JPS62138389A - Molecular beam epitaxy - Google Patents

Molecular beam epitaxy

Info

Publication number
JPS62138389A
JPS62138389A JP28035485A JP28035485A JPS62138389A JP S62138389 A JPS62138389 A JP S62138389A JP 28035485 A JP28035485 A JP 28035485A JP 28035485 A JP28035485 A JP 28035485A JP S62138389 A JPS62138389 A JP S62138389A
Authority
JP
Japan
Prior art keywords
substrate
molecular beam
growth
crystal
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28035485A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hirose
和之 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28035485A priority Critical patent/JPS62138389A/en
Publication of JPS62138389A publication Critical patent/JPS62138389A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To cause growth of crystal of high quality on a substrate with high reproducibility by causing epitaxial growth of a semiconductor single crystal on an InP substrate with cleaned surface stabilized by the formation of a Group III element by irradiating the substrate with molecular beam. CONSTITUTION:An InP substrate 4 is set in a substrate holder 3 which is half- fixed at a growth position of a crystal in a molecular beam epitaxial growth chamber 2 provided with an evacuation line 1 to superhigh vacuum, and the substrate 4 is irradiated with >=2X10<-5>Torr As molecular beam generated by a power source 12 for heating the cell after measuring the internsity of the As molecular beam radiated from a cell 11 attached to a boat 10 by fixing a mano-meter 9 held perpendicularly to the holder 3 for a while by revolving a manipulator 8. Then, the manipulator 8 is put back in the growth position, and the substrate 4 is heated with a heater 13 while irradiating with the As molecular beam, forming thus the stabilized surface of the Group III element on the surface of the substrate 4. After confirming the stabilized surface with reflection type fast electron beam pattern formed on a fluorescent screen 15, the semiconductor single crystal is grown on the substrate 4 by the molecular beam epitaxy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はInP基板上に高品質の結晶を分子線エピタキ
シャル成長する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for growing high quality crystals on an InP substrate by molecular beam epitaxial growth.

〔従来の技術〕[Conventional technology]

従来InP基板上に半導体単結晶を分子線エピタキシャ
ル成長するには、化学的エツチング処理によって薄い酸
化膜を基板表面に形成し、真空中で基板加熱によりその
酸化膜を成長直前に除去し、同時に表、面の汚染物質を
除去するという基板清浄化処理がとられていた(ジャー
ナルφオプ拳アプライド・フィツクス(J、ムpp1.
Phys−) 52巻1981年、1015ページ)。
Conventionally, in order to grow a semiconductor single crystal on an InP substrate by molecular beam epitaxial growth, a thin oxide film is formed on the substrate surface by chemical etching, and the oxide film is removed by heating the substrate in a vacuum just before the growth, and at the same time, A substrate cleaning process was used to remove contaminants from the surface (Journal φ Op-Ken Applied Fixtures (J, pp1.
Phys-) Vol. 52, 1981, p. 1015).

またこの際基板に含まれる蒸気圧の高いV族元素の蒸発
によって基板表面が分解することを防ぐ為にひ素分子線
を基板表面に照射していた(同上)。そして基板が清浄
化されたことは、反射型高速電子線回折パターンの観察
によシ(TTo)方位角で2倍の超構造・々ターンを、
また〔110〕方位角で4倍の超構造・母ターンを示す
V族安定化面が出現したことによって確認された(ジャ
ーナル・オツ費アプライド・フィツクス(J、Appl
Further, at this time, an arsenic molecular beam was irradiated onto the substrate surface in order to prevent the substrate surface from being decomposed due to evaporation of group V elements with high vapor pressure contained in the substrate (same as above). The cleaning of the substrate shows that the observation of the reflection-type high-speed electron diffraction pattern shows that the superstructure and the turns are twice as large in the (TTo) azimuth.
It was also confirmed by the appearance of a group V stabilizing surface exhibiting a four-fold superstructure/mother turn in the [110] azimuth (Journal Otsu Applied Fixtures (J, Appl.
.

