JP2016173216A - Cooling device and electronic device equipped with the same - Google Patents

Cooling device and electronic device equipped with the same Download PDF

Info

Publication number
JP2016173216A
JP2016173216A JP2015054127A JP2015054127A JP2016173216A JP 2016173216 A JP2016173216 A JP 2016173216A JP 2015054127 A JP2015054127 A JP 2015054127A JP 2015054127 A JP2015054127 A JP 2015054127A JP 2016173216 A JP2016173216 A JP 2016173216A
Authority
JP
Japan
Prior art keywords
working fluid
heat
return path
liquid tank
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015054127A
Other languages
Japanese (ja)
Inventor
若菜 野上
Wakana Nogami
若菜 野上
村山 拓也
Takuya Murayama
拓也 村山
杉山 誠
Makoto Sugiyama
誠 杉山
辰乙 郁
Shinitsu Iku
辰乙 郁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015054127A priority Critical patent/JP2016173216A/en
Publication of JP2016173216A publication Critical patent/JP2016173216A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling device which supplies a necessary amount of a refrigerant to a heat receiving part according to fluctuation of heat of a heating element to achieve stable cooling performance.SOLUTION: A cooling device 1 cools a heating element 2 with phase change of a refrigerant. In the cooling device 1, a heat receiving part 3 in which the heating element 2 is installed, a heat radiation passage 5, a heat radiation part 4, and a feedback path 6 are sequentially connected to form a circulation passage of the refrigerant. The feedback path includes a liquid tank. The liquid tank includes a first connection part and a second connection part. The liquid tank is detachably connected to the feedback path by the first connection part and the second connection part.SELECTED DRAWING: Figure 1

Description

本発明は、中央演算処理装置(CPU)、大規模集積回路(LSI)、絶縁ゲートバイポーラトランジスタ(IGBT)等の電子部品を搭載した電子機器の冷却装置およびこれを搭載した電子機器に関するものである。   The present invention relates to a cooling device for an electronic device in which electronic components such as a central processing unit (CPU), a large scale integrated circuit (LSI), and an insulated gate bipolar transistor (IGBT) are mounted, and an electronic device in which the electronic device is mounted. .

従来、この種の冷却装置は、以下のような構成となっていた。   Conventionally, this type of cooling device has the following configuration.

すなわち、図3に示すように、発熱体101に沿わせて配置された受熱部102と、その受熱部102の一端部から鉛直上方に延びた蒸気管103と、受熱部102より高い位置に配置されるとともに冷却媒体となる外気によって冷やされかつ蒸気管103が上側から下向きに接続された放熱部104と、その放熱部104の下端部と受熱部102の他端部とを接続した液環流管105とからなる全体として密閉環状をなし、外部から熱を受けて蒸発するとともに放熱して凝縮する作動流体106を内部に密閉したループ型ヒートパイプにおいて、液環流管105から受熱部102に至る範囲の所定箇所に、液相の作動流体106を貯留したリザーブタンク107が接続され、かつそのリザーブタンク107には加圧部108が備えられ、内部の作動流体106を加圧できる構成となっている。   That is, as shown in FIG. 3, the heat receiving portion 102 arranged along the heating element 101, the steam pipe 103 extending vertically upward from one end portion of the heat receiving portion 102, and the position higher than the heat receiving portion 102. And a heat radiating section 104 cooled by the outside air as a cooling medium and having the steam pipe 103 connected downward from above, and a liquid reflux pipe connecting the lower end of the heat radiating section 104 and the other end of the heat receiving section 102 105 in a loop type heat pipe having a sealed annular shape as a whole and having received a heat from the outside to evaporate and dissipates and condenses the working fluid 106 inside, the range from the liquid reflux tube 105 to the heat receiving portion 102 A reserve tank 107 storing a liquid-phase working fluid 106 is connected to a predetermined portion of the storage tank 107, and the reserve tank 107 is provided with a pressurizing unit 108. It has become a working fluid 106 and configured to be pressurized.

このような構成のループ型ヒートパイプにおいて、作動流体106の蒸発は受熱部102で生じ、その蒸気は蒸気管103を上昇流となって放熱部104に向けて流れ、放熱部104で蒸気が熱を奪われて凝縮する。そして、凝縮した作動流体106は水頭差によって液環流管105を通って受熱部102に還流し、発熱体101は冷却される。   In the loop heat pipe having such a configuration, the working fluid 106 evaporates in the heat receiving portion 102, and the steam flows upward through the steam pipe 103 toward the heat radiating portion 104, and the steam is heated in the heat radiating portion 104. Is deprived and condensed. Then, the condensed working fluid 106 flows back to the heat receiving unit 102 through the liquid recirculation pipe 105 due to a water head difference, and the heating element 101 is cooled.

