JPH0438993B2 - - Google Patents

Info

Publication number
JPH0438993B2
JPH0438993B2 JP60279472A JP27947285A JPH0438993B2 JP H0438993 B2 JPH0438993 B2 JP H0438993B2 JP 60279472 A JP60279472 A JP 60279472A JP 27947285 A JP27947285 A JP 27947285A JP H0438993 B2 JPH0438993 B2 JP H0438993B2
Authority
JP
Japan
Prior art keywords
heat
oil
flow path
section
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60279472A
Other languages
Japanese (ja)
Other versions
JPS62138687A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP27947285A priority Critical patent/JPS62138687A/en
Publication of JPS62138687A publication Critical patent/JPS62138687A/en
Publication of JPH0438993B2 publication Critical patent/JPH0438993B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は油を使用する機器、例えば工作機械
における主軸系統の油の熱交換装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat exchange device for oil in a spindle system of equipment that uses oil, such as a machine tool.

〔従来の技術〕[Conventional technology]

第2図は例えば「機械技術」(昭和56年第29巻
第6号P101、日刊工業新聞社刊)に開示された
従来の一般的な工作機械の主軸系の油の熱交換装
置の概略を示し、図において、1は機器である例
えば工作機械の主軸系(図示せず)にて加熱、加
温されて高温状態となつた油、2は工作機械の主
軸系から高温状態となつて排出される油1を貯留
する油タンク、3は配管4を介して油タンク2内
の油を冷却タンク5内に導くポンプ、5a及び5
bは冷却タンク5の外槽及び内槽であり、ポンプ
3により導かれる油は外槽5aと内槽5bとの間
に導入し、内槽5b上端からその内槽5b内に導
入する。6は内槽5bの外周に巻回された冷却
管、7は冷却管6の一方側と配管8を介して接続
され、冷却管6の他方側と配管9を介して接続さ
れ、冷却タンク5の油を冷却して高温となつた冷
却媒体が配管8を通して導入され、その内部で低
温となつた冷却媒体を配管9を介して冷却管6に
供給する冷凍装置、10は一方側が冷却タンク5
の内槽5b内の底部近傍に配置され、他方側が工
作機械の主軸系に接続され、冷却管6により冷却
された冷却タンク5の内槽5b内の低温の油11
をその内槽5b内の底部近傍から導入して工作機
械の主軸系に供給する供給配管、12は供給配管
10内の油温を検出するサーモスタツトであり、
このサーモスタツト12の検出信号に応じて制御
手段(図示せず)により冷凍装置7をON,OFF
させる。
Figure 2 shows an outline of a conventional oil heat exchange device for the spindle system of a general machine tool, as disclosed in ``Mechanical Technology'' (Vol. 29, No. 6, P101, 1981, published by Nikkan Kogyo Shimbun). In the figure, 1 is oil that has been heated to a high temperature by being heated in the spindle system (not shown) of a machine tool, for example, and 2 is oil that has become hot and is discharged from the spindle system of a machine tool. An oil tank 3 stores oil 1 to be heated, and 3 is a pump 5a and 5 that guides oil in the oil tank 2 into a cooling tank 5 through a pipe 4.
b is an outer tank and an inner tank of the cooling tank 5, and oil guided by the pump 3 is introduced between the outer tank 5a and the inner tank 5b, and is introduced into the inner tank 5b from the upper end of the inner tank 5b. 6 is a cooling pipe wound around the outer periphery of the inner tank 5b; 7 is connected to one side of the cooling pipe 6 via piping 8, and is connected to the other side of the cooling pipe 6 via piping 9; A refrigeration system in which a cooling medium that has cooled the oil to a high temperature is introduced through a pipe 8, and supplies the cooling medium that has become low temperature inside to a cooling pipe 6 through a pipe 9, 10 has a cooling tank 5 on one side.
The low temperature oil 11 in the inner tank 5b of the cooling tank 5 is located near the bottom of the inner tank 5b, the other side is connected to the main shaft system of the machine tool, and is cooled by the cooling pipe 6.
12 is a thermostat that detects the oil temperature in the supply pipe 10;
The refrigeration device 7 is turned on and off by a control means (not shown) according to the detection signal of the thermostat 12.
let