Phys、) 52巻1981年4033ページ)。Phys, Volume 52, 1981, Page 4033).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、反射型高速電子線回折ノ9ターンは基板結晶
表面のわずかな酸化膜や■族微小液滴の存在には敏感で
はないが、一方表面モホo−)−や界面の結晶性はその
わずかな酸化膜や■族微小液滴に敏感である。特にIn
P基板の場合、表面酸化膜が除去される温度と、表面で
InとPとが分解して蒸発する温度とがほとんど等しく
、しかも、表面酸化物が除去される温度は洗浄法や化学
的エッチング処理のわずかな条件の違いによって大きく
異なるので同一温度で基板脱酸化膜処理を行なっても清
浄表面が得られ良質の成長層が得られ、る場合もあれば
、最表面層に酸化膜が残ったシInPが分解してInの
微小液滴が発生し、その結果成長層に表面欠陥や界面不
良が生じることもあシ、これらの場合を反射型高速電子
線回折/’Pターンに■族安定化面が出現したことによ
って識別することは困難であった。この為、従来の方法
でInPに格子整合したGao、47In。、53A8
をInP基板結晶上に成長した場合、その移動度は最高
でも室温で9,000cn1”/V−B@C以下、77
°にでも10,000 cm2/ V’ se cから
40.000cm2/V−secと他の成長法と較べて
小さく(エレクトロニ、り・レターズ(Electro
n Lett) 18巻1982乍、758ページ)、
また高移動度の結晶が得られることもあるがその再現性
は良くなかった。しかも、高移動度の結晶を得るには界
面不良のため通常3μm以上の膜厚を成長しなければな
らなかった。
By the way, 9-turn reflection high-speed electron diffraction is not sensitive to the presence of a slight oxide film or group II microdroplets on the surface of the substrate crystal, but on the other hand, the surface Moho-)- and the crystallinity of the interface are It is sensitive to oxide films and group II microdroplets. Especially in
In the case of a P substrate, the temperature at which the surface oxide film is removed is almost the same as the temperature at which In and P decompose and evaporate on the surface, and the temperature at which the surface oxide is removed depends on cleaning methods and chemical etching. Since slight differences in processing conditions can make a big difference, even if the substrate is deoxidized at the same temperature, a clean surface and a high-quality growth layer can be obtained, and in some cases, an oxide film remains on the outermost surface layer. However, InP decomposes and generates minute droplets of In, which may result in surface defects or interface defects in the grown layer. It was difficult to identify by the appearance of a stabilizing surface. For this reason, Gao and 47In are lattice-matched to InP using the conventional method. , 53A8
When grown on an InP substrate crystal, its mobility is at most 9,000cn1"/V-B@C at room temperature, 77
10,000 cm2/V' sec to 40,000 cm2/V-sec, which is small compared to other growth methods (Electro Letters).
n Lett) Volume 18, 1982, page 758),
Although high-mobility crystals can sometimes be obtained, the reproducibility is not good. Moreover, in order to obtain a crystal with high mobility, it is necessary to grow a film with a thickness of 3 μm or more due to poor interface.

1時間に1μm程度の遅い成長速度で行なう分子線エピ
タキシャル成長にとって3μmの膜厚は時間と原料を消
費するだけであるので根本的な解決が迫られていた。
Since a film thickness of 3 μm consumes time and raw materials for molecular beam epitaxial growth, which is performed at a slow growth rate of about 1 μm per hour, a fundamental solution was needed.

本発明の目的はこのような従来の欠点を解消し、InP
基板上に高品質の結晶を再現性良く成長することが可能
な分子線エピタキシャル成長法を提供することにある。
The purpose of the present invention is to eliminate such conventional drawbacks and to
An object of the present invention is to provide a molecular beam epitaxial growth method that allows high-quality crystals to be grown on a substrate with good reproducibility.

〔問題点を解決するための手段〕[Means for solving problems]

本発明ばInPを基板とし、該基板を加熱して表面を清
浄化し、その後前記基板上に分子線を照射する分子線エ
ピタキシャル成長方法において、前記清浄化の際に■族
安定化面を基板表面に形成することを特徴とする分子線
エピタキシャル成長方法である。
According to the present invention, in a molecular beam epitaxial growth method in which InP is used as a substrate, the substrate is heated to clean the surface, and then a molecular beam is irradiated onto the substrate, a group (III) stabilizing surface is applied to the substrate surface during the cleaning. This is a molecular beam epitaxial growth method characterized by forming.