このとき、発熱体101の熱負荷が大きくなると、受熱部102での作動流体106の蒸発および放熱部104での作動流体106の凝縮が激しくなるため、受熱部102では作動流体106が不足するためドライアウトが生じやすくなる。   At this time, if the heat load of the heating element 101 increases, the working fluid 106 evaporates in the heat receiving portion 102 and the working fluid 106 condenses in the heat radiating portion 104, so the working fluid 106 is insufficient in the heat receiving portion 102. Dry out is likely to occur.

しかしながら本構成では、作動流体106がリザーブタンク107から液環流管105および受熱部102に対して追加供給されるので、受熱部102では部分的であってもドライアウトが生じることはない。また、リザーブタンク107内の作動流体106は加圧部108により加圧されているので、熱負荷が大きいことに伴って受熱部102内の圧力が高い場合であっても作動流体106は確実に供給される(例えば特許文献1参照)。   However, in this configuration, since the working fluid 106 is additionally supplied from the reserve tank 107 to the liquid reflux pipe 105 and the heat receiving unit 102, the heat receiving unit 102 is not partially dry out. Further, since the working fluid 106 in the reserve tank 107 is pressurized by the pressurizing unit 108, the working fluid 106 is surely secured even when the pressure in the heat receiving unit 102 is high due to a large heat load. (See, for example, Patent Document 1).

実開昭63−197982号公報Japanese Utility Model Publication No. 63-197982

特許文献1に示された冷却装置では、加圧部108として、バルブ109、ガスボンベ110、圧力計111が示されており、ガスボンベ110はバルブ109を介してリザーブタンク107に接続されている。圧力計111はバルブ109とリザーブタンク107の間に備えられている。また、ガスボンベ110には非圧縮性ガス(例えばArやN2)が封入され、リザーブタンク107とガスボンベ110は、弾性膜で隔絶されているので作動流体106に非圧縮性ガスが混入しないようになっている。 In the cooling device disclosed in Patent Document 1, a valve 109, a gas cylinder 110, and a pressure gauge 111 are shown as the pressurizing unit 108, and the gas cylinder 110 is connected to the reserve tank 107 via the valve 109. The pressure gauge 111 is provided between the valve 109 and the reserve tank 107. The gas cylinder 110 is filled with an incompressible gas (for example, Ar or N 2 ), and the reserve tank 107 and the gas cylinder 110 are separated by an elastic film so that the incompressible gas is not mixed into the working fluid 106. It has become.

上記の構成では、熱負荷が大きくなった時にバルブ109を開く必要があるが、その制御については記載されておらず、急激な熱負荷増大があった場合に作動流体106の追加供給が間に合わなければドライアウトが生じるという課題があった。   In the above configuration, it is necessary to open the valve 109 when the heat load becomes large, but the control is not described, and when the heat load suddenly increases, the additional supply of the working fluid 106 is not in time. There was a problem that dryout would occur.

また、一度加圧した後には、非圧縮性ガスがガスボンベ110へ自然に戻ることはないので、熱負荷が小さくなった時には追加供給された作動流体106が余分となり、作動流体106の循環を阻害し、冷却性能が低下するという課題があった。作動流体106をリザーブタンク107に戻すためには、リザーブタンク107と液還流管105との接続部分が液相の作動流体106で満たされている時に、バルブ109からガスボンベ110を外し非圧縮性ガスを抜くという作業が必要となるが、非常に煩雑な作業となる。   In addition, once the pressure is increased, the incompressible gas does not naturally return to the gas cylinder 110. Therefore, when the thermal load is reduced, the additionally supplied working fluid 106 becomes redundant, and the circulation of the working fluid 106 is obstructed. However, there is a problem that the cooling performance is lowered. In order to return the working fluid 106 to the reserve tank 107, the gas cylinder 110 is removed from the valve 109 when the connecting portion between the reserve tank 107 and the liquid reflux pipe 105 is filled with the liquid-phase working fluid 106, and the incompressible gas is discharged. It is necessary to take out the work, but it is a very complicated work.

そこで本発明は、上記のような課題を解決するものであり、熱負荷が変動した場合にも必要な作動流体を必要量だけ供給し、安定した冷却性能が得られる冷却装置の提供を目的とするものである。   Accordingly, the present invention is to solve the above-described problems, and an object of the present invention is to provide a cooling device that supplies a necessary amount of a required working fluid even when a thermal load fluctuates and obtains a stable cooling performance. To do.

