.α!+ ’1g 81についてi
to a Jo * At * J2 VC’Dvsテ
’d前出c1X1.X。
θ1-7"Fθ1dθ+θ?
By integrating with $2, the deflection angle θ can be expressed as a parameter. The angle θ1 is the initial stage. The actual calculation is based on the initial value of θ1. θ2. α1. α! + '1g i about 81
to a Jo * At * J2 VC'Dvste'd c1X1. X.

、XI の直を用いて、 zo = X 1 i1=X2−XI              θj!
2=XニーX。
, using the directivity of XI, zo = X 1 i1 = X2 - XI θj!
2=X knee

として、数値積分によって計算できる。can be calculated by numerical integration.

さて、以上のようにして本発明のレンズ形状の子午面上
曲線が具体化されるわけだが、具体化する過程で現れf
c定数?L * xl e x寓a Xxm fmOs
 Kはその−Pま本発明のレンズ形状のとりうる自由度
となる。すなわち、ある適当な定数の組(X↑。
Now, as described above, the curve on the meridian plane of the lens shape of the present invention is materialized, and in the process of materialization, f
c constant? L * xl e x a Xxm fmOs
K is the degree of freedom that the lens shape of the present invention can take. That is, some suitable set of constants (X↑.

X* 赴  * 、 xZ )の1つについて1つのし
H,、gm6 ンズ形状が存在するわけであり、当然本発明はこれらす
べてのものを含んでハる。
There is one lens shape for each of X*, xZ), and the present invention naturally includes all of these.

なお、子午初期結縁距離gJを無限大に設定する、すな
わち走査用レンズに入射する前の子午光束金子行光束と
じておけば、ビーム径等が制御し易く取扱い易い光学系
となる1本発明の走査用レンズはと述のように平行光束
に:対しても当然適用可能である。
In addition, if the meridional initial connection distance gJ is set to infinity, that is, if the meridional light flux is closed to the golden flux before entering the scanning lens, the beam diameter etc. can be easily controlled and the optical system becomes easy to handle. As mentioned above, the scanning lens can of course be applied to parallel light beams.

さて、次に、球欠結(襞距離t−制御する球欠断面曲率
中ef−Re 1 、 Ra zの決定方法を説明する
Now, next, a method for determining the spherical breakage (fold distance t-controlled spherical breakage cross-sectional curvature ef-Re 1 , Ra z will be described).

<s> <6)式に細い光束が斜め入射した時の子午結
慮距離の関係式を示したが、球欠結像距離については、 が■立つ、ftZ走介モ面上に球欠方間の結像点がある
条件は gaz=lk2               130
である。(ロ)θ!380式によって球欠断面曲率半径
Rs。
<s> The relational expression of the meridional convergence distance when a narrow beam of light is obliquely incident is shown in the formula <6), but regarding the sphere defective imaging distance, The condition that there is an imaging point between gaz=lk2 130
It is. (b) θ! The radius of curvature Rs of the spherical section is determined by formula 380.

Rむが決定されるわけであるが、式中でp6.il、j
!、α1.α1.θ、θ!、θ2は前述の方法によって
子午面曲線がすでに決定されているため既知であり、g
85は与えられるため、未知数Vigsl、 gs言s
 Rj l a RII 2の4個である。従って方程
式3個に吋し冗長自由度があることになり、未知数のう
ち1つは適当に定めてよいことがわかる。
Rm is determined, and in the formula p6. il,j
! , α1. α1. θ, θ! , θ2 are known because the meridional curve has already been determined by the method described above, and g
Since 85 is given, the unknowns Vigsl, gs words
There are four Rj l a RII 2. Therefore, there are three redundant degrees of freedom in the three equations, and one of the unknowns can be determined appropriately.

列えば面形状の簡単fとのため、88里を常に無限大に
して(ロ)式の右辺第2項をOKすれば嘉1面μ球欠方
向に曲率を持たない面になる。
Since the surface shape is simple f, if 88 ri is always set to infinity and the second term on the right side of equation (b) is OK, the surface becomes a surface that has no curvature in the μ sphere direction.