〔作 用〕[For production]

本発明者はInP基板の清浄化の際にV族安定化面を反
射型高速電子線回折)J?ターンで確認しても、実際に
は基板表面に酸素及び他の不純物が微量に堆積している
ことを2次イオン質量分析によシ見い出した。そしてこ
の残留する微量の酸素は、InP表面酸化膝として存在
するIn2O3とP2O3とのうち、−気圧の小さいI
 n203であると考えた。またV族安定化面の確認だ
けでは、In原子をとシ囲む酸素原子の存在を見逃すこ
とになるものと考えた。そこでこの微量のI n20s
を除去する為には、In原子近傍の正常な超構造を観察
すること、すなわちIn安定化面を観察することが重要
と考え、熱による損傷を基板に与えずにIn安定化面を
形成する清浄化方法を発明した。
The present inventor performed reflective high-speed electron diffraction (high-speed electron diffraction) on the group V stabilizing surface during cleaning of the InP substrate. It was discovered by secondary ion mass spectrometry that, even if confirmed by a test, trace amounts of oxygen and other impurities were actually deposited on the surface of the substrate. This remaining trace amount of oxygen is absorbed by I2O3 and P2O3, which exist as oxidation layers on the InP surface, and I
I thought it was n203. Furthermore, it was thought that merely checking the V-group stabilizing surface would miss the presence of oxygen atoms surrounding the In atoms. So this trace amount of I n20s
In order to remove this, we believe it is important to observe the normal superstructure near the In atoms, that is, to observe the In stabilization plane, and form the In stabilization plane without damaging the substrate due to heat. Invented a cleaning method.

第1図はこの方法を達成するのに必要な装置の構成図で
ある。図において超高真空排気系1tl−有する分子線
エピタキシャル成長チャンバー2内の結晶成長位置に基
板ホルダー3が半固定され、該基板ホルダー3にセット
されたInP基板基板4匡計カメラ7でモニターできる
ようになっている。
FIG. 1 is a block diagram of the equipment necessary to accomplish this method. In the figure, a substrate holder 3 is semi-fixed at a crystal growth position in a molecular beam epitaxial growth chamber 2 having an ultra-high vacuum evacuation system of 1 tl, so that four InP substrates set in the substrate holder 3 can be monitored with a camera 7. It has become.

ifマニ,ヒエレータ8を回転することによって基板ホ
ルダー3と直角に保持された真空計9を結晶成長位置に
一時固定して、ポート10に取シ付けられたひ素セル1
1から照射されるひ素分子線強度の測定を行ない、ひ素
セル加熱用ヒータ電源12を用いて、基板4に熱による
損傷を与えない為に必要十分なひ紫黒射線強度(2X1
 0””Torr以上)を設定する。そしてマニュピユ
レータ−8を成長位置にもどじ上記ひ素分子線の照射の
もとて基板加熱用ヒータ13と基板加熱用ヒータ電源1
4を用いて基板の表面温度を制御しながら脱酸化膜処理
を行ない,  In安定化面が出現したことを螢光スク
リーン15上に現われる反射型高速電子線回折ノ4ター
ンで確認した後成長を開始する。
By rotating the if manifold and hierator 8, the vacuum gauge 9 held at right angles to the substrate holder 3 is temporarily fixed at the crystal growth position, and the arsenic cell 1 attached to the port 10 is
The intensity of the arsenic molecular beam irradiated from the arsenic cell heating power source 12 is measured, and the arsenic molecular beam intensity (2X1
0””Torr or more). Then, the manipulator 8 is returned to the growth position, and the source of irradiation with the arsenic molecular beam is the heater 13 for heating the substrate and the heater power source 1 for heating the substrate.
4 was used to perform the deoxidation film treatment while controlling the surface temperature of the substrate, and after confirming the appearance of the In stabilization surface using four turns of reflection-type high-speed electron diffraction that appeared on the fluorescent screen 15, the growth was stopped. Start.

〔実施例〕〔Example〕

以下に本発明の実施例を示す。 Examples of the present invention are shown below.

(実施例1) 本発明による基板清浄化法を用いて、Feドーノ絶縁性
InP (100)基板結晶上に基板と格子整合したG
1InAs (高純度)を成長して高品質の結晶が得ら
れた。実施例において、基板は成長装置内に入れる前に
通常の化学的エツチング処理を行なりた。
(Example 1) Using the substrate cleaning method according to the present invention, G
High quality crystals were obtained by growing 1InAs (high purity). In the examples, the substrates were subjected to a conventional chemical etching process before being placed into the growth apparatus.