そこで、この目的を達成するために本発明は、作動流体の相変化によって発熱体を冷却する冷却装置において、前記発熱体を設置する受熱板を備えた受熱部、放熱経路、放熱部、帰還経路を順に連結して前記作動流体の循環経路を形成し、前記放熱部は、下部に一時的に作動流体を貯留するヘッダー部を備え、前記ヘッダー部と前記帰還経路とが接続する構成であって、前記帰還経路は液タンクを備え、前記液タンクは、第一接続部と、第二接続部と、を備え、前記液タンクは前記帰還経路において、前記第一接続部および前記第二接続部により前記帰還経路に着脱可能な状態で接続していることを特徴とする冷却装置であり、これにより初期の目的を達成するものである。   Accordingly, in order to achieve this object, the present invention provides a cooling device that cools a heating element by a phase change of a working fluid, and includes a heat receiving portion, a heat dissipation path, a heat dissipation section, and a return path provided with a heat receiving plate on which the heating element is installed Are connected in order to form a circulation path for the working fluid, and the heat dissipating part includes a header part for temporarily storing the working fluid in a lower part, and the header part and the return path are connected to each other. The return path includes a liquid tank, the liquid tank includes a first connection portion and a second connection portion, and the liquid tank includes the first connection portion and the second connection portion in the return path. Thus, the cooling device is detachably connected to the return path, thereby achieving the initial purpose.

以上のように本発明の冷却装置では、帰還経路に液タンクを備えることにより、作動流体を液タンクに一時貯留でき、発熱体の発熱量の最大値を十分に賄うだけの作動流体を封入しておくことで、発熱体の熱が急激に大きくなったとしても、必要な作動流体を受熱部に供給することができるので、ドライアウトを防ぐことができる。   As described above, in the cooling device of the present invention, by providing the liquid tank in the return path, the working fluid can be temporarily stored in the liquid tank, and the working fluid that can sufficiently cover the maximum heating value of the heating element is enclosed. Thus, even if the heat of the heating element suddenly increases, the necessary working fluid can be supplied to the heat receiving portion, so that dryout can be prevented.

また、液タンクを帰還経路に備えることにより、余分な作動流体が、放熱経路において受熱部で発生した蒸気の循環を阻害し、冷却性能を低下させることがない。   Further, by providing the liquid tank in the return path, the extra working fluid does not hinder the circulation of the steam generated in the heat receiving part in the heat dissipation path and does not deteriorate the cooling performance.

また、第一接続部および第二接続部により液タンクが帰還経路から着脱可能なので、必要に応じて液タンクの取り外しも可能で、容積の異なるタンクへの交換も可能になり、組立や点検、メンテナンスの作業性を損なうことがない。   In addition, since the liquid tank can be detached from the return path by the first connection part and the second connection part, the liquid tank can be removed if necessary, and can be replaced with a tank with a different volume. Maintenance workability is not impaired.

上記により、熱が変動した場合にも必要量だけ作動流体を供給し、安定した冷却性能が得られる。   According to the above, even when the heat fluctuates, the working fluid is supplied in a necessary amount, and a stable cooling performance can be obtained.

本発明の実施の形態1の冷却装置を搭載した電子機器の概略図Schematic of an electronic device equipped with the cooling device of Embodiment 1 of the present invention 本発明の実施の形態2の冷却装置を搭載した電子機器の概略図Schematic of the electronic device carrying the cooling device of Embodiment 2 of this invention 従来の冷却装置の構成図Configuration diagram of conventional cooling system

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
以下、本発明の実施の形態1について、図面を参照しながら説明する。
(Embodiment 1)
Embodiment 1 of the present invention will be described below with reference to the drawings.

図1は、本発明の実施の形態1の冷却装置1を搭載した電子機器30の概略図である。   FIG. 1 is a schematic diagram of an electronic device 30 on which the cooling device 1 according to Embodiment 1 of the present invention is mounted.

図1に示すように、電子機器30は、ケース31内に発熱体2となる電力用半導体素子と、その発熱体2を冷やす冷却装置1とが備えられている。   As shown in FIG. 1, an electronic device 30 includes a power semiconductor element that becomes a heating element 2 and a cooling device 1 that cools the heating element 2 in a case 31.

冷却装置1は、発熱体2を取り付けられる受熱板(図示せず)を備えた受熱部3と、放熱部4とを備えており、放熱経路5と帰還経路6とにより受熱部3と放熱部4は環状に連結され冷却装置1は内部が密閉空間となっている。   The cooling device 1 includes a heat receiving portion 3 having a heat receiving plate (not shown) to which the heat generating element 2 is attached, and a heat radiating portion 4. 4 is connected annularly and the inside of the cooling device 1 is a sealed space.

冷却装置1は、内部を減圧した上で、作動流体7が封入され、その蒸発潜熱により発熱体2を冷やすことができる沸騰冷却器となっている。作動流体7は、例えば純水、エタノール、フッ素系溶剤類、フロン系冷媒、などが用いられる。   The cooling device 1 is a boiling cooler in which the working fluid 7 is sealed after the pressure is reduced, and the heating element 2 can be cooled by the latent heat of evaporation. As the working fluid 7, for example, pure water, ethanol, fluorine-based solvents, chlorofluorocarbon refrigerant, or the like is used.