次に動作について説明する。工作機械の主軸系
において加熱、加温されて高温状態となつた油1
は油タンク2内に排出される。油タンク2内に貯
留された油はポンプ3により冷却タンク5の外槽
5aと内槽5bとの間に導入され、内槽5b上端
からその内槽5b内に導入される。そして、内槽
5bの外周に巻回された冷却管6により熱交換さ
れて冷却され、低温状態となつた油11は供給配
管10を通して工作機械の主軸系に供給される。
一方、油を冷却した後の冷却管6の高温となつた
冷却媒体は冷凍装置7を通つて再び低温の冷却媒
体となつて冷却管6に供給される。又、油温度の
制御については、供給配管10に配置されたサー
モスタツト12等により油温を検出し、制御手段
により冷凍装置7をON,OFFさせることにより
制御する。従つて、冷凍装置7をONしていると
きは冷却運転しており、冷凍装置7により一定量
の低温状態の冷却媒体を冷却管6に供給して冷却
タンク5の内槽5b内の油を強制的に冷却してい
る。又、工作機械側の発熱量が少ない場合は冷凍
装置7による冷却量が過大となつて冷やし過ぎと
なり、一時冷凍装置7をOFFさせて運転を停止
させ、油温が上昇すると再び冷凍装置7をONし
て冷却運転させる。
Next, the operation will be explained. Oil 1 that has been heated to a high temperature in the spindle system of a machine tool
is discharged into the oil tank 2. The oil stored in the oil tank 2 is introduced between the outer tank 5a and the inner tank 5b of the cooling tank 5 by the pump 3, and is introduced into the inner tank 5b from the upper end of the inner tank 5b. The oil 11, which has been cooled by heat exchange through the cooling pipe 6 wound around the outer circumference of the inner tank 5b and has reached a low temperature, is supplied to the main shaft system of the machine tool through the supply pipe 10.
On the other hand, the high-temperature cooling medium in the cooling pipe 6 after cooling the oil passes through the refrigeration device 7 and is supplied to the cooling pipe 6 again as a low-temperature cooling medium. Furthermore, the oil temperature is controlled by detecting the oil temperature using a thermostat 12 or the like disposed in the supply pipe 10, and turning the refrigeration device 7 on and off using a control means. Therefore, when the refrigeration device 7 is turned on, it is in a cooling operation, and the refrigeration device 7 supplies a certain amount of low-temperature cooling medium to the cooling pipe 6 to drain the oil in the inner tank 5b of the cooling tank 5. Forced cooling. In addition, if the amount of heat generated on the machine tool side is small, the amount of cooling by the refrigeration device 7 becomes excessive, resulting in excessive cooling.The refrigeration device 7 is temporarily turned off to stop operation, and when the oil temperature rises, the refrigeration device 7 is turned off again. Turn it on and run the cooling operation.

〔発明が解決しようとする問題点〕 しかしながら上述した従来の熱交換装置では、
冷凍装置7をON,OFFさせることにより油温度
の制御を行うようにしているので、供給配管10
を通る油11の油温度に脈動が生じる問題点があ
る。特に供給配管10を通る油11が工作機械の
主軸系に供給される場合は、油11の油温度の脈
動がそのまま工作・加工精度の脈動につながると
言う致命的欠陥があつた。又、装置起動時におい
て、油タンク2内の油がが冷却タンク5内で冷却
されて供給配管10から工作機械の主軸系に供給
され、油タンク2内に返油されるまでにその油タ
ンク2内の油量が大幅に減じるので、その油量分
だけ確保するため大きな油タンク2を必要として
いた。
[Problems to be solved by the invention] However, in the above-mentioned conventional heat exchange device,
Since the oil temperature is controlled by turning the refrigeration device 7 ON and OFF, the supply piping 10
There is a problem in that pulsations occur in the temperature of the oil 11 passing through. In particular, when the oil 11 passing through the supply pipe 10 is supplied to the spindle system of a machine tool, there is a fatal flaw in that pulsations in the oil temperature of the oil 11 directly lead to pulsations in machining accuracy. Furthermore, when the device is started up, the oil in the oil tank 2 is cooled in the cooling tank 5 and supplied to the main spindle system of the machine tool from the supply pipe 10, and the oil in the oil tank 2 is cooled before being returned to the oil tank 2. Since the amount of oil in 2 is significantly reduced, a large oil tank 2 is required to secure the amount of oil.

この発明は上記のような問題点を解消するため
になされたものであり、油温度に脈動の生じない
熱交換装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and an object thereof is to obtain a heat exchange device that does not cause pulsation in oil temperature.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係わる熱交換装置は、油タンクを環
状に形成し、その環状部の一箇所に仕切部材を配
置して少なくとも第1流路部から第3流路部の3
つの流路部を形成し、機器から高温状態となつて
排出される油を第1流路部で収容し、第2流路
部、第3流路部に順次流入させるように構成し、
ヒートパイプの吸熱部を油タンクの第2流路部内
の油中に浸漬させ、ヒートパイプの放熱部を油タ
ンク外に配置させ、ヒートパイプの放熱部に放熱
装置を配設し、ヒートパイプにより冷却されて油
タンクの第2流路部から第3流路部内に流入した
油を機器に供給する供給手段を設け、油タンクの
第1流路部、第2流路部、第3流路部の何れかに
連通する油量調整部を設けたものである。
In the heat exchange device according to the present invention, the oil tank is formed in an annular shape, and a partition member is disposed at one place in the annular part, so that at least three of the first flow path section to the third flow path section are separated.
the oil discharged from the equipment in a high temperature state is accommodated in the first flow path section, and is configured to sequentially flow into the second flow path section and the third flow path section;
The heat absorbing part of the heat pipe is immersed in oil in the second flow path part of the oil tank, the heat radiating part of the heat pipe is placed outside the oil tank, and a heat radiating device is arranged in the heat radiating part of the heat pipe. A supply means is provided for supplying the cooled oil that has flowed from the second flow path portion of the oil tank into the third flow path portion to the equipment, and An oil amount adjustment section is provided that communicates with either of the sections.