なお初期球欠結慮距離g8oは任意に与えてよいが偏向
器が回転多面鏡の場合、 gs6=0 ととれば綜面の反射点と走査点とが共役慮点となりて面
倒れ補正FR能?持たせることができる。
Note that the initial sphere missing distance g8o may be given arbitrarily, but if the deflector is a rotating polygon mirror, if gs6 = 0, the reflection point and the scanning point of the heald surface become a conjugate consideration point, which improves the surface tilt correction FR function. ? You can have it.

〔実施例〕〔Example〕

本発明に係るレンズ形状の構成原理に基づいてレンズ直
形状を計算した実施列を嬉1表から嬉9表までと巣5図
から耳12図までに示す。
Practical columns in which the lens straight shape was calculated based on the principle of construction of the lens shape according to the present invention are shown in Tables 1 to 9 and Figures 5 to 12.

前述したように本発明のレンズ形状は、レンズ媒質の屈
折率n、初期結結像離go 、レンズの第1面、第2面
が光軸と交わる位置(面中心位置)xl a xZ s
光軸長XX、短資速度定数にの6個のパラメータtそれ
ぞれ独立IC変化させることができ、1つのパラメータ
の1直の組に対して1つのレンズ形状が存在する。従っ
て一見して全く異質の形状と思われるような冥施列が匝
めで多数存在し、それらすべてを掲げることは不可能で
あるため、ここには代次的な夷tM列を示すにとどめる
As mentioned above, the lens shape of the present invention is determined by the refractive index n of the lens medium, the initial imaging separation go, and the position where the first and second surfaces of the lens intersect with the optical axis (plane center position) xl a xZ s
Six parameters t, including the optical axis length XX and Tanshi rate constant, can each be changed independently IC, and one lens shape exists for one set of one parameter. Therefore, there are a large number of ritual sequences that at first glance seem to have completely different shapes, and since it is impossible to list them all, I will only show the successive Yi-tM sequences here.

以下に示す実施例に共通する計算条件は、吻レンズ媒質
の屈折率 s = 1.486◆偏向点から被走髭干面
までのf’1jll長x2冨200u −一向器は回転多面鏡偏向器で等角速度偏向・初期子午
結は距離gm6 ’ri無限大、すなわち走査用レンズ
に入射する前の光束は平行光束である。
The calculation conditions common to the examples shown below are: refractive index of the proboscis lens medium s = 1.486 ◆ f'1 jll length from the deflection point to the runned beard surface x 2 depth 200u - The single deflector is a rotating polygonal mirror deflector The constant angular velocity deflection/initial meridian connection has an infinite distance gm6'ri, that is, the light beam before entering the scanning lens is a parallel light beam.

・球欠断面曲率は篤2面にのみ付与しである。・The spherical cross-sectional curvature is only given to the 2nd surface.

・初期球欠結縁距離QBQはO1従って回転多面鏡の反
射点と走査点は共役像点となり、面倒れ補正機能が付与
されて4る。
- The initial spherical missing edge distance QBQ is O1. Therefore, the reflection point and the scanning point of the rotating polygon mirror become conjugate image points, and a surface tilt correction function is provided.

である。It is.

なお本発明によるレンズ形状は簡単な数置や数式では表
現されず、例えば数置列として結果が求まる。そこで便
宜と、子午面上の曲線形状については周知の非球面係数
を用いた式 :たXI、z’ri光軸′fr:z軸1面と元軸の交点
を原点にとったときの2座標値。
Note that the lens shape according to the present invention is not expressed by a simple number or formula, but the result is determined as a sequence of numbers, for example. For convenience, the shape of the curve on the meridian plane is expressed using the well-known aspherical coefficients: Coordinate value.

