JPS62139274A - Air cooling type fuel cell stack - Google Patents

Air cooling type fuel cell stack

Info

Publication number
JPS62139274A
JPS62139274A JP60279853A JP27985385A JPS62139274A JP S62139274 A JPS62139274 A JP S62139274A JP 60279853 A JP60279853 A JP 60279853A JP 27985385 A JP27985385 A JP 27985385A JP S62139274 A JPS62139274 A JP S62139274A
Authority
JP
Japan
Prior art keywords
air
reaction
cooling
cell stack
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60279853A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Kamoshita
友義 鴨下
Toshio Hirota
広田 俊夫
Takashi Ouchi
崇 大内
Takashi Ujiie
氏家 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60279853A priority Critical patent/JPS62139274A/en
Publication of JPS62139274A publication Critical patent/JPS62139274A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain an air cooling type fuel cell stack in which scatter of electrolyte is decreased, water produced is efficiently recovered, and maintenance is easy by mounting unit cells, a cell stack, inlet manifolds, and outlet manifolds. CONSTITUTION:Fuel gas inlet and outlet manifolds 6A, 6B and air inlet and outlet manifolds 51, 52 are mounted on four sides of a cell stack 20 comprising a plurality of unit cells. A common passage 51A for reaction air 80A and cooling air 80B is formed in the inlet manifold 51. A reaction air passage 52A partitioned with a partition 52C and a cooling air passage 52B is formed in the outlet manifoled 52. The cooling air 80B supplied from an inlet 11A of a cooling air chamber 11 is blocked so as not to enter the reaction air passage 52A by a partition 13 and supplied to the cooling air passage 52B. A reaction gas chamber formed in the back of the cooling air chamber 11 is connected to the reaction air passage 52A.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は例えば)ん酸を電解質とする空冷式のマトリッ
クス型燃料電池セルスタック、ことに反応空気および冷
却空気の通路の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to, for example, an air-cooled matrix-type fuel cell stack using phosphoric acid as an electrolyte, and particularly to the structure of passages for reaction air and cooling air.

〔従来技術とその問題点〕[Prior art and its problems]

第7図は従来技術の一例を示すセルスタックの要部の斜
視図、第8図はセルスタックの概略水平断面図である。
FIG. 7 is a perspective view of a main part of a cell stack showing an example of the prior art, and FIG. 8 is a schematic horizontal sectional view of the cell stack.

第7図において、1は空気電極。In FIG. 7, 1 is an air electrode.

電解質を保持したマトリックス、燃料電極の積層体から
なる単電池、2は両面に互いに直角に交差する複数の溝
からなる燃料ガス通路6および空気通路4がそれぞれ形
成されたガス不透過性のカーボン板からなるセパレート
板でおり、マトリックス1及びセパレート板2を交互に
積み重ねてなるセルスタック9が形成されておシ、第8
図に示すように、セルスタック9の互いに対向する2組
の側面側に燃料ガス通路6に連通ずる一対のマニホール
ド6A、6B及び空気通路4に連通する一対のマニホー
ルド5A 、5Bをそれぞれ気密に固定し、マニホール
ド6A 、 6B間には燃料ガスを。
2 is a gas-impermeable carbon plate having fuel gas passages 6 and air passages 4 each formed of a plurality of grooves crossing each other at right angles on both sides; A cell stack 9 is formed by alternately stacking the matrix 1 and the separate plates 2.
As shown in the figure, a pair of manifolds 6A and 6B that communicate with the fuel gas passage 6 and a pair of manifolds 5A and 5B that communicate with the air passage 4 are airtightly fixed to two sets of opposing side surfaces of the cell stack 9, respectively. Then, supply fuel gas between manifolds 6A and 6B.

マニホールド5A、5B関には空気をそれぞれ矢印で示
すように供給することによシ、燃料ガス中の水素と空気
中の酸素とが電気化学的に反応して直流電力を発生させ
ることができる。
By supplying air to the manifolds 5A and 5B as shown by the arrows, the hydrogen in the fuel gas and the oxygen in the air react electrochemically to generate DC power.

ところで、上記したシん酸を電解質とする燃料電池を効
率よく運転するには、燃料電池の運転温度を通常190
℃程度の温度に維持して運転される。一方、燃料電池は
電極反応によシその発生電力のエネルギに相応する反応
熱を発生することがら、燃料電池を前記運転温度に維持
するには、運転中に電池の冷却を行う必要がある。この
場合の冷却方式としては、一般に水、ガス、油等を冷却
媒体として冷却が行われる。このうち最も一般的に採用
されている方式は、第8図に示すようにセパレート板2
の空気通路4に電極反応に要する反応空気量よシも多い
過剰な空気量を供給配管81.82およびブロワ−71
を介して供給し、一部の空気量を電極反応に消費しつつ
、同時に残シの余剰空気の通流によシミ池の発生熱の除
熱を行う方法である。
By the way, in order to efficiently operate the fuel cell using the above-mentioned cynic acid as an electrolyte, the operating temperature of the fuel cell is usually set at 190℃.
It is operated while maintaining the temperature at around ℃. On the other hand, since fuel cells generate reaction heat corresponding to the energy of the generated electric power due to electrode reactions, in order to maintain the fuel cell at the operating temperature, it is necessary to cool the cell during operation. In this case, cooling is generally performed using water, gas, oil, or the like as a cooling medium. The most commonly used method is to separate the separate plates 2 and 2 as shown in Figure 8.
An excess amount of air, which is larger than the amount of reaction air required for the electrode reaction, is supplied to the air passage 4 by pipes 81 and 82 and the blower 71.
In this method, a part of the air volume is consumed for the electrode reaction, and at the same time, the heat generated in the stain pond is removed by passing the remaining surplus air.

