JPS62138686A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS62138686A
JPS62138686A JP27947185A JP27947185A JPS62138686A JP S62138686 A JPS62138686 A JP S62138686A JP 27947185 A JP27947185 A JP 27947185A JP 27947185 A JP27947185 A JP 27947185A JP S62138686 A JPS62138686 A JP S62138686A
Authority
JP
Japan
Prior art keywords
heat
oil
flow path
pipe
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27947185A
Other languages
Japanese (ja)
Other versions
JPH0438992B2 (en
Inventor
Hitoshi Inoue
均 井上
Kenji Kataoka
片岡 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27947185A priority Critical patent/JPS62138686A/en
Publication of JPS62138686A publication Critical patent/JPS62138686A/en
Publication of JPH0438992B2 publication Critical patent/JPH0438992B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To eliminate pulsating temperature variation in the oil temperature by submerging the heat absorption section of a heat pipe into the oil in a second flow passage section and arranging the heat radiation section outside the oil tank. CONSTITUTION:High temperature oil that has flowed into a first flow passage of an oil tank 20 flows into a second flow passage, and passes through the heat absorption section 26a of a heat pipe 26 to heat the heat absorption section 26a. At this time a working liquid 27 is also heated. The working liquid 27 robs heat of the oil and evaporates, moving in the heat pipe 26 to the side of the heat radiation section 26b. The steam of the working liquid 27 which has moved is cooled by the surrounding air and condenses but at the same time discharges condensation latent heat and radiates the heat of oil. The working liquid 27 that has condensed and liquefied moves in the heat pipe 26 to return to the side of the heat absorption section 26a. With this arrangement the heat of the high temperature oil 1 passing through the absorption section 26a of the heat pipe 26 is transported from the heat absorption section 26a to the heat radiation section 26b of the heat pipe 26 and radiates heat to the surrounding air by the repeated evaporation and liquefaction of the working liquid 27 in the heat pipe 26.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は油を使用する機器2例文ば工作機械1こおけ
る主軸系等の油の熱交換装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oil heat exchange device for equipment that uses oil, such as a spindle system in a machine tool, for example.

〔従来の技術〕[Conventional technology]

第2図は例えば「機械技術」 (昭和56年第29巻第
6号P1015日刊工業新聞社刊)に開示された従来の
一般的な工作機械の主軸系の油の熱交換装置の概略を示
し2図において、(1)は(穴型である例えば工作機械
の主軸系(図示せず)にて加熱、 j1711湿されて
高温状態となった油、(2)は工作!’A械の主軸系か
ら高温状態となって排出される油(1)を貯留する油タ
ンク、(3)は配管(4)を介して油タンク(2)内の
油を冷却タンク(5)内に導くポンプ。
Figure 2 shows an outline of a conventional oil heat exchange device for the spindle system of a general machine tool, as disclosed in, for example, "Mechanical Technology" (Vol. 29, No. 6, P1015, 1981, published by Nikkan Kogyo Shimbun). In Figure 2, (1) is heated in the main spindle system (not shown) of a machine tool (for example, a hole type), and (2) is the main spindle of the machine A. An oil tank stores oil (1) discharged from the system in a high temperature state, and (3) is a pump that guides the oil in the oil tank (2) into a cooling tank (5) via piping (4).

(5a)及び(5b)は冷却タンク(5)の外槽及び内
槽であり、ポンプ(3)により導かれる油は外槽(5a
)と内槽(5b)との間に導入し、内槽(5b)上端か
らその内槽(5b)内に導入する。(6)は内槽(5b
)の外周に巻回された冷却管、(7)は冷却管(6)の
一方側と配管(8)を介して接続され、冷却管(6)の
他方側と配管(9)を介して接続され。
(5a) and (5b) are the outer tank and inner tank of the cooling tank (5), and the oil led by the pump (3) is the outer tank (5a).
) and the inner tank (5b), and introduced into the inner tank (5b) from the upper end of the inner tank (5b). (6) is the inner tank (5b
), the cooling pipe (7) is connected to one side of the cooling pipe (6) via piping (8), and is connected to the other side of the cooling pipe (6) via piping (9). connected.

冷却タンク(5)の油を冷却して高温となった冷却媒体
が配管(8)を通して導入され、その内部で低温となっ
た冷却媒体を配管(9)を通して冷却管(6)に供給す
る冷凍装置、  (10)は一方側が冷却タンク(5)
の内槽(5b)内の底部近傍に配置され。
In refrigeration, the coolant that has become high temperature by cooling the oil in the cooling tank (5) is introduced through the pipe (8), and the coolant that has become low inside is supplied to the cooling pipe (6) through the pipe (9). The device (10) has a cooling tank (5) on one side.
is placed near the bottom of the inner tank (5b).