また冷却装置1は、放熱部4に外気を送風するファン8を備え、作動流体7により輸送した熱を最終的に外気に放熱している。放熱部4の下部には一時的に作動流体7を貯留できるヘッダー部9を備え、帰還経路6は、ヘッダー部9と受熱部3とを接続している。   In addition, the cooling device 1 includes a fan 8 that blows outside air to the heat radiating unit 4, and finally radiates heat transported by the working fluid 7 to the outside air. A header portion 9 that can temporarily store the working fluid 7 is provided below the heat radiating portion 4, and the return path 6 connects the header portion 9 and the heat receiving portion 3.

ここで、放熱部4は例えばアルミ製のラジエータであり、扁平形状で多数の孔を有したマルチチューブの内側を通過する媒体と、コルゲーテッドフィンを多数備え外側を通過する外気との熱交換が効率的に行われるようになっている。   Here, the heat radiating unit 4 is, for example, an aluminum radiator, and heat exchange between a flat medium that passes through the inside of the multi-tube having a large number of holes and outside air that has many corrugated fins and passes through the outside. It is designed to be done efficiently.

帰還経路6の受熱部3側には、作動流体7が受熱部3から帰還経路6側へと流入する逆流を防止するために逆流防止部10を備えており、帰還経路6のヘッダー部9側には、液相の作動流体7を十分に貯留することができる液タンク11を備えている。   The return path 6 is provided with a backflow prevention section 10 on the heat receiving section 3 side in order to prevent the backflow of the working fluid 7 from the heat receiving section 3 to the return path 6 side. Is provided with a liquid tank 11 that can sufficiently store the liquid-phase working fluid 7.

また液タンク11は、第一開口12と第二開口13とを備え、第一開口12と帰還経路6のヘッダー部9側とを接続し開閉および着脱可能な第一接続部14と、第二開口13と帰還経路6の受熱部3側とを接続し開閉および着脱可能な第二接続部15とを備えている。   The liquid tank 11 includes a first opening 12 and a second opening 13, and connects the first opening 12 and the header section 9 side of the return path 6 to be openable / closable and detachable; The opening 13 and the heat receiving part 3 side of the return path 6 are connected to each other, and a second connecting part 15 that can be opened and closed and detached is provided.

すなわち液タンク11は、第一接続部14と第一開口12を介して帰還経路6と連通し、また同じく第二接続部15と第二開口13を介して帰還経路6と連通している。   That is, the liquid tank 11 communicates with the return path 6 via the first connection portion 14 and the first opening 12, and similarly communicates with the return path 6 via the second connection portion 15 and the second opening 13.

第一接続部14と第二接続部15には、例えばボールバルブ、ゲートバルブ、ニードルバルブ、グローブバルブ、ストップバルブ、などが用いられ、液タンク11を帰還経路6から着脱する際に作動流体7の漏れ防止や気密性の確保が可能になっている。   For example, a ball valve, a gate valve, a needle valve, a globe valve, a stop valve, or the like is used for the first connection portion 14 and the second connection portion 15. When the liquid tank 11 is attached to or detached from the return path 6, the working fluid 7 is used. It is possible to prevent leakage and to ensure airtightness.

次に冷却装置1の基本動作について説明する。   Next, the basic operation of the cooling device 1 will be described.

冷却装置1は、発熱体2の駆動に伴う熱を受熱部3で受熱し、この熱が内部の作動流体7に伝わり沸騰することで蒸気へと相変化し、その蒸発潜熱分だけ発熱体2から熱を奪うことができる。   The cooling device 1 receives heat generated by driving the heating element 2 by the heat receiving unit 3, and this heat is transmitted to the internal working fluid 7 and boiled, so that the phase is changed to steam. You can take heat away from.

作動流体7の蒸気は、圧力差の作用により放熱部4へと流入し、ファン8により外気で冷やされた放熱部4内で凝縮して液相へと相変化し、液相の作動流体7はヘッダー部9と接続した帰還経路6および逆流防止部10を通って再び受熱部3へと供給される。   The vapor of the working fluid 7 flows into the heat radiating section 4 due to the pressure difference, condenses in the heat radiating section 4 cooled by the outside air by the fan 8, and changes into the liquid phase. Is supplied again to the heat receiving section 3 through the return path 6 connected to the header section 9 and the backflow prevention section 10.

ここで、圧力差の作用とは、受熱部3内よりも放熱部4内の方が相対的に圧力が小さいため、作動流体7の蒸気は、受熱部3から放熱部4の方へ流れることを意味する。なぜならば、冷却装置1内は限られた内容積で環状に繋がったひとつの密閉空間であることから、作動流体7は飽和圧力状態で存在することになる。発熱体2により暖められた受熱部3内部よりも、外気によって冷やされている放熱部4内部の方が、飽和圧力が小さくなるのである。   Here, the action of the pressure difference means that the pressure of the working fluid 7 flows from the heat receiving portion 3 toward the heat radiating portion 4 because the pressure in the heat radiating portion 4 is relatively smaller than that in the heat receiving portion 3. Means. This is because the inside of the cooling device 1 is a single sealed space connected in an annular shape with a limited internal volume, so that the working fluid 7 exists in a saturated pressure state. The saturation pressure is smaller in the heat radiating section 4 cooled by the outside air than in the heat receiving section 3 warmed by the heating element 2.