〔作用〕[Effect]

この発明における熱交換装置は、油タンクの第
2流路部内の油がヒートパイプの吸熱部側の温度
とヒートパイプの放熱部側との温度差により自然
的に制御されて連続的に冷却され、又、油タンク
の第1流路部に流入した高温状態の油が第2流路
部内に流入してヒートパイプの吸熱部を流通して
第3流路部内に流入し、さらに装置起動時に油量
調整部の油が油タンクの第1流路部、第2流路
部、第3流路部の何れかに流入して油量の補填を
行い、冷却効果の高い脈動のない安定した油が機
器に供給される。
In the heat exchange device of the present invention, the oil in the second flow path section of the oil tank is naturally controlled and continuously cooled by the temperature difference between the heat absorption section side of the heat pipe and the heat radiation section side of the heat pipe. Also, the high-temperature oil that has flowed into the first flow path of the oil tank flows into the second flow path, flows through the heat absorbing portion of the heat pipe, flows into the third flow path, and further flows into the third flow path when the device is started. The oil in the oil amount adjustment section flows into any of the first, second, and third flow paths of the oil tank to replenish the oil amount, resulting in a stable, pulsating, and highly effective cooling system. Oil is supplied to the equipment.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を第1図乃至第3図
に基づいて説明する。第1図は側断面図を示し、
第2図は正面図を示し、第3図は油タンクの平面
図を示す。これら各図において、1は機器である
例えば工作機械の主軸系(図示せず)にて加熱、
加温されて高温状態となつた油、20は例えば角
形状の環状に形成され、その環状部の一箇所に仕
切部材21を配置して第1流路部22、第2流路
部23、第3流路部24の3つの流路部に形成さ
れ、又第2流路部23は3つの流路23a,23
b,23cに構成され、工作機械の主軸系から高
温状態となつて排出される油1を第1流路部22
で収容し、第2流路部23、第3流路部24に順
次流入させるよう構成された油タンクである。2
5は例えば油タンク20の第2流路部23の流路
23bと連通する油量調整部であり、装置起動時
にその油量調整部25に溜められている油が油タ
ンク20の第2流路部23の流路23bに流入し
油量を補填するようになつている。26は工作機
械の主軸系から高温状態となつて排出される油1
を第1流路部22に導く返油管、27は油タンク
20の第2流路部23の流路23aと流路23c
内のそれぞれの油中に吸熱部27a,27aが浸
漬され、油タンク20外に、即ち周囲空気中にそ
れぞれ放熱部27b,27bが配置されたヒート
パイプであり、内部を真空減圧後、例えばフロ
ン、アンモニア等の作動液体28が所定量封入さ
れ、油の熱分を吸熱部27a,27aで吸収し放
熱部27b,27bに熱輸送して放熱させる。2
9は例えばヒートパイプ27,27の放熱部27
b,27bを共通して冷却するように配設された
放熱装置であり、図は一例として放熱フアンから
なる場合を示している。30はエアフイルター、
31はヒートパイプ27,27により冷却されて
第2流路部23から第3流路部24に流入した低
温状態となつた油32を工作機械の主軸系に供給
する供給手段であり、例えば油タンク20の第3
流路部24内に配置されたサクシヨンフイルター
31aと、このサクシヨンフイルター31aと工
作機械の主軸系とを接続する配管31bと、この
配管31bに配設され、低温状態となつた油32
をサクシヨンフイルター31aを通して取り入れ
て工作機械の主軸系に導くためのポンプ31cと
により構成されている。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. Figure 1 shows a side sectional view;
FIG. 2 shows a front view, and FIG. 3 shows a plan view of the oil tank. In each of these figures, 1 is a device such as a main shaft system (not shown) of a machine tool that heats the
The oil 20 that has been heated to a high temperature is formed into, for example, a rectangular ring shape, and a partition member 21 is disposed at one location of the annular portion to separate the first flow path portion 22, the second flow path portion 23, The third flow path portion 24 is formed in three flow path portions, and the second flow path portion 23 is formed in three flow paths 23a, 23.
b, 23c, and the oil 1 discharged from the main shaft system of the machine tool in a high temperature state is transferred to the first flow path section 22.
This is an oil tank configured to house the oil in the oil tank and to sequentially flow the oil into the second flow path section 23 and the third flow path section 24. 2
Reference numeral 5 denotes an oil amount adjusting section that communicates with, for example, the flow path 23b of the second flow path section 23 of the oil tank 20, and when the device is started, the oil stored in the oil amount adjusting section 25 is transferred to the second flow path of the oil tank 20. The oil flows into the flow path 23b of the path portion 23 to supplement the oil amount. 26 is oil 1 discharged from the main shaft system of the machine tool in a high temperature state.
27 is a flow path 23a and a flow path 23c of the second flow path portion 23 of the oil tank 20.
It is a heat pipe in which heat absorbing parts 27a, 27a are immersed in respective oils inside the tank, and heat radiating parts 27b, 27b are respectively arranged outside the oil tank 20, that is, in the surrounding air. A predetermined amount of a working liquid 28 such as ammonia or the like is sealed, and the heat of the oil is absorbed by the heat absorbing parts 27a, 27a, and the heat is transferred to the heat radiating parts 27b, 27b to radiate the heat. 2
9 is, for example, the heat dissipation part 27 of the heat pipes 27, 27.
This is a heat dissipation device disposed to commonly cool the components 27b and 27b, and the figure shows, as an example, a case of a heat dissipation fan. 30 is an air filter,
Reference numeral 31 denotes a supply means for supplying the oil 32, which has been cooled by the heat pipes 27 and 27 and is in a low temperature state and has flowed from the second flow path section 23 to the third flow path section 24, to the main shaft system of the machine tool. 3rd of tank 20
A suction filter 31a disposed within the flow path section 24, a pipe 31b connecting the suction filter 31a and the main shaft system of the machine tool, and an oil 32 disposed in the pipe 31b that is in a low temperature state.
and a pump 31c for taking in the water through a suction filter 31a and guiding it to the main shaft system of the machine tool.