他方側が工作機械の主軸系に接続され、冷却管(6)に
より冷却された冷却タンク(5)の内槽(5b)内の低
温の油(11)をその内槽(5b)内の底部近傍から導
入して工作機械の主軸系に供給する供給配管、 (12
)は供給配管(13)内の油温を検出するサーモスクッ
)・てあり、このサーモスタット(12)の検出信号に
応じて制御手段(図示せず)によす冷凍装置(7)をO
N、OFFさせる。
The other side is connected to the spindle system of the machine tool, and the low temperature oil (11) in the inner tank (5b) of the cooling tank (5), which is cooled by the cooling pipe (6), is pumped near the bottom of the inner tank (5b). Supply piping introduced from the main shaft system of the machine tool, (12
) is a thermostat (12) that detects the oil temperature in the supply pipe (13), and depending on the detection signal from this thermostat (12), the refrigeration system (7) is turned on by the control means (not shown).
N: Turn off.

次に動作について説明する。工作機械の主軸系において
加熱、加温されて高)晶状態となった浦(1)は油タン
ク(2)内に排出される。油タンク(2)内に貯留され
た浦はポンプ(3)により冷却タンク(5)の外槽(5
a)と内槽(5b)との間に導入され。
Next, the operation will be explained. Ura (1), which is heated in the spindle system of a machine tool and becomes a high crystalline state, is discharged into an oil tank (2). The oil stored in the oil tank (2) is pumped to the outer tank (5) of the cooling tank (5) by the pump (3).
a) and the inner tank (5b).

内槽(5b)上端からその内槽(5b)内に導入される
。そして、内槽(5b)の外周に巻回された冷却管(6
)により熱交換されて冷却され2低扇状態となった油(
11)は供給配管(10)を通して工作*Wの主軸系に
供給される。一方、油を冷却した後の冷却管(6)の高
温となった冷却媒体は冷凍装置(7)を通って再び低温
の冷却媒体となって冷却管(6)に供給される。又、油
温度の制御については、供給配管(10)に配置された
サーモスタット(12)等により油温を検出し、制御手
段により冷凍装置(7)をON、OFFさせることによ
り制御する。従って、冷凍装置(7)をONI、ている
ときは冷却運転しており、冷凍装置(7)により一定量
の低温状態の冷却媒体を冷却管(6)に供給して冷却タ
ンク(5)の内槽(5b)内の油を強制的に冷却してい
る。
It is introduced into the inner tank (5b) from the upper end of the inner tank (5b). The cooling pipe (6) is wound around the outer circumference of the inner tank (5b).
) heat exchanged and cooled the oil (
11) is supplied to the spindle system of the work *W through the supply pipe (10). On the other hand, the high-temperature cooling medium in the cooling pipe (6) after cooling the oil passes through the refrigeration device (7), becomes a low-temperature cooling medium again, and is supplied to the cooling pipe (6). Further, the oil temperature is controlled by detecting the oil temperature using a thermostat (12) or the like disposed in the supply pipe (10), and turning the refrigeration device (7) on and off using a control means. Therefore, when the refrigeration system (7) is ONI, it is in cooling operation, and the refrigeration system (7) supplies a certain amount of low-temperature cooling medium to the cooling pipes (6) to fill the cooling tank (5). The oil in the inner tank (5b) is forcibly cooled.

又、工作機械側の発熱量が少ない場合は冷凍装置(7)
による冷却量が過大となって冷やし過ぎとなり、一時冷
凍装置(7)をOFFさせて運転を停止させ、油温が上
昇すると再び冷凍装置(7)をONして冷却運転させろ
Also, if the heat generation amount on the machine tool side is low, use a refrigeration device (7)
If the amount of cooling caused by the oil becomes too large, resulting in excessive cooling, temporarily turn off the refrigeration system (7) and stop the operation, and when the oil temperature rises, turn on the refrigeration system (7) again to start the cooling operation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上述した従来の熱交換装置では。 However, in the conventional heat exchange device described above.

冷凍装置(7)をON、OFFさせることにより油温度
の制御を行うようにしているので、供給配管(10)を
通る油(11)の油温度に脈動が生じる問題点がある。
Since the oil temperature is controlled by turning on and off the refrigeration system (7), there is a problem that pulsations occur in the temperature of the oil (11) passing through the supply pipe (10).

特に供給配管(10)を通る油(11)が工作機械の主
軸系に供給される場合は、油(11)の油温度の脈動が
そのまま工作・加工精度の脈動につながると言う致命的
欠陥があった。
In particular, when the oil (11) passing through the supply pipe (10) is supplied to the spindle system of a machine tool, there is a fatal flaw in that the pulsations in the oil temperature of the oil (11) directly lead to pulsations in machining and machining accuracy. there were.