ところで、単電池内のマトリックスに含浸保持されてい
るシん酸等の電解質は、運転時に蒸発。
By the way, electrolytes such as cynic acid, which are impregnated and retained in the matrix within a cell, evaporate during operation.

飛散し反応ガスの流れに乗って電池外に持ち去られ、マ
トリックス内の保持量が徐々に減少し、この場合の電解
質の消失量は反応ガスの流量に比例して増大する。した
がって反応ガスである空気を前述のように過剰に供給し
て燃料電池の冷却を行う方法では、電解質の飛散消失量
が多くなシ、この壕までは燃料電池を長期間効率よく安
全に運転することが困難となシ、このために運転の途中
で電解質の補給を頻繁に行う等の面倒な運転管理が必要
となるという問題がある。また、単電池1の反応生成水
を含む排空気を出口側マニホールド5B、排空気配管8
4.87および流量調整弁72を介して図示しない気水
分離器で受け、水分を凝縮分離して回収水を例えば燃料
の改質などに再利用しようとする場合、冷却のための過
剰な空気によシ排空気中の水分が薄められているために
、気水分離器での回収能率が低下するという問題がある
。そこで、排空気の一部を流量調整弁76を有する循環
配管85を介してブロワ−71の吸気側に戻し、空気通
路4中を再循環させることによジ水蒸気濃度を高め、気
水分離器における回収効率を高める制御方法が行われる
。このようにすることによシ、水分の回収効率を高める
ことができるとともに、吸気配管81を介して吸入され
る空気と排空気が混合されてセルスタック10の入口側
空気を燃料電池の冷却に好適な温度に保つことができる
。しかしながら、電極反応によシ酸素濃度が低下した排
空気が空気通路4内を再循環するととKよシ、セルスタ
ックの電極反応を低下させるという問題が発生する。一
方、冷却水を使用する方式では、冷却媒体による電池の
電気的短絡を防ぐこと、及び水の配管が反応ガス供給系
のマニホールドと干渉するのを防ぐ必要がある等、水の
配管系を含む冷却装置の構造が複雑になる。このために
実際には各単電池の数セルごとに冷却板を介装して水冷
却管を配管する構造が採られているカミこの方式では冷
却板に隣接する単電池は強力な冷却作用を受けるのに対
し、それ以外の冷却板から離れた単電池にたいする冷却
効果が低く、このためにセルスタックを構成する単電池
の相互間に温度差が生じ、適正な電池の冷却性能が得ら
れないという問題がある。また冷却媒体として水の代わ
シに空気を用い、数セル置きに燃料電池のセルスタック
内に介装した冷却板に冷却空気通路を設は先記した反応
空気と一緒に同じマニホールドを通じて並列的に空気の
供給を行い、その一部を反応ガスとして単電池の電極に
供給し、残シの空気流を冷却板の空気通路に流して電池
の冷却を強化する方式も特開昭58−154181号公
報に開示されて知られている。しかしながら、この方式
も前記の水冷方式と同様にセルスタックを構成する単電
池の相互間に温度差を生ずるという問題があるほか、反
応空気通路と冷却空気通路とが共通なマニホールド内に
開口しているので、両者の間での空気流量の配分調整が
困難であシ、仮に冷却空気通風量を増すためにマニホー
ルドへの空気導入量を増加すると、これと同時に反応ガ
ス供給路への空気供給量も必然的に多くなって電極反応
に要する量以上の過剰供給状態となシ、電解質の飛散消
失の増大を招くという問題点が再び発生する。
The electrolyte is scattered and carried out of the cell by the flow of the reaction gas, and the amount retained within the matrix gradually decreases, and the amount of electrolyte lost in this case increases in proportion to the flow rate of the reaction gas. Therefore, in the method of cooling the fuel cell by supplying air, which is a reactive gas, in excess as described above, a large amount of electrolyte is scattered and lost. Therefore, there is a problem in that troublesome operation management such as frequent replenishment of electrolyte during operation is required. In addition, the exhaust air containing the reaction product water of the unit cell 1 is transferred to the outlet side manifold 5B and the exhaust air piping 8.
4.87 and the flow rate regulating valve 72 in a steam/water separator (not shown) to condense and separate moisture and reuse the recovered water for, for example, reforming fuel, excess air for cooling Since the moisture in the exhaust air is diluted, there is a problem in that the recovery efficiency in the steam separator decreases. Therefore, a part of the exhaust air is returned to the intake side of the blower 71 via the circulation pipe 85 having the flow rate adjustment valve 76 and recirculated in the air passage 4 to increase the concentration of water vapor. A control method is implemented to increase the recovery efficiency in. By doing so, the water recovery efficiency can be increased, and the air taken in through the intake pipe 81 and the exhaust air are mixed, and the air on the inlet side of the cell stack 10 is used to cool the fuel cell. Can be maintained at a suitable temperature. However, if the exhaust air whose oxygen concentration has decreased due to the electrode reaction is recirculated within the air passage 4, a problem arises in that the electrode reaction of the cell stack is reduced. On the other hand, in systems that use cooling water, it is necessary to prevent electrical short circuits of the batteries due to the cooling medium, and to prevent the water piping from interfering with the manifold of the reaction gas supply system, including the water piping system. The structure of the cooling device becomes complicated. For this purpose, a structure is actually adopted in which a cooling plate is interposed between every few cells of each cell and a water cooling pipe is installed.In this method, the cells adjacent to the cooling plate have a strong cooling effect. In contrast, the cooling effect for cells that are far away from other cooling plates is low, and this creates a temperature difference between the cells that make up the cell stack, making it impossible to obtain proper battery cooling performance. There is a problem. In addition, air is used as a cooling medium instead of water, and a cooling air passage is installed in the cooling plate installed in the fuel cell cell stack every few cells. Japanese Patent Laid-Open No. 58-154181 discloses a method in which air is supplied, a part of which is supplied as a reaction gas to the electrodes of the single cell, and the remaining air flow is passed through the air passage of the cooling plate to strengthen the cooling of the battery. It is disclosed in the official gazette and is known. However, like the water-cooling method described above, this method also has the problem of creating a temperature difference between the cells that make up the cell stack, and the reaction air passage and cooling air passage are open in a common manifold. Therefore, it is difficult to adjust the distribution of the air flow rate between the two, and if the amount of air introduced into the manifold is increased to increase the amount of cooling air ventilation, the amount of air supplied to the reaction gas supply path will be increased at the same time. If the amount of electrolyte inevitably increases, resulting in an oversupply state that exceeds the amount required for the electrode reaction, the problem of increased scattering and loss of electrolyte will occur again.