また、ここで、作動流体7の循環方向は、逆流防止部10によって一方向へと規定される。すなわち、逆流防止部10は、例えば多孔質金属焼結体や、金属繊維焼結体、異径縮小部、細管、曲がり管、弁体、などが用いられ、その構造による流路抵抗により作動流体7の蒸気が放熱経路5の放熱部4側へと循環していくことを促す作用が得られる。受熱部3に作動流体7を供給する作用は、受熱部3と放熱部4との間に生じる圧力差と、逆流防止部10の流路抵抗と、帰還経路6および液タンク11に貯留される液相の作動流体7の水頭圧力と、これらのバランスによって得られる。   Here, the circulation direction of the working fluid 7 is defined in one direction by the backflow prevention unit 10. That is, the backflow prevention unit 10 uses, for example, a porous metal sintered body, a metal fiber sintered body, a reduced diameter reduced portion, a thin tube, a bent tube, a valve body, etc. 7 is urged to circulate to the heat radiating portion 4 side of the heat radiating path 5. The action of supplying the working fluid 7 to the heat receiving unit 3 is stored in the pressure difference generated between the heat receiving unit 3 and the heat radiating unit 4, the flow resistance of the backflow prevention unit 10, the return path 6 and the liquid tank 11. It is obtained by the head pressure of the liquid-phase working fluid 7 and the balance thereof.

このように、作動流体7が相変化を伴いながら冷却装置1内を一方向に循環し発熱体2の熱を外気へと放熱することで発熱体2は冷却されるのである。   Thus, the heating fluid 2 is cooled by circulating the inside of the cooling device 1 in one direction with the phase change and radiating the heat of the heating element 2 to the outside air.

ここで、発熱体2の熱により作動流体7は蒸発するので、すなわち作動流体7の循環流量は発熱体2の発熱量により決定される。発熱量が安定している状態では、受熱部3にて作動流体7の沸騰に伴って生じる作動流体7の蒸気量と、放熱部4へと流入し凝縮する作動流体7の液量とは等しく、また十分な量の液相の作動流体7が液タンク11および帰還経路6に貯留されているため、発熱量の大小に因らず作動流体7の循環や冷却性能は安定する。   Here, the working fluid 7 evaporates due to the heat of the heating element 2, that is, the circulation flow rate of the working fluid 7 is determined by the heat generation amount of the heating element 2. In a state where the calorific value is stable, the vapor amount of the working fluid 7 generated by the boiling of the working fluid 7 in the heat receiving portion 3 is equal to the liquid amount of the working fluid 7 that flows into the heat radiating portion 4 and condenses. In addition, since a sufficient amount of the liquid-phase working fluid 7 is stored in the liquid tank 11 and the return path 6, the circulation and cooling performance of the working fluid 7 is stable regardless of the amount of heat generated.

次に、本実施の形態の特徴である液タンクおよびその作用について説明する。   Next, the liquid tank and its operation, which are the features of this embodiment, will be described.

発熱体2の熱が急激に大きくなると、受熱部3にてより多くの作動流体7が沸騰し、一時的に帰還経路6内の液相の作動流体7が大きく減少する。液タンク11のように液相の作動流体7の十分な貯留が無ければ、受熱部3に作動流体7を供給する作用の内の、水頭圧力が一時的とは言え大きく減少するため、受熱部3内の作動流体7が不足しドライアウトしやすくなる。   When the heat of the heating element 2 suddenly increases, more working fluid 7 boils in the heat receiving section 3 and the liquid-phase working fluid 7 in the return path 6 temporarily decreases greatly. If the liquid-phase working fluid 7 is not sufficiently stored as in the liquid tank 11, the head pressure in the operation of supplying the working fluid 7 to the heat receiving portion 3 is greatly reduced although it is temporary. The working fluid 7 in 3 is insufficient and it becomes easy to dry out.

しかしながら、本実施の形態においては、液タンク11を備え、十分な量の作動流体7を貯留しているため、発熱体2の熱が急激に大きくなったとしても、液タンク11に貯留している分の作動流体7が帰還経路6へ供給されるため、一時的にも帰還経路6内の冷媒が不足することはなく、受熱部3へ作動流体7を供給するための水頭圧力も十分に得られるので、ドライアウトを防ぐことができる。   However, in the present embodiment, since the liquid tank 11 is provided and a sufficient amount of the working fluid 7 is stored, even if the heat of the heating element 2 suddenly increases, it is stored in the liquid tank 11. Since a sufficient amount of the working fluid 7 is supplied to the return path 6, there is no shortage of refrigerant in the return path 6 even temporarily, and the head pressure for supplying the working fluid 7 to the heat receiving unit 3 is sufficient. As a result, dryout can be prevented.