この発明は上記のような問題点を解消するためになされ
たものてあり、油温度に脈動の生じない熱交換装置を得
ろことを目的とずろ。
This invention has been made to solve the above-mentioned problems, and its purpose is to provide a heat exchange device that does not cause pulsations in oil temperature.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係わる熱交換装置は1曲タンクを環状に形成
し、その環状部の一箇所に仕切部材を配置して少なくと
も第1流路部から第3流路部の3つの流路部を形成し2
機器から高1状態となって排出される油を第1流路部で
収容し、第2流路部。
In the heat exchange device according to the present invention, a single-curved tank is formed in an annular shape, and a partition member is arranged at one location in the annular portion to form at least three flow path portions from a first flow path portion to a third flow path portion. 2
A first flow path section accommodates oil discharged from the equipment in a high level state, and a second flow path section.

第3流路部に順次流入させるように構成し、ヒートパイ
プの吸熱部を油タンクの第2流路部内の油中に浸漬させ
、ヒートパイプの放熱部を浦タンク外に配置させ、と−
トパイプの放熱部に放熱装置を配設し、ピー1−パイプ
により冷却されて油タンクの第2流路部から第3流路部
内に流入した油を機器に供給する供給手段を設けたもの
である。
The heat pipe is configured to flow sequentially into the third flow path section, the heat absorption section of the heat pipe is immersed in the oil in the second flow path section of the oil tank, and the heat dissipation section of the heat pipe is arranged outside the ura tank.
A heat radiating device is installed in the heat radiating part of the top pipe, and a supply means is provided for supplying the oil that has been cooled by the pipe and has flowed from the second flow path section of the oil tank into the third flow path section to the equipment. be.

〔作用〕[Effect]

この発明における熱交換装置は、油タンクの第2流路部
内の油がヒートパイプの吸熱部側の温度とヒートパイプ
の放熱部側との温度差により自然的に制御されて連続的
に冷却され、又、油タンクの第1流路部に流入した高温
状態の油が第2流路部内に流入してヒートパイプの吸熱
部を流通して第3流路部内に流入し、冷却効果の高い脈
動のない安定した浦が機器に供給される。
In the heat exchange device of the present invention, the oil in the second flow path section of the oil tank is naturally controlled and continuously cooled by the temperature difference between the heat absorption section side of the heat pipe and the heat radiation section side of the heat pipe. Also, the high temperature oil that has flowed into the first flow path section of the oil tank flows into the second flow path section, flows through the heat absorbing section of the heat pipe, and flows into the third flow path section, resulting in a high cooling effect. Stable water without pulsation is supplied to the equipment.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を第1図乃至第3図に基づい
て説明する。第1図は側断面図を示し。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. FIG. 1 shows a side sectional view.

第2図は正面図を示し、第3図は油タンクの平面図を示
す。これら各図において、(1)は機器である例えば工
作機械の主軸系(図示せず)にて加熱。
FIG. 2 shows a front view, and FIG. 3 shows a plan view of the oil tank. In each of these figures, (1) is a device that is heated, for example, by the spindle system (not shown) of a machine tool.

加温されて高ンW状態となった油、 (20)は例えば
角形状の環状に形成され、その環状部の一箇所に仕切部
材(21)を配置して第1流路部(22) 、第2流路
部(23) 、第3流路部(24)の3つの流路部に形
成され、又第2流路部(23)は3つの流路(23a 
) 、 (23b)、 (23c)に構成され、工作機
械の主軸系から高温状態となって排出される油(1)を
第1流路部(22)で収容し、第2流路部(23) 、
第3流路部(24)に順次流入させるよう構成された油
タンクである。
The oil (20) heated to a high temperature state is formed into, for example, a rectangular ring shape, and a partition member (21) is arranged at one location of the ring part to form a first flow path part (22). , a second flow path section (23), and a third flow path section (24), and the second flow path section (23) has three flow paths (23a).
), (23b), and (23c), the first flow path section (22) accommodates the oil (1) discharged from the spindle system of the machine tool in a high temperature state, and the second flow path section ( 23),
This is an oil tank configured to allow oil to sequentially flow into the third flow path section (24).

(25)は工作機械の主軸系から高温状態となって排出
されろ油(1)を第1流路部(22)に導く返油管。
(25) is an oil return pipe that guides filtered oil (1) discharged in a high temperature state from the main shaft system of the machine tool to the first flow path section (22).