〔発明の目的〕[Purpose of the invention]

本発明は前述の状況に鑑みてなされたもので、電解質の
飛散消失が少く、反応生成水の分離回収が容易で、かつ
セルスタックの温度を精度よく制御できる空冷式燃料電
池セルスタックを提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and provides an air-cooled fuel cell stack in which scattering and loss of electrolyte is small, reaction product water can be easily separated and recovered, and the temperature of the cell stack can be controlled accurately. The purpose is to

〔発明の要点〕[Key points of the invention]

本発明は、セパレート板を燃料ガス側と空気側とに分割
し、空気側セパレート板の空気電極に接する側には反応
空気室、反空気電極側には冷却空気室をそれぞれの入口
部が共通の入口側マニホールドに連通ずるよう形成する
とともに、両空気室の出口側に配された隔壁によシ出ロ
部を七バレート板の幅方向の異なる位置に形成し、出口
側マニホールド内に両空気室の出口部に対応して区画さ
れた反応空気通路および冷却空気通路を設け、両空気通
路を公知の配管系統、例えば反応空気通路を気水分離器
系統に、冷却空気通路を排気系統および循環系統に連通
させるよう構成したことによシ、入口マニホールドに供
給された空気は両空気室の入口部で反応空気と冷却空気
とに分離され、かつ出口部の大きさおよび位置が隔壁に
より制御されて両空気室に適量の反応空気および冷却空
気が分離供給されるようにしたものである。
In the present invention, a separate plate is divided into a fuel gas side and an air side, and the air side separate plate has a reaction air chamber on the side in contact with the air electrode and a cooling air chamber on the side opposite to the air electrode, each having a common inlet. The air chambers are formed so that they communicate with the inlet side manifold, and the partition walls arranged on the outlet sides of both air chambers form the outlet portions at different positions in the width direction of the seven barret plates. A reaction air passage and a cooling air passage are provided corresponding to the outlet of the chamber, and both air passages are connected to a known piping system, for example, the reaction air passage is connected to a steam separator system, and the cooling air passage is connected to an exhaust system and a circulation system. Due to the configuration in which the air is communicated with the system, the air supplied to the inlet manifold is separated into reaction air and cooling air at the inlets of both air chambers, and the size and position of the outlet are controlled by the partition wall. This allows appropriate amounts of reaction air and cooling air to be separately supplied to both air chambers.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図は本発明の実施例を示す水平断面図および配管系
統図であシ、空気側セパレート板の空気室を通る水平断
面図を示したものである。図において、20は複数の単
位組の積層組立体からなるセルスタックでアう、セルス
タックの四つの側面側には燃料ガスの入口側および出口
側一対のマニホールド6Aおよび<SB、ならびに空気
の入口側および出口側一対のマニホールド51および5
2が設けられ、入口側マニホールド51には反応空気8
0A、冷却空気80Bの共通通路51Aが、出口側マニ
ホールド52には隔壁52Cで区画された反応空気通路
52Aおよび冷却空気通路52Bが形成されている。1
2はカーボン板等からなる空気側セパレート板、11は
セパレート板12の一方の面側に形成された格子状に連
通した凹溝からなる冷却空気室であシ、入口部11Aか
ら流入した冷却空気80Bは出口側に配された隔壁13
によって反応空気通路52Aへの流入が阻止され、出口
部11Bを介して冷却空気通路52Bに流入するよう構
成されておシ、冷却空気室11の背面側に形成された図
示しない反応空気室は反応空気通路52Aに連通ずるよ
う構成されている。
FIG. 1 is a horizontal sectional view and a piping system diagram showing an embodiment of the present invention, and is a horizontal sectional view passing through an air chamber of an air side separate plate. In the figure, reference numeral 20 denotes a cell stack consisting of a stacked assembly of a plurality of units.On the four sides of the cell stack, there are a pair of manifolds 6A and SB on the fuel gas inlet and outlet sides, and an air inlet. A pair of side and outlet side manifolds 51 and 5
2 is provided, and the inlet side manifold 51 is provided with reaction air 8.
A common passage 51A for cooling air 80A and cooling air 80B is formed in the outlet side manifold 52, and a reaction air passage 52A and a cooling air passage 52B partitioned by a partition wall 52C are formed. 1
Reference numeral 2 denotes an air-side separate plate made of a carbon plate or the like, and 11 is a cooling air chamber consisting of concave grooves connected in a lattice shape formed on one side of the separate plate 12. Cooling air flows in from the inlet portion 11A. 80B is the partition wall 13 arranged on the exit side
The reaction air is prevented from flowing into the reaction air passage 52A, and is configured to flow into the cooling air passage 52B via the outlet portion 11B. It is configured to communicate with the air passage 52A.

