JPS62138327A - Direct production of electromelting stabilized zirconia - Google Patents

Direct production of electromelting stabilized zirconia

Info

Publication number
JPS62138327A
JPS62138327A JP27502085A JP27502085A JPS62138327A JP S62138327 A JPS62138327 A JP S62138327A JP 27502085 A JP27502085 A JP 27502085A JP 27502085 A JP27502085 A JP 27502085A JP S62138327 A JPS62138327 A JP S62138327A
Authority
JP
Japan
Prior art keywords
cooling
melt
electromelting
electric oven
tapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27502085A
Other languages
Japanese (ja)
Inventor
Masato Kitahara
北原 正人
Tsuguaki Shimomura
下村 貢昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP27502085A priority Critical patent/JPS62138327A/en
Publication of JPS62138327A publication Critical patent/JPS62138327A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain electromelting stabilized ZrO2 without providing a new oxidation treatment process by blowing O2 into an electric oven in case of melting a raw material in the electric oven to perform oxidation and calcination treatment and controlling the cooling of a melt after tapping the melt and performing regulation of degree of stabilization. CONSTITUTION:A raw material such as vaterite powder and calcined lime is introduced into an electric oven 1 and melted as shown in a figure A. At this time, pure O2 is blown into a melt through an O2 lance 2 to perform oxidation, calcination and decarburization. Then after tapping the obtained melt on a casting bed 3 as shown in a figure B, it is cooled in 80-300 deg.C/hr cooling velocity within the range of 1,500-1,000 deg.C. In the control of this cooling velocity, the following apparatus is used which is constituted so that heating and cooling are properly performed by providing the gas burners 30 and the axial-flow fans 31 as shown in a figure C. After cooling, it is made to a required grain size by crushing without performing newly calcination treatment and the aimed electromelting stabilized ZrO2 is obtained by removing iron grain in a magnetic separation process. Still further a thermocouple fitted to the castting bed 3 is shown by 32 in the figure.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は電融安定化ジルコニアの直接製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for directly producing electrofused stabilized zirconia.

〈従来の技術〉 ジルコニア(Zr0z)は、融点が高く(約2700℃
)、耐浸性が大でしかも熱伝導が極めて小さいという特
性を有しており、耐火材として使用されている。
<Prior art> Zirconia (Zr0z) has a high melting point (approximately 2700°C
), it has the characteristics of high penetration resistance and extremely low heat conduction, and is used as a refractory material.

しかし%ZrO2は単斜晶、正方晶、立方晶を有する多
変態物質であり、約1100℃附近で単斜晶=正方晶に
相変態し、この際約3、5 %にも異常収縮、膨張を起
し、加熱・冷却という熱サイクルにより収縮、膨張を繰
返し、最終的には破壊に到るという問題がある。
However, %ZrO2 is a polymorphic material having monoclinic, tetragonal, and cubic crystals, and undergoes a phase transformation from monoclinic to tetragonal at around 1100°C, and at this time it exhibits abnormal contraction and expansion of about 3.5%. The problem is that it repeatedly contracts and expands due to the thermal cycle of heating and cooling, eventually leading to destruction.

そのためZrO2を耐火材として使用する場合には、 
CaO、MgO或いはY2O3等を添加して高温処理す
ることにより、正方晶或いは立方晶の固溶体として上記
した異常膨張、収縮を抑制して安定ジルコニアとしてい
る・CaO等を添加し電融・固化された製品は溶融工程
での炭化物、亜酸化物や冷却工程での過°冷却lこよる
結晶内の歪を含んだままであるため、クラツシング。磁
選工程後に酸化焼成処理をして、酸化、脱炭及び安定化
率の調整を行うのが通常である。この処理を行なわない
と、1100℃附近を上下する熱サイクルで脱安走化現
象を起こし、安定率が低下する。
Therefore, when using ZrO2 as a refractory material,
By adding CaO, MgO, Y2O3, etc. and treating it at high temperature, the above-mentioned abnormal expansion and contraction are suppressed as a tetragonal or cubic solid solution, resulting in stable zirconia.Electrically melted and solidified by adding CaO, etc. Cracking occurs because the product still contains carbides and suboxides during the melting process and distortion within the crystal due to overcooling during the cooling process. After the magnetic separation process, an oxidation firing treatment is usually performed to adjust the oxidation, decarburization, and stabilization rate. If this treatment is not carried out, the thermal cycle of increasing and decreasing around 1100° C. will cause a desensitization phenomenon and the stability rate will decrease.

しかし、この酸化焼成処理は一度冷却した溶融物を再び
加熱昇温するため、熱エネルギ的に大きな損失をしてい
ることになり、省エネルギの観点から好ましくなく、従
来より改善が望まれていた。
However, this oxidation firing process involves reheating and raising the temperature of the molten material once it has been cooled, resulting in a large loss of thermal energy, which is undesirable from an energy saving perspective, and improvements have long been desired. .

〈発明の概要〉 本発明は上記した従来技術の欠点を改善するためになさ
れたもので、電気炉で原材料を溶融する際に酸素を吹込
んで酸化焼成処理を行ない、かつ出湯後の冷却速度をコ
ントロールすることにより安定化率の調整を行うこ七を
基本的な特徴とするものである。
<Summary of the Invention> The present invention was made to improve the above-mentioned drawbacks of the prior art, and involves blowing oxygen into the raw material when melting it in an electric furnace to perform an oxidation firing process, and reducing the cooling rate after tapping. The basic feature is that the stabilization rate can be adjusted through control.

この構成により、出湯後の新たな酸化焼成処理1糧を省
くことができ、製造工程の効率化及び省エネルギ向上の
効果を得ることができる。
With this configuration, a new oxidation firing process after tapping can be omitted, and the effects of improving the efficiency of the manufacturing process and energy saving can be obtained.