で表し、第2面の球欠断面曲率R82VC′)Vsでは
Rs 1= R’j *+Ay ”+Ey ’+Cy 
’十Dy ’+Ey ”        (38で表す
、このように近似した時の真の形状からの誤差は0.0
01%〜0.01チ程度である。
The curvature of the spherical cross section of the second surface R82VC')Vs is expressed as Rs 1= R'j *+Ay ''+Ey '+Cy
'10Dy'+Ey'' (represented by 38, the error from the true shape when approximated in this way is 0.0
It is about 0.01% to 0.01 inch.

飢1表、鵜2表、第3表に@1面S1の子午平面上の曲
線形状を示す係数”’ l a Bl m C1a D
l IIi k、窮4表、@5fi、第6fiK@2f
fiS、O子午モ面上の曲線形状を示す係数Rmz、B
@、C!aD2+Bst、第7fi、wXg表、@9表
に球欠断面方向の曲率半径変化を示す係数Ra m A
8・C8・D8. is ?、パラメータθe a x
t h Xs effl:、すせて計nしたIIiを掲
げる。たツレ有効偏向角θeは、前出18式の走査速度
係数にのかわりに用いたパラメータで、有効走査幅’k
 200 mと定めると、θ−=ヤ(rαd) である@ X1axiは前出のとおり、第1面S1第2
面82が元軸と交わる点の位置である。なお、前述の共
通の計算条件のもとで、パラメータの組θe a xt
 r Xx Off&が同じものは同一のレンズとなる
In Table 1, Table 2, and Table 3, there are coefficients that indicate the shape of the curve on the meridian plane of @1 surface S1.
l IIi k, 4th table, @5fi, 6th fiK @2f
fiS, O coefficient indicating the curve shape on the meridian plane Rmz, B
@,C! aD2+Bst, 7th fi, wXg table, @9 table shows the coefficient Ram A that shows the change in the radius of curvature in the direction of the spherical cut section.
8・C8・D8. Is it? , parameter θe a x
th The effective deflection angle θe is a parameter used in place of the scanning speed coefficient in Equation 18 above, and the effective scanning width 'k
If it is set as 200 m, then θ-=ya (rαd)@
This is the position of the point where the plane 82 intersects with the original axis. Note that under the above-mentioned common calculation conditions, the parameter set θe a xt
Lenses with the same r Xx Off & are the same lenses.

さらに、艮に示した実施列中のβ〈りかのものについて
、子午面上の曲線形状の概観を、元略図とともに第5図
から再12図までに示した。た輩し曲111i1は光軸
について対称であるため、元軸の逆側は省略しである。
Furthermore, the outline of the curve shape on the meridian plane for β in the row shown in Fig. 5 is shown in Figs. 5 to 12 along with the original schematic diagram. Since the transferred music 111i1 is symmetrical about the optical axis, the side opposite to the original axis is omitted.

ここで掲載された実施列にすべて本発明のwt成原理に
従って、球欠鐵面湾曲収差、子午1面湾曲収差は完全に
除去されており、また歪み特性は短資点が等速移動する
ように完全に定められている。
In all the implementations listed here, in accordance with the wt formation principle of the present invention, spherical iron surface curvature aberration and meridional 1-plane curvature aberration are completely eliminated, and the distortion characteristics are such that the short point moves at a constant speed. completely defined.

たソし、完全というのは理想的な状態であって東際のレ
ンズ形状には形状を算出する時の数1@計算誤差、ある
いは製造誤差等のため法面湾曲収差、歪曲′#性収差が
多少は生じる。もちろんそれらの収差にはある程度の許
容範囲があり、その範囲内であれば走査用レンズとして
有効であるから、本発明はそれらを除外するものではな
い。
However, perfection is an ideal state, and the lens shape at the east end has slope curvature aberration and distortion due to calculation errors when calculating the shape, manufacturing errors, etc. occurs to some extent. Of course, these aberrations have a certain tolerance range, and within that range, the lens is effective as a scanning lens, so the present invention does not exclude them.