第2図は前述の実施例におけるセルスタックの要部の斜
視図でsb、)ん酸などの電解質を含浸したマトリック
スIA、燃料電極1B、空気電極1Cの積層体からなる
単電池1と、凹溝状の燃料ガス室6を有するセパレート
板16と、両面にそれぞれ凹溝からなる反応空気室14
および冷却空気室11を有する空気側セパレート板12
が配されて単位組10が形成され、複数の単位組10が
積層されてセルスタック20が形成されておシ、反応空
気室14の出口側には隔壁15により位置が規制された
出口部14Bが、冷却空気室11の出口側には隔壁13
によ多位置が規制された出口部11Bが互いに幅方向の
異なる位置に開口するよう形成され、凹溝からなる反応
空気室14および冷却空気室11はそれぞれ単電池1お
よびセパレート板13と密接することによシ、入口部、
出口部以外の気密が保持される。
FIG. 2 is a perspective view of the main parts of the cell stack in the above-mentioned embodiment. A separate plate 16 having a groove-shaped fuel gas chamber 6, and a reaction air chamber 14 having grooves on both sides.
and an air side separate plate 12 having a cooling air chamber 11
are arranged to form a unit set 10, and a plurality of unit sets 10 are stacked to form a cell stack 20. On the outlet side of the reaction air chamber 14, there is an outlet part 14B whose position is regulated by a partition wall 15. However, there is a partition wall 13 on the outlet side of the cooling air chamber 11.
The outlet portions 11B, which are regulated in multiple positions, are formed to open at different positions in the width direction, and the reaction air chamber 14 and the cooling air chamber 11, which are formed by grooves, are in close contact with the cell 1 and the separate plate 13, respectively. Especially at the entrance,
Airtightness is maintained except for the outlet.

第3図および第4図は前述の実施例における空気室の構
造を示す水平断面図であシ、第5図は冷却空気室、第4
図は反応空気室の状態をそれぞれ示したものである。図
において、冷却空気室11および反応空気室14は互い
にほぼ対称な格子状の凹溝によって形成され、入口側マ
ニホールド51の共通通路51A側にはほぼ同じ数と大
きさの入口部11A、14Aが形成され、出口側には隔
壁15または15によシ位置と数が規制された出口部1
1Bおよび14Bが形成されることによ気冷却空気室1
1は出口側マニホールド52の冷却空気通路52Bに、
反応空気室14は反応空気通路52Aに連通ずるよう構
成されておシ、出口部11Bの数を出口部14Bの数よ
シ多くすることによシ、冷却空気80Bの量を反応空気
80Aの量に比べて無理なく多くすることができるとと
もに、複数の単位紙の空気室にほぼ均等に分布して空気
を配分することができる。
3 and 4 are horizontal sectional views showing the structure of the air chamber in the above-mentioned embodiment, and FIG.
The figures show the conditions of the reaction air chambers. In the figure, the cooling air chamber 11 and the reaction air chamber 14 are formed by lattice-shaped concave grooves that are substantially symmetrical to each other, and on the common passage 51A side of the inlet side manifold 51, there are inlet portions 11A and 14A of approximately the same number and size. An exit portion 1 is formed, and the location and number of exit portions are regulated by a partition wall 15 or 15 on the exit side.
1B and 14B are formed to form an air cooling air chamber 1.
1 is connected to the cooling air passage 52B of the outlet side manifold 52,
The reaction air chamber 14 is configured to communicate with the reaction air passage 52A, and by increasing the number of outlet portions 11B than the number of outlet portions 14B, the amount of cooling air 80B can be reduced to the amount of reaction air 80A. In addition to being able to reasonably increase the amount of air compared to the above, it is also possible to distribute air almost evenly to the air chambers of a plurality of unit sheets.