次に動作について説明する。工作機械の主軸系
において加熱、加温されて高温状態となつた油1
は油タンク20の第1流路部22内に排出され
る。油タンク20の第1流路部22内に流入した
高温の油1は第2流路部23の流路23aに流入
し、ヒートパイプ27の吸熱部27aを通り、こ
のときヒートパイプ27の吸熱部27aを加熱
し、この加熱によりその内部に封入された作動液
体28も加熱され、油の熱分を蒸発潜熱として奪
い蒸気化し、ヒートパイプ27の放熱部27b側
へその内部で移動する。ヒートパイプ27の放熱
部27b側へ移動したフロン等の作動液体28の
蒸気は放熱フアン29によつて周囲空気により冷
される。このときフロン等の作動液体28の蒸気
は凝縮して液化するが、凝縮潜熱を周囲空気に放
出し、油の熱分を周囲空気に放熱する。凝縮して
液化した作動液体28はヒートパイプ27の吸熱
部27a側へその内部で移動して戻る。このよう
にして、ヒートパイプ27内の作動液体28の蒸
気化、液化の繰り返しにより、ヒートパイプ27
の吸熱部27aを通過する高温の油1の熱分をヒ
ートパイプ27の吸熱分27aからヒートパイプ
27の放熱部27bへ熱輸送して周囲空気に放熱
する。従つて油タンク20の第2流路部23の流
路23a内に流入した高温の油1の熱分はヒート
パイプ27の吸熱部27aで奪われ温度が下がり
冷却される。この冷却された油は第2流路部23
の流路23b内に流入し、さらに第2流路部23
の流路23c内に流入し、ヒートパイプ27の吸
熱部27aを通り、このときヒートパイプ27の
吸熱部27aを加熱し、この加熱によりその内部
に封入された作動液体28も加熱され、油の熱分
を蒸発潜熱として奪い蒸気化し、ヒートパイプ2
7の放熱部27b側へその内部で移動する。ヒー
トパイプ27の放熱部27b側へ移動したフロン
等の作動液体28の蒸気は放熱フアン29によつ
て周囲空気により冷やされる。このときフロン等
の作動液体28の蒸気は凝縮して液化するが、凝
縮潜熱を周囲空気に放出し、油の熱分を周囲空気
に放熱する。凝縮して液化した作動液体28はヒ
ートパイプ27の吸熱部27a側へその内部で移
動して戻る。このようにしてヒートパイプ27内
の作動液体28の蒸気化、液化の繰り返しによ
り、ヒートパイプ27の吸熱部27aを通過する
油の熱分をヒートパイプ27の吸熱部27aから
ヒートパイプ27の放熱部27bへ熱輸送して周
囲空気に放熱する。従つて、油タンク20の第2
流路部23の流路23c内に流入した油の熱分は
ヒートパイプ27の吸熱部27aで奪われ温度が
下がり冷却される。このように油タンク20の第
2流路部23で2つのヒートパイプ27,27の
冷却作用によつて低温状態となつた油32は第2
流路部23から第3流路部24に流入し、第3流
路部24内に流入した低温状態となつた油32は
ポンプ31cによりサクシヨンフイルター31a
を通して取り入れられ、配管31bを通して工作
機械の主軸系に導かれる。又、装置起動時に油タ
ンク20内の油量が減じても油量調整部25の油
が油タンク20の第2流路部23の流路23bに
流入して補填する。
Next, the operation will be explained. Oil 1 that has been heated to a high temperature in the spindle system of a machine tool
is discharged into the first flow path section 22 of the oil tank 20. The high-temperature oil 1 that has flowed into the first flow path section 22 of the oil tank 20 flows into the flow path 23a of the second flow path section 23 and passes through the heat absorption section 27a of the heat pipe 27. The part 27a is heated, and this heating also heats the working liquid 28 sealed therein, which absorbs heat from the oil as latent heat of vaporization, vaporizes it, and moves to the heat radiation part 27b side of the heat pipe 27 inside. The vapor of the working liquid 28, such as fluorocarbon, which has moved to the heat radiation part 27b side of the heat pipe 27 is cooled by the surrounding air by the radiation fan 29. At this time, the vapor of the working liquid 28 such as fluorocarbon is condensed and liquefied, but the latent heat of condensation is released to the surrounding air, and the heat of the oil is radiated to the surrounding air. The condensed and liquefied working liquid 28 moves inside the heat pipe 27 toward the endothermic section 27a and returns thereto. In this way, by repeatedly vaporizing and liquefying the working liquid 28 in the heat pipe 27, the heat pipe 27
The heat of the high-temperature oil 1 passing through the heat absorption part 27a of the heat pipe 27 is transferred from the heat absorption part 27a of the heat pipe 27 to the heat radiation part 27b of the heat pipe 27, and is radiated to the surrounding air. Therefore, the heat of the high-temperature oil 1 that has flowed into the flow path 23a of the second flow path portion 23 of the oil tank 20 is absorbed by the heat absorbing portion 27a of the heat pipe 27, and the temperature is lowered and the oil 1 is cooled. This cooled oil flows through the second flow path section 23.
flows into the flow path 23b, and further flows into the second flow path 23b.
It flows into the flow path 23c of the heat pipe 27, passes through the heat absorption part 27a of the heat pipe 27, and at this time heats the heat absorption part 27a of the heat pipe 27. This heating also heats the working liquid 28 sealed inside, and the oil The heat is taken away as latent heat of vaporization and evaporated into heat pipe 2.
7 inside toward the heat dissipation part 27b side. The vapor of the working liquid 28, such as fluorocarbon, which has moved to the heat radiation section 27b side of the heat pipe 27 is cooled by the surrounding air by the radiation fan 29. At this time, the vapor of the working liquid 28 such as fluorocarbon is condensed and liquefied, but the latent heat of condensation is released to the surrounding air, and the heat content of the oil is radiated to the surrounding air. The condensed and liquefied working liquid 28 moves inside the heat pipe 27 toward the endothermic section 27a and returns thereto. In this way, by repeating vaporization and liquefaction of the working liquid 28 in the heat pipe 27, the heat of the oil passing through the heat absorption part 27a of the heat pipe 27 is transferred from the heat absorption part 27a of the heat pipe 27 to the heat radiation part of the heat pipe 27. The heat is transported to 27b and radiated to the surrounding air. Therefore, the second
The heat of the oil that has flowed into the flow path 23c of the flow path portion 23 is absorbed by the heat absorbing portion 27a of the heat pipe 27, and the temperature is lowered and the oil is cooled. The oil 32, which has reached a low temperature in the second flow path section 23 of the oil tank 20 due to the cooling action of the two heat pipes 27, is then transferred to the second flow path section 23 of the oil tank 20.
The oil 32 that has entered the third flow path section 24 from the flow path section 23 and has reached a low temperature is passed through the suction filter 31a by the pump 31c.
It is taken in through the pipe 31b and guided to the main shaft system of the machine tool. Furthermore, even if the amount of oil in the oil tank 20 decreases when the device is started, the oil in the oil amount adjustment section 25 flows into the flow path 23b of the second flow path section 23 of the oil tank 20 to compensate.