実験には99.99999%のGaソース、 99.9
999%のInソース、9 9.9 9 99 9%の
Asソースを用いた。基板表面の清浄化時および成長中
には基板表面に2X10”Torrのひ素分子線を照射
し続けた。基板表面温度を基板裏側のヒータの加熱によ
って室温よシ570℃まで上昇させIn安定化面の出現
を確認し、この温度をしばらく保持した後、成長温度5
00℃まで下げて成長開始した。一方成長開始5分前か
ら■族分子線全てを阻止し■族分子線開口部よシおよそ
1離れた位置にあるメインシャッターを閉じた状態で、
■族分子線ソースのシャッターを開けて分子線強度の安
定化をはかった。そして、メインシャッターを開けて成
長を開始した。基板に格子整合したGaInAaを成長
速度0.5μm/hで厚さ5000又成長したところ移
動度は室温で11000 cm”/v−s、77にで5
6000m” /V ’ 8という非常に大きな値とな
った。
For the experiment, 99.99999% Ga source, 99.9
A 999% In source and a 99.999999% As source were used. During cleaning of the substrate surface and during growth, the substrate surface was continuously irradiated with an arsenic molecular beam of 2×10” Torr.The substrate surface temperature was raised from room temperature to 570°C by heating with a heater on the back side of the substrate, and the In stabilized surface was heated. After confirming the appearance of , and holding this temperature for a while, the growth temperature is set to 5.
The temperature was lowered to 00°C and growth started. On the other hand, from 5 minutes before the start of growth, all the group ■ molecular beams were blocked and the main shutter located approximately one distance away from the opening of the group ■ molecular beam was closed.
■The shutter of the group molecular beam source was opened to stabilize the molecular beam intensity. Then, the main shutter was opened and growth began. When GaInAa lattice-matched to the substrate was grown to a thickness of 5000 cm at a growth rate of 0.5 μm/h, the mobility was 11000 cm”/vs at room temperature, 77.
The result was a very large value of 6000m''/V'8.

(実施例2) 本発明による基板清浄化法を用いて、Feドーグ絶縁性
InP (100)基板結晶上に基板に格子整合したA
tInA1 (Slドープ)を成長して高品質の結晶が
得られた。基板は成長装置に入れる前に通常の化学的エ
ツチング処理を行った。実験には99.99991のA
tソース、99.9999%のInソース、99.99
999 %のAsソース、高純度81ソースを用いた。
(Example 2) Using the substrate cleaning method according to the present invention, a Fe-Dog insulating InP (100) substrate crystal was lattice-matched to the substrate.
High quality crystals were obtained by growing tInA1 (Sl doped). The substrate was subjected to a conventional chemical etching process before being placed in the growth apparatus. A of 99.99991 for the experiment
T source, 99.9999% In source, 99.99
A 999% As source and a high purity 81 source were used.

基板の清浄化時および成長中には基板表面に3X10 
 Torrのひ素分子を照射し続けた。基板表面温度を
基板裏側のヒータ加熱によりて室温より580℃まで上
昇させIn安定化面の出現を確認し、この温度をしばら
く保持した後成長温度500℃まで下げて成長開始した
。一方成長開始5分前から■族分子線全てを阻止し、■
族分子線ソース開口部よシおよそ5crn離れた位置に
あるメインシャッターを閉じた状態で、■族分子線ソー
スのシャッターを開けて分子線強度の安定化をはかった
。そしてメインシャッターとSlソースのシャッターを
開けて成長を開始した。基板に格子整合したAtInA
a (Slドープ)を成長速度0.7μm/hで1μm
成長した。成長層の光ルミネツセンス測定を行なったと
ころ、強いバンド端発光が見られた。またその時のキャ
リアー濃度は77にのホール測定を行りたところ、暗状
態で8.42X10”cIn−’ 、光を照射した状態
で8.43X10”crIt−3、光を切った状態で8
.42X10  cm  の値が得られた。
3X10 on the substrate surface during substrate cleaning and during growth.
Irradiation continued with Torr's arsenic molecules. The substrate surface temperature was raised from room temperature to 580° C. by heating the back side of the substrate to confirm the appearance of an In-stabilized surface, and after this temperature was maintained for a while, the growth temperature was lowered to 500° C. to start growth. On the other hand, from 5 minutes before the start of growth, all group ■ molecular beams are blocked, and ■
While the main shutter located approximately 5 crn away from the opening of the group molecular beam source was closed, the shutter of the group ■ group molecular beam source was opened to stabilize the molecular beam intensity. Then, the main shutter and Sl source shutter were opened and growth started. AtInA lattice matched to the substrate
a (Sl-doped) at a growth rate of 0.7 μm/h to 1 μm
grown. Photoluminescence measurements of the grown layer revealed strong band edge emission. Further, the carrier concentration at that time was 8.42X10"cIn-' in the dark state, 8.43X10"crIt-3 in the light irradiation state, and 8.42
.. A value of 42X10 cm was obtained.