上述のように構成されたセルスタックにおいて、改質器
75から配管94およびマニホールド6Aを介してセル
スタック20の燃料ガス室に水素リッチな燃料ガス60
Aを供給するとともに、プロワ−71および入口側マニ
ホールド51を介して反応空気室14および冷却空気室
11に空気を送ることによシ、単電池の電極反応によシ
発電を行うことができる。また、反応を終った燃料排ガ
スはマニホールド6B、配管95を介して改質器75の
燃焼室に送られて可燃ガス成分が燃焼除去され、燃焼に
よって生ずる熱エネルギーは燃料ガスの改質の熱源とし
て利用される。一方反応を終って酸素濃度が低下した反
応空気80Aは、反応空気通路52A、配管86を介し
て気水分離器73に送られ、反応生成水が凝縮回収され
、排空気は排気管88を介して大気中に放出されるが、
冷却空気80Bが分離されたことKよシ過剰空気量が減
シ電解質の飛散消失を低減でき、かつ水分濃度が高まる
ことによシ気水分離器73における生成水の回収効率を
高めることができ、さらに回収水は水処理器74を介し
て改質器75における原料への添加水として利用される
。一方冷却空気室11を通ることによシ温まった冷却空
気80Bは冷却空気通路52B、配管84を介してその
一部が排空気調整弁72.排気管87を介して大気中に
放出されることによ)、放出された空気量および気水分
離器75を介して放出される空気量に見合う新しい空気
が吸入管81,82.プロワ−71を介して入口側マニ
ホールド51に送シ込まれるとともに、冷却空気の一部
は循環空気調整弁76を有する循環配管85を介してプ
ロワ−71の吸気側に環流される。したがって、排空気
調整弁72を調整して大気中に放出される反応空気量お
よび冷却空気量を制御すると同時に循環空気調整弁76
によシ吸入空気に混合される循環空気量を制御すれば、
入口側マニホールド51内の共通通路51Aにおける空
気温度を自在に制御することが可能であシ、例えばセル
スタックの発電量に対応して空気温度を制御することに
よシ、セルスタックを発電に好適な190℃程度の温度
に精度よく保持することができる。また、反応空気室1
4の入口部14Aおよび冷却空気室110入口部11A
をともに共通通路51Aに並列して開口させるよう構成
したことによシ、各単位紙10の反応空気室および冷却
空気室に一定温度に制御された空気を分離供給すること
ができるので、各単位紙の単電池間の温度差を最小限に
抑さえることができしたがって冷却性能および発電効率
の高い燃料電池を得ることができる。
In the cell stack configured as described above, hydrogen-rich fuel gas 60 is supplied from the reformer 75 to the fuel gas chamber of the cell stack 20 via the pipe 94 and the manifold 6A.
By supplying A and sending air to the reaction air chamber 14 and the cooling air chamber 11 via the blower 71 and the inlet side manifold 51, power generation can be performed by the electrode reaction of the unit cell. Further, the fuel exhaust gas that has completed the reaction is sent to the combustion chamber of the reformer 75 via the manifold 6B and piping 95, where combustible gas components are burned and removed, and the thermal energy generated by the combustion is used as a heat source for reforming the fuel gas. used. On the other hand, the reaction air 80A whose oxygen concentration has decreased after the reaction is sent to the steam/water separator 73 via the reaction air passage 52A and piping 86, where the reaction product water is condensed and recovered, and the exhaust air is passed through the exhaust pipe 88. is released into the atmosphere,
Since the cooling air 80B is separated, the amount of excess air is reduced, the scattering and loss of electrolyte can be reduced, and the water concentration is increased, so that the recovery efficiency of produced water in the steam water separator 73 can be increased. Furthermore, the recovered water is used as water added to the raw material in a reformer 75 via a water treatment device 74. On the other hand, the cooling air 80B that has been warmed by passing through the cooling air chamber 11 passes through the cooling air passage 52B and piping 84, and a part of it passes through the exhaust air regulating valve 72. (by being released into the atmosphere via the exhaust pipe 87), new air corresponding to the amount of released air and the amount of air released via the steam separator 75 is supplied to the suction pipes 81, 82 . The cooling air is sent to the inlet side manifold 51 via the blower 71, and a portion of the cooling air is circulated to the intake side of the blower 71 via a circulation pipe 85 having a circulation air regulating valve 76. Therefore, the exhaust air regulating valve 72 is adjusted to control the amount of reaction air and the amount of cooling air discharged into the atmosphere, and at the same time, the circulating air regulating valve 76 is controlled.
By controlling the amount of circulating air mixed with the intake air,
It is possible to freely control the air temperature in the common passage 51A in the inlet side manifold 51. For example, by controlling the air temperature in accordance with the amount of power generation of the cell stack, the cell stack is suitable for power generation. The temperature can be maintained accurately at about 190°C. In addition, reaction air chamber 1
4 inlet section 14A and cooling air chamber 110 inlet section 11A
By configuring them so that they are opened in parallel to the common passage 51A, air controlled at a constant temperature can be separately supplied to the reaction air chamber and the cooling air chamber of each unit sheet 10. The temperature difference between the paper cells can be minimized, and therefore a fuel cell with high cooling performance and high power generation efficiency can be obtained.