以上のようにヒートパイプ27の吸熱部27a
側の温度、即ち、油タンク20の第2流路部23
内の油温とヒートパイプ27の放熱部27b側の
温度、即ち、周囲空気側の温度との温度差により
ヒートパイプ27内部での潜熱交換による冷却が
自然的に制御されて連続的に行われ、第2流路部
23内の油温の上昇を抑制して周囲空気側の温度
へ近づけようとする。油タンク20の第2流路部
23内の油温の上昇が抑制され周囲空気側の温度
と同様となるとヒートパイプ27内部での潜熱交
換が生じなくなりそれに伴い冷却作用も生じなく
なる。即ち、ヒートパイプ27による熱交換量
は、油タンク20の第2流路部23内の油温と周
囲空気側の温度との温度差の大小に比例してお
り、工作機械側の発熱量が少ない場合は油タンク
20の第2流路部23内の油温の上昇も少ない。
従つて油タンク20の第2流路部23内の油温と
周囲空気側の温度との温度差も小さいためヒート
パイプ27による熱交換量も小さくなり、冷やし
過ぎによる弊害も無く発熱量に見合つた冷却量で
自然的に制御されて連続的に冷却できる。その結
果、従来のような冷凍装置7のON,OFF制御に
伴う油温度の脈動を生じることがなく、従つて工
作・加工精度の脈動も生じることがなく、高信頼
性の工作精度が得られる。又、油タンク20は角
形状の環状に形成し、断面の小さい返却管26よ
り断面の大きいヒートパイプ27の吸熱部27a
に高温の油1が均一に急激に流れ込むように第1
流路部22を設けてその油1を収容するようにし
ており、第2流路部23に2箇所ヒートパイプ2
7を配置して2段構成で高温の油1を冷却するよ
うにしており、第3流路部24は冷却されて低温
状態となつた油を断面の小さいサクシヨンフイル
ター31aに急激に絞り込まれるように構成さ
れ、ヒートパイプ27の吸熱部27aを流通する
油の流速が不均一となるのを防止している。その
結果、ヒートパイプ27の吸熱部27aを油が均
一に流通するので、冷却効果が高いものとなる。
さらに、装置起動時に油タンク20内の油量が減
じても油量調整部25の油が油タンク20の第2
流路部23の流路23bに流入して補填するよう
になつている。
As described above, the heat absorption part 27a of the heat pipe 27
side temperature, that is, the second flow path section 23 of the oil tank 20
Cooling by latent heat exchange inside the heat pipe 27 is naturally controlled and continuously performed due to the temperature difference between the oil temperature inside the heat pipe 27 and the temperature on the heat radiation part 27b side of the heat pipe 27, that is, the temperature on the ambient air side. , attempts to suppress the rise in oil temperature in the second flow path section 23 and bring it closer to the temperature on the ambient air side. When the rise in oil temperature in the second flow path section 23 of the oil tank 20 is suppressed and becomes similar to the temperature on the ambient air side, latent heat exchange within the heat pipe 27 will no longer occur, and accordingly, no cooling action will occur. That is, the amount of heat exchanged by the heat pipe 27 is proportional to the temperature difference between the oil temperature in the second flow path section 23 of the oil tank 20 and the temperature on the ambient air side, and the amount of heat generated on the machine tool side is If the amount is small, the rise in oil temperature within the second flow path section 23 of the oil tank 20 is also small.
Therefore, since the temperature difference between the oil temperature in the second flow path section 23 of the oil tank 20 and the temperature on the ambient air side is small, the amount of heat exchanged by the heat pipe 27 is also small, and there is no harm caused by overcooling, and it is commensurate with the amount of heat generated. The cooling amount is naturally controlled and can be continuously cooled. As a result, there is no oil temperature pulsation caused by ON/OFF control of the refrigeration device 7 as in the past, and therefore there is no pulsation in machining/processing accuracy, resulting in highly reliable machining accuracy. . In addition, the oil tank 20 is formed into a rectangular annular shape, and the heat absorbing part 27a of the heat pipe 27 has a larger cross section than the return pipe 26 which has a smaller cross section.
1 so that the hot oil 1 uniformly and rapidly flows into the first
A flow path section 22 is provided to accommodate the oil 1, and a heat pipe 2 is installed at two locations in the second flow path section 23.
7 is arranged to cool the high-temperature oil 1 in a two-stage configuration, and the third flow path section 24 rapidly narrows the cooled oil to a low-temperature state to a suction filter 31a with a small cross section. This structure prevents the flow rate of oil flowing through the heat absorbing portion 27a of the heat pipe 27 from becoming non-uniform. As a result, oil flows uniformly through the heat absorbing portion 27a of the heat pipe 27, resulting in a high cooling effect.
Furthermore, even if the amount of oil in the oil tank 20 decreases when the device is started up, the oil in the oil amount adjustment section 25 is
It flows into the flow path 23b of the flow path portion 23 and is supplemented.