(26)は油タンク(20)の第2流路部(23)の流
路(23a)と流路(23c)内のそれぞれの油中に吸
熱部(26a)、(26n)が浸漬され、油タンク(2
0)外に、即ち周囲空気中にそれぞれ放熱部(26bL
 (26b)が配置されtコヒードパイブてあり、内部
を真空減圧後2例えばフロン、アンモニア等の作動液体
(27)が所定量封入され、油の熱分を吸熱部(26a
L (26a)で吸収し放熱部(26b)、  (26
b)に熱輸送して放熱させる。(28)は例えばヒート
パイプ(2Fi)。
In (26), the endothermic parts (26a) and (26n) are immersed in the oil in the flow path (23a) and the flow path (23c) of the second flow path section (23) of the oil tank (20), Oil tank (2
0) Each heat dissipation part (26bL
(26b) is arranged and has a coheed pipe, and after the inside is vacuum depressurized, a predetermined amount of working liquid (27) such as fluorocarbon or ammonia is sealed, and the heat of the oil is transferred to the heat absorbing part (26a).
L (26a) absorbs heat and heat dissipates (26b), (26
b) Transport and radiate heat. (28) is, for example, a heat pipe (2Fi).

(26)の放熱部(26b)、 (26b)を共通して
冷却するように配設された放熱装置であり2図は一例と
して放熱ファンからなる場合を示している。(29)は
エアフィルター、 (30)はと−トパイプ(26)、
 (26)により冷却されて第2流路部(23)から第
3流路部(24)に流入した低温状態となった油(31
)を工作機械の主軸系に供給する供給手段であり2例え
ば油タンク(20)の第3流路部(24)内に配置され
たサクションフィルター(30a)と、このサクション
フィルター(30n)と工作機械の主軸系とを接続する
配管(30b)と、この配管(30b)に配設され、低
温状態となった油(31)をサクションフィルター(3
0a)を通して取り入れて工作機械の主軸系に導くため
のポンプ(30c)とにより構成されている。
This is a heat radiating device arranged to commonly cool the heat radiating portions (26b) and (26b) of (26), and FIG. 2 shows an example in which it is composed of a heat radiating fan. (29) is an air filter, (30) a pigtail pipe (26),
The oil (31) is cooled by (26) and flows into the third flow path (24) from the second flow path (23).
) to the spindle system of a machine tool.For example, a suction filter (30a) disposed in the third flow path section (24) of an oil tank (20), and a suction filter (30n) and a machine tool. A pipe (30b) that connects the main shaft system of the machine and a suction filter (3
0a) and a pump (30c) for introducing it to the spindle system of the machine tool.

次に動作について説明する。工作機械の主軸系において
加熱、加温されて高温状態となった油(1)は油タンク
(20)の第1流路部(22)内に排出される。油タン
ク(20)の第1流路部(22)内に流入した高温の油
は第2流路部(23)の流路(23a)に流入し、ヒー
トパイプ(26)の吸熱部(26a)を通り、このとき
ヒートパイプ(26)の吸熱部(26a)を加熱し、こ
の加熱によりその内部に封入された作動液体(27)も
加熱され、肋の熱分を蒸発潜熱として奪い蒸気化し、ヒ
ー)−パイプ(26)の放熱部(26bl側へその内部
て移動する。ヒートパイプ(26)の放熱部(26bj
側へ移動したフロン等の作動液体(27)の蒸気は放熱
ファン(28)によって周囲空気により冷やされる。こ
のときフロン等の作動液体(27)の蒸気は凝縮して液
化するが、凝縮潜熱を周囲空気に放出し、油の熱分を周
囲空気に放熱する。凝縮して液化した作動液体(27)
はビー1−パイプ(26)の吸熱部(26a)側へその
内部で移動して戻る。このようにして、ヒートパイプ(
26)内の作動if体(27)の蒸気化、液化の繰り返
しにより、ヒートパイプ(26)の吸熱部(26n )
を通過する高温の油(1)の熱分をヒートパイプ(26
)の吸熱部(26a)からヒートパイプ(26)の放熱
部(26b)へ熱輸送して周囲空気に放熱する。従って
油タンク(20)の第2流路部(23)の流路(23a
)内に流入しtこ高温の油(])の熱分はヒートパイプ
(26)の吸熱部(26n)で奪われ温度が下がり冷却
されろ。この冷却された油は第2流路部(23)の流路
(23b)内に流入し、さらに第2流路部(23)の流
#!J(23cl内に流入し、ヒートパイプ(26)の
吸熱部(26a)を通り、このときヒートパイプ(26
)の吸熱部(26a )を加熱し、この加熱によりその
内部に封入された作動液体(27)も加熱され、浦の熱
分を蒸発潜熱として奪い蒸気化し、ヒートパイプ(26
)の放熱部(26b)側へその内部で移動する。
Next, the operation will be explained. The oil (1) heated and heated to a high temperature in the spindle system of the machine tool is discharged into the first flow path section (22) of the oil tank (20). The high-temperature oil that has flowed into the first flow path section (22) of the oil tank (20) flows into the flow path (23a) of the second flow path section (23), and then flows into the heat absorption section (26a) of the heat pipe (26). ), and at this time heats the endothermic part (26a) of the heat pipe (26), and this heating also heats the working liquid (27) sealed inside, absorbing heat from the ribs as latent heat of vaporization and vaporizing it. , heat) - moves inside the heat dissipation part (26bj) of the heat pipe (26) to the heat dissipation part (26bj) of the heat pipe (26).
The vapor of the working liquid (27) such as Freon that has moved to the side is cooled by the surrounding air by the heat radiation fan (28). At this time, the vapor of the working liquid (27) such as fluorocarbon is condensed and liquefied, but the latent heat of condensation is released to the surrounding air, and the heat content of the oil is radiated to the surrounding air. Condensed and liquefied working fluid (27)
moves inside to the endothermic part (26a) of the B1-pipe (26) and returns thereto. In this way, the heat pipe (
By repeating vaporization and liquefaction of the working if body (27) in the heat pipe (26), the heat absorption part (26n) of the heat pipe (26)
The heat of the high temperature oil (1) passing through the heat pipe (26
) The heat is transported from the heat absorption part (26a) of the heat pipe (26) to the heat radiation part (26b) of the heat pipe (26), and the heat is radiated to the surrounding air. Therefore, the flow path (23a) of the second flow path portion (23) of the oil tank (20)
) The heat of the high-temperature oil ( ) is taken away by the heat absorbing part (26n) of the heat pipe (26), and the temperature is lowered and the oil is cooled. This cooled oil flows into the flow path (23b) of the second flow path section (23), and further flows into the flow path (23b) of the second flow path section (23). J (23cl), passes through the heat absorption part (26a) of the heat pipe (26), and at this time the heat pipe (26
The heat absorbing part (26a) of the heat pipe (26a) is heated, and this heating also heats the working liquid (27) sealed inside the heat pipe (26a).
) to the heat dissipation part (26b) side.