第5図および第6図は異なる実施例を示すセルスタック
の水平断面図であシ、第5図は冷却空気室の構造を、第
6図は反応空気室の構造をそれぞれ示したものである。
5 and 6 are horizontal sectional views of cell stacks showing different embodiments, FIG. 5 shows the structure of the cooling air chamber, and FIG. 6 shows the structure of the reaction air chamber, respectively. .

図において、22は空気側セパレート板、21は冷却空
気室、24は反応空気室であシ、冷却空気室21の出入
口双方に隔壁26A 、23Bが、反応空気室24の出
入口双方に隔壁25A、25Bがそれぞれ設けられ、こ
れに対応して出口側マニホールド52の冷却空気通路5
2Bおよび反応空気通路52Aが区画された点が前述の
実施例と異なっておシ、入口側マニホールド51の共通
通路51Aに開口した入口部21A、24Aによシ冷却
空気室21および反応空気室24に分配された空気が、
格子状の凹溝からなる各空気室を斜めに横切って出口部
21B、24Bからそれぞれの通路52A、52B側に
排出されることによシ、格子状の凹溝内にくまなく空気
流が発生して冷却に有効な面積を増大でき、かつ凹溝の
側面に空気の流れが衝突することによシ熱伝達を高める
ことができるので、冷却性能が一段と優れた燃料電池を
得ることができる。
In the figure, 22 is an air side separate plate, 21 is a cooling air chamber, 24 is a reaction air chamber, partition walls 26A, 23B are provided at both the entrance and exit of the cooling air chamber 21, partition walls 25A are provided at both the entrance and exit of the reaction air chamber 24, 25B are provided respectively, and the cooling air passages 5 of the outlet side manifold 52 are provided correspondingly.
The difference from the previous embodiment is that the cooling air chamber 21 and the reaction air passage 52A are separated from each other in that the inlet portions 21A and 24A of the inlet side manifold 51 are open to the common passage 51A. The air distributed to
Air flow is generated throughout the lattice-shaped grooves by diagonally crossing each air chamber made of the lattice-shaped grooves and being discharged from the outlet portions 21B and 24B to the respective passages 52A and 52B. As a result, the area effective for cooling can be increased, and heat transfer can be enhanced by the air flow colliding with the side surfaces of the concave grooves, so that a fuel cell with even better cooling performance can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように、燃料ガス側と空気側とに分離さ
れたセパレート板の空気側セパレート板の両面に出口部
を規制する隔壁を有する互いに連通した凹溝からなる反
応空気室および冷却空気室を設け、両空気室の入口側に
は供給空気の共通通路を有する入口側マニホールドを、
出口側には反応空気通路と冷却空気通路が区画された出
口側マニホールドを設けるよう構成した。その結果、冷
却空気通路が分離されたことにより、反応空気室には電
極反応に必要な酸素を供給するに好適な反応空気だけを
送ることができるので、従来技術において過剰な空気が
通ることによって生ずる電解質の飛散消失ならびに電解
質の補給、気水分離器における反応生成水の凝縮回収効
率の低下などの諸問題が排除され、電解質の飛散消失が
少く、生成水を効率よく回収でき、かつ保守が容易な空
冷式燃料電池セルスタックを提供することができもまた
、反応空気室および冷却空気室それぞれの出口側に隔壁
を設けて両空気室の出口部の数および大きさに必要とす
る空気量に相応した差をつけて両空気室に配分される空
気量を制御し、かつ出口側マニホールドで反応空気と分
離された温まった冷却空気のみを入口側マニホールドに
環流させ新たな吸入電気と混合させて入口側マニホール
ドの共通通路に一定温度に制御された空気を供給すると
ともに、一定温度に制御された空気を共通通路に開口し
た入口部を介して各反応空気室および冷却空気室に均等
に分配することができるので、従来技術において問題と
なった電極反応によって酸素濃度が低下した反応空気が
環流することによりて生ずる発電効率の低下を阻止する
ことができるとともに、セルスタックが発電に好適な温
度を保持するよう一定温度に制御された空気を各空気室
に送シ込むことができるので、例えばセルスタックの発
熱量に対応して流入空気温度を容易に制御でき、したが
って高い冷却性能および発電効率を有する空冷式燃料電
池セルスタックを提供することができる。さらに、反応
空気と冷却空気を入口側において共通の給気系統から供
給するよう構成したことによシ、給気系統を簡素化でき
るとともに、反応空気室および冷却空気室を一つのセパ
レート板の両面に設けたことによシ、両空気室間にリー
クが生じても支障がなく、したがって空気側セパレート
板を安価なカーボン材料で形成できる利点が得られる。
As described above, the present invention provides a reaction air chamber and a cooling air chamber consisting of concave grooves that communicate with each other and have partition walls on both sides of the air side separate plate that is separated into a fuel gas side and an air side and that have partition walls that regulate the outlet portion. An inlet side manifold having a common passage for supply air is provided on the inlet side of both air chambers.
An outlet side manifold was provided on the outlet side in which a reaction air passage and a cooling air passage were partitioned. As a result, since the cooling air passage is separated, only the reaction air suitable for supplying the oxygen necessary for the electrode reaction can be sent to the reaction air chamber. This eliminates various problems such as scattering and loss of electrolyte, replenishment of electrolyte, and reduction in efficiency of condensation and collection of reaction product water in the steam-water separator. It is possible to easily provide an air-cooled fuel cell stack, and by providing a partition wall on the outlet side of each of the reaction air chamber and the cooling air chamber, the amount of air required can be adjusted depending on the number and size of the outlet sections of both air chambers. The amount of air distributed to both air chambers is controlled with a difference corresponding to At the same time, the air controlled at a constant temperature is supplied to the common passage of the inlet side manifold, and the air controlled at a constant temperature is evenly distributed to each reaction air chamber and cooling air chamber through the inlet opening into the common passage. As a result, it is possible to prevent the reduction in power generation efficiency caused by the circulation of reaction air whose oxygen concentration has decreased due to the electrode reaction, which was a problem in the conventional technology, and also to maintain the cell stack at a temperature suitable for power generation. Since air can be sent into each air chamber at a constant temperature to maintain a constant temperature, for example, the incoming air temperature can be easily controlled according to the amount of heat generated by the cell stack, resulting in high cooling performance and power generation efficiency. It is possible to provide an air-cooled fuel cell stack having the following. Furthermore, by configuring the reaction air and cooling air to be supplied from a common air supply system on the inlet side, the air supply system can be simplified, and the reaction air chamber and cooling air chamber can be connected to both sides of one separate plate. By providing this, there is no problem even if a leak occurs between the two air chambers, and an advantage is obtained that the air side separate plate can be formed of an inexpensive carbon material.