尚、上記実施例ではヒートパイプが油タンクの
第2流路部内に2箇所設けた場合について述べた
が、ヒートパイプを油タンクの第2流路部内に1
箇所あるいは3箇所以上に設けてもよいことは勿
論のことである。
In the above embodiment, a case was described in which the heat pipes were provided at two locations within the second flow path portion of the oil tank, but the heat pipes were provided at one location within the second flow path portion of the oil tank.
Of course, it may be provided at one location or at three or more locations.

又、上記実施例では放熱装置が2つのヒートパ
イプの放熱部を共通して冷却する場合について述
べたが、各ヒートパイプの放熱部にそれぞれ放熱
装置を配設して別個に冷却するようにしてもよ
く、上記実施例と同様の効果を奏する。
Furthermore, in the above embodiment, a case has been described in which the heat radiating device commonly cools the heat radiating parts of two heat pipes. The same effect as in the above embodiment can be obtained.

又、上記実施例では油タンクが角形状の環状に
形成した場合について述べたが、円形状の環状に
形成した油タンクとしてもよく、上記実施例と同
様の効果を奏する。
Further, in the above embodiment, a case has been described in which the oil tank is formed in a rectangular annular shape, but the oil tank may be formed in a circular annular shape, and the same effects as in the above embodiment can be obtained.