本実施の形態における液タンク11は、第一接続部14と第二接続部15とにより帰還経路6に接続している。これにより、液タンク11内に貯留した気相および液相の作動流体7の流入出がスムーズになる。   The liquid tank 11 in the present embodiment is connected to the return path 6 by the first connecting portion 14 and the second connecting portion 15. Thereby, inflow and outflow of the working fluid 7 in the gas phase and the liquid phase stored in the liquid tank 11 becomes smooth.

すなわち、例えば液相の作動流体7が液タンク11の内容積の半分程度まで貯留されていたとすると、残りの半分の内容積は気相の作動流体7により満たされ、また液タンク11より放熱部4側の帰還経路6も気相の作動流体7により満たされている状態になる。このときに、発熱体2の熱が急激に大きくなると、一時的に液タンク11から第二接続部15を経由して帰還経路6側に液相の作動流体7が供給され、同時に第一接続部14側からは気相の作動流体7が流入するので、液タンク11内は帰還経路6内と同圧になるので、作動流体7の流入出がスムーズなのである。   That is, for example, if the liquid-phase working fluid 7 has been stored up to about half of the internal volume of the liquid tank 11, the remaining half of the internal volume is filled with the gas-phase working fluid 7, and the heat dissipating part from the liquid tank 11. The four-side return path 6 is also filled with the gas-phase working fluid 7. At this time, when the heat of the heating element 2 suddenly increases, the liquid-phase working fluid 7 is temporarily supplied from the liquid tank 11 to the return path 6 via the second connection portion 15 and simultaneously the first connection. Since the gas-phase working fluid 7 flows in from the part 14 side, the liquid tank 11 has the same pressure as that in the return path 6, so that the working fluid 7 flows in and out smoothly.

また、その後徐々に放熱部4にて凝縮した液相の作動流体7がヘッダー部9を経由して帰還経路6へと流入してくるが、この際には作動流体7の殆どが第一接続部14から液タンク11に流入する。液タンク11内の気相の作動流体7は第二接続部15から帰還経路6側へと流出するので、液タンク11内に作動流体7が再び貯留されることになる。   Thereafter, the liquid-phase working fluid 7 gradually condensed in the heat radiating section 4 flows into the return path 6 via the header section 9, and at this time, most of the working fluid 7 is connected to the first connection. The liquid flows into the liquid tank 11 from the portion 14. Since the gas-phase working fluid 7 in the liquid tank 11 flows out from the second connection portion 15 toward the return path 6, the working fluid 7 is stored in the liquid tank 11 again.

なお、液タンク11の内容積は、帰還経路6の内容積よりも大きいことがのぞましく、発熱体2の熱が変動したとしても、受熱部3へ必要な量の作動流体7を供給でき、かつ液相の作動流体7が液タンク11から無くなることがないので、受熱部3へ作動流体7を供給するために必要な水頭圧力が安定して得られ、冷却性能をより安定させて冷却装置1の信頼性を向上させることができる。   The internal volume of the liquid tank 11 is preferably larger than the internal volume of the return path 6, and even if the heat of the heating element 2 fluctuates, the necessary amount of working fluid 7 is supplied to the heat receiving unit 3. Since the liquid-phase working fluid 7 is not lost from the liquid tank 11, the water head pressure necessary for supplying the working fluid 7 to the heat receiving section 3 can be stably obtained, and the cooling performance can be further stabilized. The reliability of the cooling device 1 can be improved.

冷却装置1内には、予め発熱体2の発熱量の最大値を十分に賄うだけの作動流体7を封入してあり、その容量は、帰還経路6と液タンク11に収まる量で調整され、液相の作動流体7の液面は、液タンク11内にあるように調整されることが望ましい。   In the cooling device 1, the working fluid 7 that sufficiently covers the maximum value of the heat generation amount of the heating element 2 is sealed in advance, and the capacity thereof is adjusted by an amount that can be accommodated in the return path 6 and the liquid tank 11, The liquid level of the liquid-phase working fluid 7 is preferably adjusted so as to be in the liquid tank 11.

また、本実施の形態においては、液タンク11が着脱可能な構成となっている。すなわち、第一接続部14を閉じ、第二接続部15を閉じ、そして第一開口12から第一接続部14を外し、第二開口13から第二接続部15を外すことで、液タンク11を帰還経路6から取り外すことができる。装着時にはその逆の手順を実施することになる。   In the present embodiment, the liquid tank 11 is detachable. That is, the liquid tank 11 is closed by closing the first connection portion 14, closing the second connection portion 15, removing the first connection portion 14 from the first opening 12, and removing the second connection portion 15 from the second opening 13. Can be removed from the return path 6. The reverse procedure is carried out at the time of wearing.