元を照射した前後においてキャリアー濃度が変化しない
ことから元フォトコンダクテイビテイが全く無いことが
わかった。
The fact that the carrier concentration did not change before and after irradiating the source revealed that there was no photoconductivity at all.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、InPを基板とする分子
線エピタキシャル成長において、1μm以下の成長薄膜
で高移動度や優れた光学的特性を有する結晶を再現性良
く成長できる効果を有するものである。
As described above, according to the present invention, in molecular beam epitaxial growth using InP as a substrate, crystals having high mobility and excellent optical properties can be grown with good reproducibility in a grown thin film of 1 μm or less. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本基板清浄化法を用いて結晶成長する際の分子
線エピタキシャル成長装置の模式図である。 4・・・InP基板、7・・・赤外線温度カメラ、11
・・・ひ素セル、15・・・螢光スクリーン、16・・
・反射型高速電子線回折用電子銃。 4=−11P基板結晶 7一−−赤夕tS呂度カメラ 11− ひ素上ル 15−・セ晴光スクリーン
FIG. 1 is a schematic diagram of a molecular beam epitaxial growth apparatus used for crystal growth using the present substrate cleaning method. 4... InP substrate, 7... Infrared temperature camera, 11
...Arsenic cell, 15...Fluorescent screen, 16...
・Reflection-type high-speed electron beam diffraction electron gun. 4=-11P substrate crystal 71--red light tS rotary camera 11- arsenic upper 15--Se luminous screen

Claims (1)

【特許請求の範囲】[Claims] (1)InPを基板とし、該基板を加熱して表面を清浄
化し、その後前記基板上に分子線を照射する分子線エピ
タキシャル成長方法において、前記清浄化の際にIII族
安定化面を基板表面に形成することを特徴とする分子線
エピタキシャル成長方法。
(1) In a molecular beam epitaxial growth method in which InP is used as a substrate, the substrate is heated to clean the surface, and then a molecular beam is irradiated onto the substrate, a group III stabilizing surface is attached to the substrate surface during the cleaning. A molecular beam epitaxial growth method characterized by forming.
JP28035485A 1985-12-13 1985-12-13 Molecular beam epitaxy Pending JPS62138389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28035485A JPS62138389A (en) 1985-12-13 1985-12-13 Molecular beam epitaxy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28035485A JPS62138389A (en) 1985-12-13 1985-12-13 Molecular beam epitaxy

Publications (1)

Publication Number Publication Date
JPS62138389A true JPS62138389A (en) 1987-06-22

Family

ID=17623832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28035485A Pending JPS62138389A (en) 1985-12-13 1985-12-13 Molecular beam epitaxy

Country Status (1)

Country Link
JP (1) JPS62138389A (en)

Similar Documents

Publication Publication Date Title
Hung et al. Epitaxial growth of MgO on (100) GaAs using ultrahigh vacuum electron‐beam evaporation
Chen et al. Two-dimensional growth of ZnO films on sapphire (0 0 0 1) with buffer layers
Ozasa et al. Deposition of thin indium oxide film and its application to selective epitaxy for in situ processing
KR100286487B1 (en) Solid laser crystal thin film preparation method and solid laser crystal thin film preparation device
JPS62138389A (en) Molecular beam epitaxy
Mudiyanselage et al. Growth, characterization, and stability testing of epitaxial MgO (100) on GaAs (100)
JPH07112960B2 (en) Generation of clean, well-aligned CdTe surfaces using laser ablation
Chen et al. Plasma-assisted molecular beam epitaxy of ZnO thin films on sapphire substrates with an MgO buffer
US20010031384A1 (en) Selective growth of Ferromagnetic films
JPS61136991A (en) Molecular beam epitaxial growth method of group iii-v compound semiconductor
JPS62207796A (en) Molecular beam epitaxy
JP2793939B2 (en) Method for growing compound semiconductor crystal
JPH01214017A (en) Method and apparatus for molecular beam epitaxial growth
JPH07142404A (en) Method for forming and removing selective growth mask
Chen et al. Lateral epitaxial overgrowth of ZnO layers on hexagonally patterned buffer layers in low-temperature aqueous solution
JPS6246993A (en) Apparatus for growing thin filmlike crystal
JP2643899B2 (en) Surface cleaning method
JPS6134926A (en) Growing device of semiconductor single crystal
JPH04139086A (en) Method for baking gallium cell
JPH0248404A (en) Method for forming superconducting thin film and apparatus therefor
JPS6291493A (en) Molecular beam epitaxy method for iii-v compound semiconductor
JPH01125818A (en) Heterointerface formation
JPH0243720A (en) Molecular beam epitaxial growth method
JPS63222093A (en) Molecular beam epitaxy for compound semiconductor
JPH01286999A (en) Method for epitaxial growth of gallium arsenide