又、上記実施例では油量調整部が油タンクの第
2流路部と連通する場合について述べたが、油量
調整部は少なくとも油タンクの第1流路部、第2
流路部、第3流路部の何れかに連通しておればよ
く、あるいは全部に連通していてもよい。
Further, in the above embodiment, the case where the oil amount adjustment section communicates with the second flow path section of the oil tank has been described, but the oil amount adjustment section communicates with at least the first flow path section and the second flow path section of the oil tank.
It is sufficient that it communicates with either the flow path section or the third flow path section, or it may communicate with all of them.

又、上記実施例では機器が工作機械で主軸系に
油が供給される場合について述べたが、機器とし
ては油が供給されるものであればよく、上記実施
例と同様の効果を奏する。
Further, in the above embodiment, a case has been described in which the equipment is a machine tool and oil is supplied to the spindle system, but the equipment may be any equipment as long as oil is supplied, and the same effects as in the above embodiment can be achieved.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、油タンクを環
状に形成し、その環状部の一箇所に仕切部材を配
置して少なくとも第1流路部から第3流路部の3
つの流路部を形成し、機器から高温状態となつて
排出される油を第1流路部で収容し、第2流路
部、第3流路部に順次流入させるように構成し、
ヒートパイプの吸熱部を油タンクの第2流路部内
の油中に浸漬させ、ヒートパイプの放熱部を油タ
ンク外に配置させ、ヒートパイプの放熱部に放熱
装置を配設し、ヒートパイプにより冷却されて油
タンクの第2流路部から第3流路部内に流入した
油を機器に供給する供給手段を設け、油タンクの
第1流路部、第2流路部、第3流路部の何れかに
連通する油量調整部を設けたことにより、ヒート
パイプの吸熱部側の温度とヒートパイプの放熱部
側の温度との温度差により自然的に制御されて連
続的に冷却され、又、ヒートパイプの吸熱部を油
が均一に流通し、さらに、装置起動時に油タンク
内の油量が減じても油量調整部の油により補填で
き、冷却効果の高い脈動のない安定した油を機器
に供給できる熱交換装置を得ることができる。
As explained above, the present invention forms an oil tank in an annular shape, and arranges a partition member at one place in the annular part, so that at least three of the first flow path part to the third flow path part are
the oil discharged from the equipment in a high temperature state is accommodated in the first flow path section, and is configured to sequentially flow into the second flow path section and the third flow path section;
The heat absorbing part of the heat pipe is immersed in oil in the second flow path part of the oil tank, the heat radiating part of the heat pipe is placed outside the oil tank, and a heat radiating device is arranged in the heat radiating part of the heat pipe. A supply means is provided for supplying the cooled oil that has flowed from the second flow path portion of the oil tank into the third flow path portion to the equipment, and By providing an oil volume adjustment section that communicates with either section, the temperature is naturally controlled and continuously cooled by the temperature difference between the temperature on the heat absorption section side of the heat pipe and the temperature on the heat radiation section side of the heat pipe. In addition, the oil flows uniformly through the heat absorption part of the heat pipe, and even if the oil volume in the oil tank decreases when the device is started, it can be compensated for by the oil in the oil volume adjustment part, resulting in a stable and pulsating cooling system with high cooling effect. A heat exchange device capable of supplying oil to equipment can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はこの発明の一実施例による
熱交換装置を示す側断面図及び正面図、第3図は
この発明に係わる油タンクを示す平面図、第4図
は従来の熱交換装置を示す系統図である。 図において、1は高温状態の油、20は油タン
ク、21は仕切部材、22は第1流路部、23は
第2流路部、24は第3流路部、25は油量調整
部、27はヒートパイプ、27aは吸熱部、27
bは放熱部、29は放熱装置、31は供給手段、
32は低温状態の油である。尚、図中同一符号は
同一又は相当部分を示す。
1 and 2 are a side sectional view and a front view showing a heat exchange device according to an embodiment of the present invention, FIG. 3 is a plan view showing an oil tank according to the present invention, and FIG. 4 is a conventional heat exchanger. It is a system diagram showing an apparatus. In the figure, 1 is high-temperature oil, 20 is an oil tank, 21 is a partition member, 22 is a first flow path section, 23 is a second flow path section, 24 is a third flow path section, and 25 is an oil amount adjustment section. , 27 is a heat pipe, 27a is a heat absorption part, 27
b is a heat radiation part, 29 is a heat radiation device, 31 is a supply means,
32 is oil in a low temperature state. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 油を使用する機器と、環状に形成され、その
環状部の一箇所に仕切部材を配置して少なくとも
第1流路部から第3流路部の3つの流路部を形成
し、上記機器から高温状態となつて排出される上
記油を上記第1流路部で収容し、上記第2流路
部、第3流路部に順次流入させるように構成され
た油タンクと、この油タンクの第2流路部内の油
中に吸熱部が浸漬され且つ上記油と上記吸熱部と
が確実に熱接触させるよう上記第2流路部の内壁
部と上記吸熱部との間に僅かな空隙が設けられて
配置され、上記油タンク外に放熱部が配置され、
上記油の熱分を上記吸熱部で吸収し上記放熱部に
熱輸送して放熱するヒートパイプと、このヒート
パイプの放熱部に配置された放熱装置と、上記ヒ
ートパイプにより熱分が吸収されて上記油タンク
の第2流路部から上記油タンクの第3流路部内に
流入した油を上記機器に供給する供給手段と、上
記油タンクの第1流路部、第2流路部、第3流路
部の何れかに連通して設けられた油量調整部とを
備えたことを特徴とする熱交換装置。 2 ヒートパイプは油タンクの第2流路部に2箇
所設けたことを特徴とする特許請求の範囲第1項
に記載の熱交換装置。 3 放熱装置は複数のヒートパイプの放熱部を共
通して冷却することを特徴とする特許請求の範囲
第2項記載の熱交換装置。 4 油量調整部は油タンクの第2流路部に連通し
て設けられたことを特徴とする特許請求の範囲第
1項乃至第3項の何れかに記載の熱交換装置。 5 機器は工作機械であることを特徴とする特許
請求の範囲第1項乃至第4項の何れかに記載の熱
交換装置。
[Scope of Claims] 1. A device that uses oil, and at least three flow path sections from a first flow path section to a third flow path section, which are formed in an annular shape and have a partition member disposed at one location of the annular section. The oil is configured such that the oil, which is discharged from the equipment in a high temperature state, is accommodated in the first flow path section and sequentially flows into the second flow path section and the third flow path section. a tank, and an inner wall portion of the second flow path portion and the heat absorption portion so that the heat absorption portion is immersed in the oil in the second flow path portion of the oil tank, and the oil and the heat absorption portion are brought into reliable thermal contact. A heat dissipation part is arranged outside the oil tank,
A heat pipe that absorbs the heat of the oil in the heat absorption part and transports the heat to the heat radiation part to radiate the heat, a heat radiation device disposed in the heat radiation part of this heat pipe, and a heat radiation device that absorbs the heat of the oil by the heat pipe. A supply means for supplying oil flowing into the third flow path of the oil tank from the second flow path of the oil tank to the equipment; 1. A heat exchange device comprising: an oil amount adjusting section provided in communication with any of the three flow path sections. 2. The heat exchange device according to claim 1, wherein the heat pipes are provided at two locations in the second flow path portion of the oil tank. 3. The heat exchange device according to claim 2, wherein the heat radiator cools the heat radiating portions of a plurality of heat pipes in common. 4. The heat exchange device according to any one of claims 1 to 3, wherein the oil amount adjustment section is provided in communication with the second flow path section of the oil tank. 5. The heat exchange device according to any one of claims 1 to 4, wherein the equipment is a machine tool.
JP27947285A 1985-12-10 1985-12-10 Heat exchanger Granted JPS62138687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27947285A JPS62138687A (en) 1985-12-10 1985-12-10 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27947285A JPS62138687A (en) 1985-12-10 1985-12-10 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS62138687A JPS62138687A (en) 1987-06-22
JPH0438993B2 true JPH0438993B2 (en) 1992-06-26