これにより、冷却装置1の組み立て時や点検、メンテナンスの際の作業が容易になり、また液タンク11の容量を変更することができるので、冷却装置1の設置後に液タンク11の容量が不足したとしても交換対応が可能となる。   As a result, the cooling device 1 can be easily assembled, inspected, and maintained, and the capacity of the liquid tank 11 can be changed. Therefore, the capacity of the liquid tank 11 is insufficient after the cooling apparatus 1 is installed. Can also be exchanged.

なお、第一接続部14を三方弁にしてもよく、その場合には第一接続部14は、帰還経路6と第一開口12と接続し、加えてさらに大気開放側に接続口があるので、その接続口に真空ポンプを接続し、帰還経路6と真空ポンプを連通させることにより、冷却装置1内の真空を増し引きすることができる。また、その接続口に冷媒タンクを接続し、液タンク11と冷媒タンクを連通させることで、作動流体7の追加補充をすることができる。これにより、冷却装置1のメンテナンス作業を容易にすることができる。   The first connecting portion 14 may be a three-way valve. In that case, the first connecting portion 14 is connected to the return path 6 and the first opening 12, and in addition, there is a connecting port on the atmosphere opening side. The vacuum in the cooling device 1 can be increased and reduced by connecting a vacuum pump to the connection port and communicating the return path 6 with the vacuum pump. Further, the working fluid 7 can be additionally replenished by connecting a refrigerant tank to the connection port and communicating the liquid tank 11 and the refrigerant tank. Thereby, the maintenance work of the cooling device 1 can be facilitated.

本実施の形態では、冷却をファン8による空冷式としたが、水冷式、その他の方式であってもよい。   In this embodiment, the cooling is performed by the air cooling method using the fan 8, but a water cooling method or other methods may be used.

なお、液タンク11は耐圧性に優れた円筒形状が好ましい。   The liquid tank 11 preferably has a cylindrical shape with excellent pressure resistance.

なお、液タンク11にサイトグラス(図示せず)を備えてもよく、この場合、内部の液の有無を目視で確認できる。   The liquid tank 11 may be provided with a sight glass (not shown). In this case, the presence or absence of the liquid inside can be visually confirmed.

なお、放熱経路5にチャージバルブ(図示せず)を備えてもよく、この場合、冷却装置1内を追加で真空排気することが可能になる。   Note that a charge valve (not shown) may be provided in the heat dissipation path 5, and in this case, the inside of the cooling device 1 can be additionally evacuated.

(実施の形態2)
以下、本発明の実施の形態2について、図面を参照しながら説明する。
(Embodiment 2)
Embodiment 2 of the present invention will be described below with reference to the drawings.

図2は、本発明の実施の形態2の冷却装置1を搭載した電子機器30の概略図である。   FIG. 2 is a schematic diagram of an electronic device 30 on which the cooling device 1 according to Embodiment 2 of the present invention is mounted.

実施の形態1と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。   The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態では、液タンク11は、第一接続部14を介してヘッダー部9と連通し、第二接続部15を介して帰還経路6と連通している。   In the present embodiment, the liquid tank 11 communicates with the header portion 9 via the first connection portion 14 and communicates with the return path 6 via the second connection portion 15.

この構成では、帰還経路6と液タンク11のいずれもがヘッダー部9と連通するので、放熱部4で凝縮した液相の作動流体7が帰還経路6および液タンク11のいずれにも流出できるので、作動流体7の循環がよりスムーズになる。   In this configuration, since both the return path 6 and the liquid tank 11 communicate with the header section 9, the liquid-phase working fluid 7 condensed in the heat radiating section 4 can flow out to both the return path 6 and the liquid tank 11. The circulation of the working fluid 7 becomes smoother.

この他の作用効果は、実施の形態1と同様であり、説明は省略する。   Other functions and effects are the same as those of the first embodiment, and a description thereof will be omitted.

以上のように本発明にかかる冷却装置は、発熱体の熱の変動に合わせて必要量の冷媒を受熱部に供給することができるので、安定した冷却性能が得られ、信頼性が高く、電子機器等の冷却装置として有用である。   As described above, the cooling device according to the present invention can supply a necessary amount of the refrigerant to the heat receiving portion in accordance with the fluctuation of the heat of the heating element, so that a stable cooling performance is obtained, and the reliability is high. It is useful as a cooling device for equipment.

1 冷却装置
2 発熱体
3 受熱部
4 放熱部
5 放熱経路
6 帰還経路
7 作動流体
8 ファン
9 ヘッダー部
10 逆流防止部
11 液タンク
12 第一開口
13 第二開口
14 第一接続部
15 第二接続部
30 電子機器
31 ケース
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Heat generating body 3 Heat receiving part 4 Heat radiation part 5 Heat radiation path 6 Return path 7 Working fluid 8 Fan 9 Header part 10 Backflow prevention part 11 Liquid tank 12 First opening 13 Second opening 14 First connection part 15 Second connection Part 30 Electronic equipment 31 Case

Claims (5)