さらにまた、反応生成水を含まない乾いた冷却空気を再
循環させてセルスタックの冷却および温度制御を行うよ
うにしたので、水冷式の従来技術で問題となったセルス
タックの漏れ電流の増加を阻止できる利点が得られる。
Furthermore, dry cooling air that does not contain reaction product water is recirculated to cool the cell stack and control its temperature, which eliminates the increase in cell stack leakage current that was a problem with conventional water-cooled technology. This gives you the advantage of being able to prevent this.

また、単電池とその両側に配された一対のセパレート板
とからなる単位組それぞれの空気側セパレート板に冷却
空気室を設けたことによ)、複数の単位組ごとに冷却板
を設けた従来技術で問題となった単電池間の温度差の増
大、冷却水配管の複雑化2反応空気と冷却空気の混合な
どを、セルスタックの構造を複雑化させることなく排除
できる利点が得られる。
In addition, by providing a cooling air chamber in the air-side separate plate of each unit set consisting of a unit cell and a pair of separate plates placed on both sides of the unit set, the conventional method of providing a cooling plate for each unit set has been improved. This technology has the advantage of eliminating technical problems such as an increase in temperature difference between cells, complication of cooling water piping, and mixing of reaction air and cooling air without complicating the structure of the cell stack.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す水平断面図、第2図は実
施例におけるセルスタックの要部の斜視図、第6図およ
び第4図は実施例における冷却空気室および反応空気室
の構造を示す水平断面図、第5図および第6図は異なる
実施例における冷却空気室および反応空気室の構造を示
す水平断面図、第7図は従来技術の一例を示すセルスタ
ックの要部の斜視図、第8図は従来技術を示すセルスタ
ックの水平断面図である。 1・・・単電池、2・・・セパレート板、3・・・燃料
ガス通路、4・・・空気通路、6A 、 6B・・・燃
料ガス側マニホールド、5A、51・・・入口側マニホ
ールド(空気側)、51A・・・共通通路、5B、52
・・・出口側マニホールド(空気側)、9.20・・・
セルスタック、10・・・単位組、11.21・・・冷
却空気室、12.22・・・空気側セパレート板、13
,23゜25・・・隔壁、14・・・反応空気室、11
A、14A、21A、24A・・・入口部、11B、1
4B、21B、24B・・・出口部、52A・・・反応
空気通路、52B・・・冷却空気通路、71・・・プロ
ワ−172゜76・・・調整弁、76・・・気水分離器
、80・・・空気、81.82,84.85.86・・
・配管。 第2図 第3図
FIG. 1 is a horizontal sectional view showing an embodiment of the present invention, FIG. 2 is a perspective view of the main parts of the cell stack in the embodiment, and FIGS. 6 and 4 are views of the cooling air chamber and reaction air chamber in the embodiment. 5 and 6 are horizontal sectional views showing the structure of a cooling air chamber and a reaction air chamber in different embodiments. FIG. 7 is a horizontal sectional view showing the structure of a cell stack showing an example of the prior art. The perspective view and FIG. 8 are horizontal sectional views of a cell stack showing the prior art. DESCRIPTION OF SYMBOLS 1...Single cell, 2...Separate plate, 3...Fuel gas passage, 4...Air passage, 6A, 6B...Fuel gas side manifold, 5A, 51...Inlet side manifold ( air side), 51A...common passage, 5B, 52
...Outlet side manifold (air side), 9.20...
Cell stack, 10... Unit set, 11.21... Cooling air chamber, 12.22... Air side separate plate, 13
, 23° 25... Partition wall, 14... Reaction air chamber, 11
A, 14A, 21A, 24A... Entrance section, 11B, 1
4B, 21B, 24B... Outlet section, 52A... Reaction air passage, 52B... Cooling air passage, 71... Prower 172° 76... Regulating valve, 76... Steam water separator , 80... air, 81.82, 84.85.86...
·Piping. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1)燃料電極、マトリックス、空気電極の積層体からな
る単電池と、この単電池の燃料電極側に配された凹溝状
の燃料ガス室を有するセパレート板と、空気電極側に配
され両面に凹溝からなり出口部を規制する隔壁を有する
反応空気室および冷却空気室を備えた空気側セパレート
板とからなる単位組、ならびにこの単位組複数個の積層
組立体からなるセルスタックと、前記両空気室の入口側
に配された反応空気、冷却空気共通の入口側マニホール
ドと、前記両空気室それぞれの出口部に相応するよう区
画された反応空気通路および冷却空気通路を有する出口
側マニホールドとを備えたことを特徴とする空冷式燃料
電池セルスタック。 2)特許請求の範囲第1項記載のものにおいて、出口側
マニホールドの反応空気通路および冷却空気通路が互い
に異なる配管系統に連通していることを特徴とする空冷
式燃料電池セルスタック。 3)特許請求の範囲第2項記載のものにおいて、冷却通
路が排空気調弁を有する排気系統と、循環空気調整弁を
有する循環系統とに連通していることを特徴とする空冷
式燃料電池セルスタック。