第  1  表 40、40. 60.  289.26−.1292E
−05,1O12E−09,42QOE−12−,31
59E−15第2表 45.40. 80.  227.44−.6081E
−06,3567E−09−,8526E−13,15
40E−16第  3 x、 m、l;ju、    8[1,25−,200
3E−0’ rye  ooooooooo  066
C;6C;6C;  (00呻聾すマリリリリリ  リ
%啼すマリリ啼  !1ci6ciδ66 666o6
o  66c;666 66t666 66o’cic
;  c;第5表 45.40.80.−80.12−.1658E−06
,3407E−09−,1[144E−12,4259
E−16第6表 50.25+130.−92.22.12511E−L
lcl、コ%ZI+;−1u−,Au//W−AJ4t
lu:111−A/第7表 40、40. 60.   18.[12,2292C
−02−,3520E−05,7349E−011−,
6105E−11,1782E−14第8表 45.40. 80.   20.91 .3000E
−03,2579E−05−,2011E−08,58
93E−12−,5341E−16第9表 第13図に本発明VC基づくレンズ形状の一実施例を用
いたレーザービームプリンタの光学系の全本隊を表tf
I+視図を示す、半導体レーザー2から出射した光束は
コリメータレンズ3で子行光束となり、シリンドリカル
レンズ4によって球欠方向にのみ収束させられて回転多
面鏡偏向器6の鏡面付近で線状結像する。光束は多面鏡
5の回転によって子午千面内で等角速度偏向され、本発
明による定食用レンズ1を通過した後、感光ドラム7上
に結像する1球欠方向については鏡面と感光ドラム面が
共役結慮点となっており面倒れ補正系をなしている。像
点は本発明の定食用レンズIVcよって感光ドラム7の
軸方向に等速定食され、像面湾曲なく直線上に結はする
。この走査1回につき感光ドラムが1ピツチだけ回転し
てそれが繰返されることによって感光ドラム上に潜ばか
形成される。
1st Table 40, 40. 60. 289.26-. 1292E
-05,1O12E-09,42QOE-12-,31
59E-15 Table 2 45.40. 80. 227.44-. 6081E
-06,3567E-09-,8526E-13,15
40E-16 3rd x, m, l;ju, 8[1,25-,200
3E-0' rye ooooooooooo 066
C; 6C; 6C;
o 66c; 666 66t666 66o'cic
c; Table 5 45.40.80. -80.12-. 1658E-06
,3407E-09-,1[144E-12,4259
E-16 Table 6 50.25+130. -92.22.12511E-L
lcl, co%ZI+;-1u-, Au//W-AJ4t
lu:111-A/Table 7 40, 40. 60. 18. [12,2292C
-02-, 3520E-05, 7349E-011-,
6105E-11, 1782E-14 Table 8 45.40. 80. 20.91. 3000E
-03,2579E-05-,2011E-08,58
93E-12-, 5341E-16 Table 9 Figure 13 shows the entire optical system of a laser beam printer using an embodiment of the lens shape based on the VC of the present invention.
The light beam emitted from the semiconductor laser 2, shown in the I+ view, becomes a consonant light beam by the collimator lens 3, and is converged only in the spherical direction by the cylindrical lens 4, forming a linear image near the mirror surface of the rotating polygon mirror deflector 6. do. The light beam is deflected at a constant angular velocity within the meridian plane by the rotation of the polygon mirror 5, and after passing through the set meal lens 1 according to the present invention, the light beam is formed on the photosensitive drum 7 in the one-sphere direction, where the mirror surface and the photosensitive drum surface are It is a conjugate connection point and forms a surface tilt correction system. The image point is fixed at a constant velocity in the axial direction of the photosensitive drum 7 by the set food lens IVc of the present invention, and is focused on a straight line without field curvature. The photosensitive drum rotates by one pitch for each scan, and as this is repeated, a hidden spot is formed on the photosensitive drum.