ヒートパイプ(26)の放熱部(26b)側へ移動した
フロン等の作rfDJ彼体(27)の蒸気は放熱ファン
(28)によって周囲空気により冷やされる。このとき
フロン等の作動液体(27)の蒸気は凝縮して液化する
が。
The steam of the rfDJ body (27) made of fluorocarbons and the like that has moved to the heat radiating part (26b) side of the heat pipe (26) is cooled by the surrounding air by the heat radiating fan (28). At this time, the vapor of the working liquid (27) such as fluorocarbon is condensed and liquefied.

凝縮潜熱を周囲空気に放出し、油の熱分を周囲空気に放
熱する。凝縮して液化した作@液体(27)はヒートパ
イプ(26)の吸熱部(26a)側へその内部で移動し
て戻る。このようにしてヒートパイプ(26)内の作動
液体(27)の蒸気化、液化の繰り返しにより、ヒート
パイプ(26)の吸熱部(26a)を通過する油の熱分
をヒートパイプ(26)の吸熱部(26a)からヒート
パイプ(26)の放熱部(26b)へ熱輸送して周囲空
気に放熱する。従って、i11]タンク(20)の第2
流路部(23)の流路(23c)内に流入した油の熱分
はヒートパイプ(26)の吸熱部(26a)で奪われ温
度が下がり冷却されろ。このように油タンク(20)の
第2流路部(23)で2つのピー1−パイプ(261,
(2B)の冷却作用によって低温状態となった油(31
)は第2流路部(23)から第3流路部(24)に流入
し、第3流路部(24)内に流入した低温状態となった
油(31)はポンプ(30c)によりサクションフィル
ター(30a)を通して取り入れられ、配管(30b)
を通して工作機械の主軸系に導かれる。
The latent heat of condensation is released to the surrounding air, and the heat content of the oil is radiated to the surrounding air. The condensed and liquefied liquid (27) moves inside to the endothermic part (26a) of the heat pipe (26) and returns. In this way, by repeatedly vaporizing and liquefying the working liquid (27) in the heat pipe (26), the heat of the oil passing through the heat absorption part (26a) of the heat pipe (26) is transferred to the heat pipe (26). Heat is transported from the heat absorption part (26a) to the heat radiation part (26b) of the heat pipe (26) and radiated to the surrounding air. Therefore, the second
The heat of the oil that has flowed into the flow path (23c) of the flow path section (23) is taken away by the heat absorbing section (26a) of the heat pipe (26), and the temperature is lowered and the oil is cooled. In this way, two P1-pipes (261,
The oil (31) has become cold due to the cooling effect of (2B)
) flows from the second flow path section (23) to the third flow path section (24), and the low temperature oil (31) that has flowed into the third flow path section (24) is pumped by the pump (30c). Intake through suction filter (30a) and piping (30b)
is guided to the spindle system of the machine tool through.