Family

ID=17611533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27947285A Granted JPS62138687A (en) 1985-12-10 1985-12-10 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS62138687A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108818143B (en) * 2018-05-04 2019-07-30 芜湖良匠机械制造有限公司 A kind of heat exchanger for glass substrate rack lathe process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358368U (en) * 1976-10-20 1978-05-18
JPS58194376U (en) * 1982-06-21 1983-12-24 ヤンマー農機株式会社 oil cooler

Also Published As

Publication number Publication date
JPS62138687A (en) 1987-06-22

Similar Documents

Publication Publication Date Title
US5490393A (en) Generator absorber heat exchanger for an ammonia/water absorption refrigeration system
US7394655B1 (en) Absorptive cooling for electronic devices
US2931188A (en) Fluid cooling apparatus
US6578629B1 (en) Application of heat pipe science to heating, refrigeration and air conditioning systems
HRP20010152A2 (en) Absorption refrigeration machine
JPH0438993B2 (en)
JP2022020088A5 (en)
JPH0438992B2 (en)
JPH0440634B2 (en)
JPS62138688A (en) Heat exchanger
JPS62138685A (en) Heat exchanger
US20170146268A1 (en) Water Chiller Apparatus
JPH0438994B2 (en)
JPH046878B2 (en)
JPS62138684A (en) Heat exchanger
JP3381094B2 (en) Absorption type heating and cooling water heater
JPH046879B2 (en)
JPH05204117A (en) Heat transfer device for photosensitive material processing device
JPH02238117A (en) Cooling device for internal combustion engine
JPH0612367Y2 (en) Two-phase flow heat absorber
JPS633172A (en) Heat exchanger
JPS621582Y2 (en)
JPS6134058B2 (en)
JPS6249191A (en) Capillary pump heat exchanger
JPH0726793B2 (en) Cold plate