〔効果〕〔effect〕

以上述べてきたように、本発明の光走査¥装置は、定食
用レンズが、光束が被定食モ面上で等速で移動するよう
な歪み¥f註を有し、かつ被走査甲面上における光束の
像面湾曲収差が零またはほとんど零となる如く両面が非
球面で片面または両面が回転非対称な単玉レンズである
ため、単玉であってもほとんど収差がなくきわめて良好
な結像スポットが得られ、また広角偏向で光軸長の短い
走査用レンズがNl1iZできる。また同じ理由により
レンズ媒質が低屈折率であっても設計との何らの支障に
ならず、従ってレンズ媒質のプラスチック化が可能とな
る。従って小型で低価格、しかも高性能な光走査装置を
提供することができる。という効果fc有する。
As described above, in the optical scanning device of the present invention, the lens for set meals has a distortion such that the light beam moves at a constant speed on the surface to be scanned, and Because it is a single lens with aspherical surfaces on both sides and rotationally asymmetric on one or both sides so that the field curvature aberration of the light beam at is zero or almost zero, even with a single lens there is almost no aberration and an extremely good imaging spot. In addition, a scanning lens with a wide angle deflection and a short optical axis length can be obtained. Furthermore, for the same reason, even if the lens medium has a low refractive index, there is no problem with the design, and therefore the lens medium can be made of plastic. Therefore, it is possible to provide a compact, low-cost, and high-performance optical scanning device. It has the effect fc.

さらにま九回転多面鏡の反射点近傍で球欠方向にりβて
結像させるよう購改することによって、新たにレンズを
付加することなく、多面鏡の面倒れ補正FM能を付与す
ることができ、より代価格、高性能な光定食装置を提供
することができるという効果も胃する。
Furthermore, by purchasing a lens that forms an image at β angle in the direction of the spherical defect near the reflection point of the polygon mirror, it is possible to provide the FM function for correcting the surface tilt of the polygon mirror without adding a new lens. It is also advantageous to be able to provide a high-performance optical set meal device at a lower price.

図面の館11iな説明 41図1″!:本発明の尤定食装置の概そのf′g敗を
示す原理図、嫡2図は本発明のレンズ形状をEd成する
原理を説明するための原理図、飢3図は本発明の定食用
レンズが嗅玉両非球面レンズで実現可能であることを説
明するための原理図、第4図は本発明の定食用レンズの
形状を算出する方法を説明するための原理図、襄5図か
ら第12図までは本発明のレンズ形状の実施列をそれぞ
れ示した図、婿13図は本発明の光走奔装置全体の実施
列を示す争F祝図である。
Drawing Library 11i Explanation 41 Figure 1''!: A principle diagram showing the outline of the fixed meal device of the present invention, the second figure is a principle for explaining the principle of forming the lens shape of the present invention. Figure 3 is a principle diagram for explaining that the lens for set meals of the present invention can be realized with a bi-aspherical lens of the olfactory bulb, and Figure 4 shows the method for calculating the shape of the lens for set meals of the present invention. 5 to 12 are diagrams showing the implementation sequence of the lens shape of the present invention, and Figure 13 is a diagram showing the implementation sequence of the entire light traveling device of the present invention. It is a diagram.

図中 1・・走斑用レンズ 2・・半纏本レーザー5・・多面
鏡    6・e回転多面婉偏向器7・・破走育面(感
光ドラム) 臥  と 出願人 セイコーエプソン味式会社 代理人 弁理士 最 上  WIftl1名″・1・・
 。
In the figure: 1. Lens for spotting 2. Half-length laser 5. Polygonal mirror 6. E-rotating polygonal deflector 7. Photosensitive drum and Applicant Seiko Epson Ajishiki Company Agent Patent Attorney Mogami WIftl1 person''・1・・
.

・  “ノ′ 第1図 第2図 第3図 第4図 第5図 S! 矢−40 χりX+  χ=X2 18WI χ−×1   χ1×2 第9図。· "of' Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 S! Arrow-40 χriX+ χ=X2 18WI χ−×1 χ1×2 Figure 9.

S。S.

ズ1×1        χコ×2 第10図。1×1 χ×2 Figure 10.