以上のようにヒートパイプ(26)の吸熱部(26a)
側の温度、即ち、油タンク(20)の第2流路部(23
)内の油温とヒートパイプ(26)の放熱部(26bj
側の温度、即ち2周囲空気側の温度との温度差によりヒ
ートパイプ(26)内部での潜熱交換による冷却が自然
的に制御されて連続的に行われ、第2流路部(23)内
の油温の上昇を抑制して周囲空気側の温度へ近づけよう
とする。油タンク(20)の第2流路部(23)内の油
温の上昇が抑制され周囲空気側の温度と同様となるとヒ
ートパイプ(26)内部での潜熱交換が生じな(なりそ
れに伴い冷却作用も生しなくなる。即ち、ヒートパイプ
(26)による熱交換量は。
As described above, the heat absorption part (26a) of the heat pipe (26)
side temperature, that is, the second flow path section (23) of the oil tank (20).
) and the heat dissipation part (26bj) of the heat pipe (26).
Cooling by latent heat exchange inside the heat pipe (26) is naturally controlled and continuously performed due to the temperature difference between the temperature on the side, that is, the temperature on the two ambient air sides, and the temperature inside the second flow path section (23) is naturally controlled. This attempts to suppress the rise in oil temperature and bring it closer to the temperature of the surrounding air. When the rise in oil temperature in the second flow path section (23) of the oil tank (20) is suppressed and the temperature becomes the same as that of the surrounding air, latent heat exchange within the heat pipe (26) will not occur (and cooling will occur accordingly). In other words, the amount of heat exchanged by the heat pipe (26) is reduced.

油タンク(20)の第2流路部(23)内の油温と周囲
空気側の温度との温度差の大小に比例しており、工作機
械側の発熱量が少ない場合は油タンク(20)の第2流
路部(23)内の油温の上昇も少ない。従って油タンク
(20)の第2流路部(23)内の油温と周囲空気側の
温度との温度差も小さいためヒートパイプ(26)によ
る熱交換量も小さくなり、冷やし過ぎによる弊害も無く
発熱量に見合った冷却量で自然的に制御されて連続的に
冷却できる。その結果、従来のような冷凍圧縮機(7)
のON、OFF制御に伴う油温度の脈動を生じることが
なく、従って工作・加工精度の脈動も生じることがなく
、高信頼性の工作精度が得られる。又、油タンク(2o
)は角形状の環状に形成し、断面の小さい返油管(25
)より断面の大きいヒートパイプ(26)の吸熱部(2
6a)に高温の油(1)が均一に急激に流れ込むように
第1流路部(22)を設けてその油(1)を収容するよ
うにしており、第2流路部(23)に2@所ヒートパイ
プ(26)を配置して2段構成で高温の油(1)を冷却
するようにしており、第3流路部(24)は冷却されて
低温状態となった油を断面の小さいサクションフィルク
ー(30a)に急激に絞り込まれるように構成され、ヒ
ートパイププ(26)の吸熱部(26a )を流通する
油の流速が不均一となるのを防止している。
The temperature is proportional to the temperature difference between the oil temperature in the second flow path section (23) of the oil tank (20) and the temperature on the surrounding air side. ) The increase in oil temperature in the second flow path section (23) is also small. Therefore, since the temperature difference between the oil temperature in the second flow path section (23) of the oil tank (20) and the temperature on the ambient air side is small, the amount of heat exchanged by the heat pipe (26) is also small, and the adverse effects of overcooling are also reduced. The cooling amount is naturally controlled and can be continuously cooled in proportion to the amount of heat generated. As a result, the conventional refrigeration compressor (7)
There is no pulsation in the oil temperature due to ON/OFF control of the machine, so there is no pulsation in machining accuracy, and highly reliable machining accuracy can be obtained. Also, oil tank (2o
) is formed into a rectangular ring shape and has a small cross section (25
) of the heat pipe (26) with a larger cross section than the heat absorbing part (2
A first passage section (22) is provided to accommodate the oil (1) so that the hot oil (1) uniformly and rapidly flows into the second passage section (23). A heat pipe (26) is arranged to cool the high-temperature oil (1) in a two-stage configuration, and the third flow path section (24) cools the cooled oil into a low-temperature state. The oil is configured to be rapidly narrowed down to a small suction filter (30a), thereby preventing the flow rate of the oil flowing through the heat absorption part (26a) of the heat pipe (26) from becoming non-uniform.

その結果、と−トパイフ責26)の吸熱部(26alを
油が均一に流通するので、冷却効果が高いものとなる。
As a result, oil flows uniformly through the heat absorbing part (26al) of the top pipe pipe 26), resulting in a high cooling effect.

尚、上記実施例ではヒートパイプが油タンクの第2流路
部内に2箇所設けた場合について述べたが、ヒートパイ
プを油タンクの第2流路部内に1箇所あるいは3箇所以
上に設けてもよいことは勿論のことである。
In the above embodiment, the case was described in which the heat pipes were provided at two locations within the second flow path portion of the oil tank, but the heat pipes may be provided at one location or at three or more locations within the second flow path portion of the oil tank. Of course it's a good thing.