[Scope of Claims] 1) A unit cell consisting of a laminate of a fuel electrode, a matrix, and an air electrode, a separate plate having a groove-shaped fuel gas chamber disposed on the fuel electrode side of the unit cell, and an air electrode. A unit set consisting of an air-side separate plate having a reaction air chamber and a cooling air chamber, which are arranged on the side and have a partition wall that has concave grooves on both sides and regulates the outlet part, and a laminated assembly of a plurality of these unit sets. A cell stack, an inlet side manifold for common reaction air and cooling air disposed on the inlet side of both the air chambers, and a reaction air passage and a cooling air passage divided so as to correspond to the respective outlet portions of both the air chambers. An air-cooled fuel cell stack comprising an outlet side manifold. 2) The air-cooled fuel cell stack according to claim 1, wherein the reaction air passage and the cooling air passage of the outlet side manifold communicate with mutually different piping systems. 3) The air-cooled fuel cell according to claim 2, characterized in that the cooling passage communicates with an exhaust system having an exhaust air regulating valve and a circulation system having a circulating air regulating valve. cell stack.
JP60279853A 1985-12-12 1985-12-12 Air cooling type fuel cell stack Pending JPS62139274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60279853A JPS62139274A (en) 1985-12-12 1985-12-12 Air cooling type fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60279853A JPS62139274A (en) 1985-12-12 1985-12-12 Air cooling type fuel cell stack

Publications (1)

Publication Number Publication Date
JPS62139274A true JPS62139274A (en) 1987-06-22

Family

ID=17616851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60279853A Pending JPS62139274A (en) 1985-12-12 1985-12-12 Air cooling type fuel cell stack

Country Status (1)

Country Link
JP (1) JPS62139274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010020966A (en) * 2008-07-09 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system, and operation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010020966A (en) * 2008-07-09 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system, and operation method thereof

Similar Documents

Publication Publication Date Title
RU2269842C2 (en) Fuel-cell module using solid polymeric electrolyte, fuel cell pile, and method for feeding chemically active gas to fuel cell
US6582844B2 (en) Method of cooling a fuel cell
EP0649570B1 (en) Air manager system for metal-air battery
US8822090B2 (en) Internally reforming fuel cell assembly with staged fuel flow and selective catalyst loading for improved temperature uniformity and efficiency
EP1836126B1 (en) High performance internal reforming unit for high temperature fuel cells
JPH03210774A (en) Internally improved quality system molten carbonate type fuel cell
US7399548B2 (en) Fuel cell stack
CA2403342C (en) Fuel cell stack
JPH0238377Y2 (en)
JP2003282133A (en) Fuel cell stack
JP2570771B2 (en) Fuel cell cooling method
JP2002260708A (en) Stackes structure of fuel cell
JPS6160548B2 (en)
JPH097624A (en) Solid electrolytic fuel cell
JPS62139274A (en) Air cooling type fuel cell stack
JPS61233978A (en) Air cooling type fuel cell
JPS6316576A (en) Air cooling type fuel cell
JPH02155170A (en) Fuel cell performing internal reformation
JP4304986B2 (en) Fuel cell module
JP2003187838A (en) Fuel cell stack
JPH0782874B2 (en) Fuel cell
JPH01246767A (en) Fuel cell
JPS61185871A (en) Air-cooled type fuel cell
JPH0922709A (en) Solid electrolyte type fuel cell
JPS6266574A (en) Air cooling type fuel cell