ス〉×1      χコ×2 第1I図 jIIz図S〉×1   χ ×2 Figure 1I jIIz diagram

Claims (1)

【特許請求の範囲】[Claims] (1)細い光束を出射する光源と、該光束を等角速度で
偏向走査する回転多面鏡偏向器と、該光束を前記回転多
面鏡の鏡面付近で偏向面に平行な線状に結像する線状結
像光学系と、該偏向器で偏向された光束を被走査平面上
に結像させる走査用レンズとを備え、前記走査用レンズ
は、被走査平面上での光軸から結像位置までの距離Yと
偏向角θとが完全またはほぼ完全に比例し、かつ被走査
平面上の任意の位置における光束の球欠像面湾曲収差と
子午像面湾曲収差の両方が零またはほとんど零になる如
く両面が非球面であって片面もしくは両面が回転非対称
に構成された面倒れ補正機能を有する単玉レンズである
ことを特徴とする光走査装置。
(1) A light source that emits a narrow light beam, a rotating polygon mirror deflector that deflects and scans the light beam at a constant angular velocity, and a line that images the light beam into a line parallel to the deflection surface near the mirror surface of the rotating polygon mirror. a scanning lens that forms an image of the light beam deflected by the deflector on a scanned plane; The distance Y and the deflection angle θ are completely or almost completely proportional, and both the spherical field curvature aberration and the meridional field curvature aberration of the light beam at any position on the scanned plane are zero or almost zero. An optical scanning device characterized in that it is a single lens having an aspherical surface on both sides, one or both of which has a rotationally asymmetrical structure and has a surface tilt correction function.
JP28024985A 1985-12-13 1985-12-13 Photoscanning device Pending JPS62139525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28024985A JPS62139525A (en) 1985-12-13 1985-12-13 Photoscanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28024985A JPS62139525A (en) 1985-12-13 1985-12-13 Photoscanning device

Publications (1)

Publication Number Publication Date
JPS62139525A true JPS62139525A (en) 1987-06-23

Family

ID=17622373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28024985A Pending JPS62139525A (en) 1985-12-13 1985-12-13 Photoscanning device

Country Status (1)

Country Link
JP (1) JPS62139525A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223313A (en) * 1988-07-13 1990-01-25 Hitachi Ltd Laser scanning device and aspherical scanning lens
JPH08278459A (en) * 1994-11-30 1996-10-22 Samsung Electro Mech Co Ltd Optical scanner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223313A (en) * 1988-07-13 1990-01-25 Hitachi Ltd Laser scanning device and aspherical scanning lens
JPH0769521B2 (en) * 1988-07-13 1995-07-31 株式会社日立製作所 Optical scanning device and scanning lens
JPH08278459A (en) * 1994-11-30 1996-10-22 Samsung Electro Mech Co Ltd Optical scanner

Similar Documents

Publication Publication Date Title
JPH10142543A (en) Optical scanning device
JP3620767B2 (en) Reflective scanning optical system
JPS6236210B2 (en)
JPH1138348A (en) Scanning image forming optical system, and optical scanning device
JPH0760221B2 (en) Optical scanning device
JPS62139525A (en) Photoscanning device
JPH0221565B2 (en)
JPH0192717A (en) Optical scanner
JPH0563777B2 (en)
JPS62138823A (en) Photoscanning device
US5204769A (en) Postobjective optical deflector
JP3804886B2 (en) Imaging optical system for optical scanning device
JP3075056B2 (en) Scanning optical system
JP2621838B2 (en) Optical scanning device
JP2695208B2 (en) Fθ lens system in optical scanning device
JP3381333B2 (en) Optical scanning device
JP2671890B2 (en) Optical scanning device
JPS62139521A (en) Photoscanning device
JP2671894B2 (en) Scanning lens
JP2671891B2 (en) Optical scanning device
JP2671892B2 (en) Optical scanning device
JPS62138826A (en) Photoscanning device
JPS62139522A (en) Photoscanning device
JP2671893B2 (en) Recording device
JP3364525B2 (en) Scanning imaging lens and optical scanning device