又、上記実施例では放熱装置が2つのヒートパイプの放
熱部を共通して冷却する場合について述べたが、各ヒー
トパイプの放熱部にそれぞれ放熱装置を配設して別個に
冷却するようにしてもよく。
Furthermore, in the above embodiment, a case has been described in which the heat radiating device commonly cools the heat radiating parts of two heat pipes. Good too.

上記実施例と同様の効果を奏する。The same effects as in the above embodiment are achieved.

又、上記実施例では油タンクが角形状の環状に形成しt
コ場合について述へたが2円形状の環状に形成した油タ
ンクとしてもよく、上記実施例と同様の効果を奏する。
Further, in the above embodiment, the oil tank is formed in a square annular shape.
Although the oil tank described above is in the form of a bi-circular ring, the same effect as in the above embodiment can be obtained.

又、上記実施例では機器が工作機械で主軸系に油が供給
される場合について述べたが、機器としては油が供給さ
れるものであればよく、上記実施例と同様の効果を奏す
る。
Further, in the above embodiment, a case has been described in which the equipment is a machine tool and oil is supplied to the spindle system, but the equipment may be any equipment as long as oil is supplied, and the same effects as in the above embodiment can be achieved.

〔発明の効果〕〔Effect of the invention〕

この発明は思上説明しなとおり、油タンクを環状に形成
し、その環状部の一箇所に仕切部材を配置して少なくと
も第1流路部から第3流路部の3っの流路部を形成し2
機器から高温状態となって排出される油を第1流路部で
収容し、第2流路部。
As is not explained above, the present invention is such that an oil tank is formed into an annular shape, and a partition member is disposed at one part of the annular part, so that at least three flow path sections from a first flow path section to a third flow path section are formed. form 2
The first flow path section accommodates oil discharged from the equipment in a high temperature state, and the second flow path section.

第3流路部に順次流入させろように構成し、と−トパイ
プの吸熱部を肋タンクの第2流路部内の油中に浸漬させ
、ヒートパイプの放熱部を油タンク外に配置させ、ヒー
トパイプの放熱部に放熱装置を配設j7.ヒートパイプ
により冷却されて油タンクの第2流路部から第3流路部
内に流入した油を機器に供給する供給手段を設けたこと
により、と−トパイプの吸熱部側の温度とヒートパイプ
の放熱部側の温度との温度差により自然的に制御されて
連続的に冷却され、又、ヒートパイプの吸熱部を油が均
一に流通し、冷却効果の高い脈動のない安定した油を機
器に供給できる熱交換装置を得ることができる。
The heat absorption part of the heat pipe is immersed in the oil in the second flow passage part of the tank, and the heat dissipation part of the heat pipe is arranged outside the oil tank. Installing a heat dissipation device in the heat dissipation part of the pipe j7. By providing a supply means for supplying the oil cooled by the heat pipe and flowing into the third flow path from the second flow path of the oil tank to the equipment, the temperature on the heat absorption side of the exhaust pipe and the temperature of the heat pipe can be adjusted. The temperature is naturally controlled and continuously cooled by the temperature difference between the heat dissipating part and the heat absorbing part of the heat pipe, and the oil is distributed evenly through the heat absorbing part of the heat pipe, providing stable oil without pulsation with a high cooling effect to the equipment. It is possible to obtain a heat exchange device that can be supplied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はこの発明の一実施例による熱交換装
置を示す側断面図及び正面図、第3図はこの発明に係わ
る油タンクを示す平面図、第4図は従来の熱交換装置を
示す系統図である。 図において、(1)は高温状態の油、 (20)は油タ
ンク、 (21)は仕切部材、 (22)は第1流路部
、 (23)は第2流路部、 (24)は第3流路部、
 (26)はビー1−パイプ、(2Ba)は吸熱部、(
26b)は放熱部、 (28)は放熱装置、 (30)
は供給手段、 (31)は低温状態の油である。 尚2図中同一符号は同−又は相当部分を示す。
1 and 2 are a side sectional view and a front view showing a heat exchange device according to an embodiment of the present invention, FIG. 3 is a plan view showing an oil tank according to the present invention, and FIG. 4 is a conventional heat exchanger. It is a system diagram showing an apparatus. In the figure, (1) is oil in a high temperature state, (20) is an oil tank, (21) is a partition member, (22) is a first flow path, (23) is a second flow path, and (24) is a third flow path section;
(26) is Bee 1-pipe, (2Ba) is the heat absorption part, (
26b) is a heat radiating part, (28) is a heat radiating device, (30)
is a supply means, and (31) is oil in a low temperature state. Note that the same reference numerals in the two figures indicate the same or equivalent parts.