作動流体の相変化によって発熱体を冷却する冷却装置において、
前記発熱体を設置する受熱板を備えた受熱部、放熱経路、放熱部、帰還経路を順に連結して前記作動流体の循環経路を形成し、
前記放熱部は、下部に一時的に作動流体を貯留するヘッダー部を備え、
前記ヘッダー部と前記帰還経路とが接続する構成であって、
前記帰還経路は、液タンクを備え、
前記液タンクは、第一接続部と、第二接続部と、を備え、
前記液タンクは、前記帰還経路において、前記第一接続部および前記第二接続部により前記帰還経路に着脱可能な状態で接続していることを特徴とする冷却装置。
In the cooling device that cools the heating element by the phase change of the working fluid,
A heat receiving part provided with a heat receiving plate for installing the heating element, a heat radiation path, a heat radiation part, and a return path are connected in order to form a circulation path for the working fluid,
The heat dissipating part includes a header part for temporarily storing a working fluid in a lower part,
The header part and the return path are connected to each other,
The return path includes a liquid tank,
The liquid tank includes a first connection portion and a second connection portion,
The cooling device, wherein the liquid tank is detachably connected to the return path through the first connection part and the second connection part in the return path.
帰還経路は、逆流防止部を備え、前記逆流防止部は、液タンクと受熱部の間に配置されることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the return path includes a backflow prevention unit, and the backflow prevention unit is disposed between the liquid tank and the heat receiving unit. 液タンクは、帰還経路におけるヘッダー部と逆流防止部との間において、第一接続部と前記ヘッダー部とが接続し、第二接続部と前記帰還経路とが接続することを特徴とする請求項1または2に記載の冷却装置。 The liquid tank is characterized in that the first connection portion and the header portion are connected between the header portion and the backflow prevention portion in the return path, and the second connection portion and the return path are connected. The cooling device according to 1 or 2. 液タンクの内容積が、帰還経路の内容積よりも大きいことを特徴とする請求項1から3のいずれかに記載の冷却装置。 4. The cooling device according to claim 1, wherein the internal volume of the liquid tank is larger than the internal volume of the return path. 第一接続部が三方弁であることを特徴とする請求項1から4のいずれかに記載の冷却装置。 The cooling device according to any one of claims 1 to 4, wherein the first connection portion is a three-way valve.
JP2015054127A 2015-03-18 2015-03-18 Cooling device and electronic device equipped with the same Pending JP2016173216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015054127A JP2016173216A (en) 2015-03-18 2015-03-18 Cooling device and electronic device equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015054127A JP2016173216A (en) 2015-03-18 2015-03-18 Cooling device and electronic device equipped with the same

Publications (1)

Publication Number Publication Date
JP2016173216A true JP2016173216A (en) 2016-09-29

Family

ID=57008942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015054127A Pending JP2016173216A (en) 2015-03-18 2015-03-18 Cooling device and electronic device equipped with the same

Country Status (1)

Country Link
JP (1) JP2016173216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153620A (en) * 2019-03-22 2020-09-24 三菱重工業株式会社 Cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153620A (en) * 2019-03-22 2020-09-24 三菱重工業株式会社 Cooling device
JP7263073B2 (en) 2019-03-22 2023-04-24 三菱重工業株式会社 Cooling system

Similar Documents

Publication Publication Date Title
US20160073548A1 (en) Cooling module, cooling module mounting board and electronic device
CN103200803B (en) A kind of heat radiation device for loop heat pipe having pool boiling
JPH0420788A (en) Cooling device and temperature control device
WO2013121772A1 (en) Cooling device and cooling system
US11903166B2 (en) Systems and methods for immersion cooling with subcooled spray
WO2019017297A1 (en) Phase change refrigerating device and phase change refrigerating method
US20220232734A1 (en) Systems and methods for immersion cooling with an air-cooled condenser
US20050145371A1 (en) Thermal solution for electronics cooling using a heat pipe in combination with active loop solution
US20240138112A1 (en) Systems and methods for immersion cooling with subcooled spray
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JP2006242455A (en) Cooling method and device
JP5786132B2 (en) Electric car
JP2016173216A (en) Cooling device and electronic device equipped with the same
JP2012099694A (en) Cooler
JP5869646B1 (en) Refrigerant supply device, cooling device, and cooling system
JP6904704B2 (en) Phase change cooling device and phase change cooling method
CN210924458U (en) Evaporative cooling system
JP6596986B2 (en) Cooling parts and electronic equipment
US11280556B2 (en) Fast heat-sinking, current stabilization and pressure boosting device for condenser
JPWO2017150415A1 (en) COOLING SYSTEM, COOLER, AND COOLING METHOD
KR20110059568A (en) Cooling system of natural circulation by low temperature boiling of water
JP2017041577A (en) Cooler and cooling method
JP2017075736A (en) Cooling device and refrigerant repeating device
JP2013024478A (en) Cooling device, electronic equipment and electric vehicle with cooling device mounted thereon
JP2015060901A (en) Cooling system and electronic apparatus mounted therewith