Claims (4)

【特許請求の範囲】[Claims] (1)油を使用する機器と、環状に形成され、その環状
部の一箇所に仕切部材を配置して少なくとも第1流路部
から第3流路部の3つの流路部を形成し、上記機器から
高温状態となって排出される上記油を上記第1流路部で
収容し、上記第2流路部、第3流路部に順次流入させる
ように構成された油タンクと、この油タンクの第2流路
部内の油中に吸熱部が浸漬され、上記油タンク外に放熱
部が配置され、上記油の熱分を上記吸熱部で吸収し上記
放熱部に熱輸送して放熱するヒートパイプと、このヒー
トパイプの放熱部に配設された放熱装置と、上記ヒート
パイプにより熱分が吸収されて上記油タンクの第2流路
部から上記油タンクの第3流路部内に流入した油を上記
機器に供給する供給手段とを備えた熱交換装置。
(1) A device that uses oil, which is formed into an annular shape, and a partition member is arranged at one location of the annular portion to form at least three flow path portions from a first flow path portion to a third flow path portion; an oil tank configured to accommodate the oil discharged from the equipment in a high temperature state in the first flow path section and to sequentially flow the oil into the second flow path section and the third flow path section; A heat absorbing part is immersed in the oil in the second flow path part of the oil tank, and a heat radiating part is arranged outside the oil tank, and the heat of the oil is absorbed by the heat absorbing part, and the heat is transferred to the heat radiating part to radiate the heat. a heat pipe disposed in a heat dissipation section of the heat pipe; and a heat dissipation device disposed in a heat dissipation section of the heat pipe; and a supply means for supplying the inflowing oil to the equipment.
(2)ヒートパイプは油タンクの第2流路部に2箇所設
けたことを特徴とする特許請求の範囲第1項に記載の熱
交換装置。
(2) The heat exchange device according to claim 1, wherein the heat pipes are provided at two locations in the second flow path portion of the oil tank.
(3)放熱装置は複数のヒートパイプの放熱部を共通し
て冷却することを特徴とする特許請求の範囲第2項に記
載の熱交換装置。
(3) The heat exchange device according to claim 2, wherein the heat radiator cools the heat radiating portions of a plurality of heat pipes in common.
(4)機器は工作機械であることを特徴とする特許請求
の範囲第1項乃至第3項の何れかに記載の熱交換装置。
(4) The heat exchange device according to any one of claims 1 to 3, wherein the equipment is a machine tool.
JP27947185A 1985-12-10 1985-12-10 Heat exchanger Granted JPS62138686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27947185A JPS62138686A (en) 1985-12-10 1985-12-10 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27947185A JPS62138686A (en) 1985-12-10 1985-12-10 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS62138686A true JPS62138686A (en) 1987-06-22
JPH0438992B2 JPH0438992B2 (en) 1992-06-26

Family

ID=17611520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27947185A Granted JPS62138686A (en) 1985-12-10 1985-12-10 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS62138686A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150025002A (en) * 2013-08-28 2015-03-10 현대중공업 주식회사 Fuel Injection Pump with Function of Heating and Cooling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358368U (en) * 1976-10-20 1978-05-18
JPS58194376U (en) * 1982-06-21 1983-12-24 ヤンマー農機株式会社 oil cooler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358368U (en) * 1976-10-20 1978-05-18
JPS58194376U (en) * 1982-06-21 1983-12-24 ヤンマー農機株式会社 oil cooler

Also Published As

Publication number Publication date
JPH0438992B2 (en) 1992-06-26

Similar Documents

Publication Publication Date Title
US7499278B2 (en) Method and apparatus for dissipating heat from an electronic device
US7394655B1 (en) Absorptive cooling for electronic devices
TW201641910A (en) Coolant type heat dissipation device
KR101837702B1 (en) Chiller for semiconductor process using thermoelement
US20050145371A1 (en) Thermal solution for electronics cooling using a heat pipe in combination with active loop solution
KR200383783Y1 (en) Loop type heat-pipe system
JPH1183226A (en) Absorption type refrigerating machine
JPS62138686A (en) Heat exchanger
JPS62138688A (en) Heat exchanger
JPH0438993B2 (en)
JPS62138685A (en) Heat exchanger
JPH046879B2 (en)
KR100868517B1 (en) Cooling unit, cooling apparatus for heating element and electronic device having the same
TWM513991U (en) Refrigerant type heat dissipation device
JPH046878B2 (en)
JPH0440634B2 (en)
JPH1130467A (en) Heat exchange system
JPH0438994B2 (en)
JPS62138684A (en) Heat exchanger
JP3381094B2 (en) Absorption type heating and cooling water heater
KR20060000470A (en) Fan coil unit for cooling and heating with oscillating heat pipe
US20230397325A1 (en) Computing system with cooling for controlling temperature of electronic components
JP2016173216A (en) Cooling device and electronic device equipped with the same
JPS633172A (en) Heat exchanger
JPH0726793B2 (en) Cold plate