以下図面により1本発明方法を順次説明する。Hereinafter, one method of the present invention will be sequentially explained with reference to the drawings.

第1図(A)に示すように1ML気炉(1)にバデライ
ト粉、焼石灰等の原材料を装入し、溶融させる。この際
酸素ランス(2)等により溶湯中に純酸素を吹込み、酸
化焼成、脱炭を行う。
As shown in FIG. 1(A), raw materials such as baddellite powder and burnt lime are charged into a 1ML air furnace (1) and melted. At this time, pure oxygen is blown into the molten metal using an oxygen lance (2) or the like to perform oxidation firing and decarburization.

第2図に02吹込量と溶湯中の0%との関係を示す。こ
のグラフは、バデライト粉6tOn。
Figure 2 shows the relationship between the 02 injection amount and 0% in the molten metal. This graph shows 6 tons of baddellite powder.

焼灰石粒(CaO: 4.2%)46Kf を溶融さセ
タものに02を吹込んだ時の0%の推移をみたものであ
る。o2を50 t/min吹込んだ場合は。
This figure shows the change in 0% when 02 was injected into a set of melted calcined limestone grains (CaO: 4.2%) at 46Kf. When o2 is injected at 50 t/min.

C=0.01%に達するのに50分程度必要であり、出
湯困難となる。02を100 t/min吹込んだ場合
は脱炭速度は当然速くなるが、溶湯飛散が激しく1歩留
低下をもたらす。またランス(2)の損耗も大となる。
It takes about 50 minutes to reach C=0.01%, making it difficult to tap the hot water. When 02 is injected at 100 t/min, the decarburization rate naturally increases, but the molten metal scatters violently, resulting in a one-year yield drop. Furthermore, the lance (2) is also subject to considerable wear and tear.

80t/minの02吹込では、C:0.01%に達す
るのに30分程度であり、溶湯温度の低下がなく出湯に
問題はない。また溶湯スプラッシュも少なく、70〜8
017m1n程度の吹込みが好適である。
With 02 blowing at 80 t/min, it takes about 30 minutes to reach C: 0.01%, and there is no drop in molten metal temperature and there is no problem in tapping. There is also less molten metal splash, 70~8
Injection of about 0.017 m1n is suitable.

なお酸素ランス(2)の材質としては種々のものが採用
可能であるが、製品品質に影響を与えないようにジルコ
ニウムで形成するのが望ましい。
Although various materials can be used for the oxygen lance (2), it is preferable to use zirconium so as not to affect product quality.

上記したように製造した溶湯をi1図(B)に示すよう
に鋳床(3月こ出湯し、冷却する。この出湯後の冷却速
度をコントロールするのが。
The molten metal produced as described above is tapped from the cast bed as shown in Figure (B) and cooled.The cooling rate after tapping is controlled.

本発明法の最も特徴的なところであり、冷却速度と安定
化率に強い相関のあることを見出したものである。第3
図に冷却速度と安定化率の関係を示す。冷却速度を速く
すると、はぼ直線的に安定化率が向上することがわかる
This is the most distinctive feature of the method of the present invention, and is the finding that there is a strong correlation between the cooling rate and the stabilization rate. Third
The figure shows the relationship between cooling rate and stabilization rate. It can be seen that the stabilization rate increases almost linearly as the cooling rate increases.

本発明法においては、安定化率80%〜86優に制御す
るものとし、比較的簡単な設備で得られる80〜b に調整することにより任意の安定化率を得るものとする
In the method of the present invention, the stabilization rate is controlled to be 80% to well over 86, and any desired stabilization rate is obtained by adjusting it to 80 to b, which can be obtained with relatively simple equipment.

また安定化率は1500〜1000℃の間の冷却速度に
最も大きく影響されるため、上記冷却速度は1500〜
100℃の範囲の冷却速度とする。
In addition, the stabilization rate is most affected by the cooling rate between 1500 and 1000°C, so the above cooling rate is between 1500 and 1000°C.
The cooling rate is in the range of 100°C.

第1図(C)は冷却速度をコントロールするための具体
的な設備例を示すもので、ガスバーナ閃と軸流ファン(
31)を設置し、加熱と冷却を適宜性なえるように構成
している。 (32)は鋳床(3)に装着した熱電対で
ある。
Figure 1 (C) shows a concrete example of equipment for controlling the cooling rate, including a gas burner flash and an axial fan (
31) is installed and configured to control heating and cooling as appropriate. (32) is a thermocouple attached to the cast bed (3).

冷却後は、新たに焼成処理することなく、クラツシング
により所望の粒径とし、磁選工程で鉄粒を取り除き製品
とする。
After cooling, the product is made into a product by crushing it to the desired particle size and removing iron grains in a magnetic separation process without performing a new firing process.

〈実施例〉 電気炉にバデライト粉6トン、焼灰石粒(製品CaO:
 4.2%)46助を配合し、2次電圧170〜210
vで4時間溶解した。
<Example> 6 tons of baddeleyite powder and calcinedite grains (product CaO:
4.2%) Contains 46suke, secondary voltage 170-210
The mixture was dissolved for 4 hours at

溶湯温度2400〜2500℃になった時点でzr02
製のランスを用いて炉内に70〜80 t/minの純
酸素を吹込み、30分で吹止めた。そして1m1図(C
)に示す冷却速度可変鋳床に出湯し、冷却した・ 冷却は第4図に示すように、2500〜1500℃まで
は2時間強制的にエアー冷却を行ない。
Zr02 when the molten metal temperature reaches 2400-2500℃
Pure oxygen was blown into the furnace at a rate of 70 to 80 t/min using a lance made by the company, and the blowing was stopped after 30 minutes. And 1m1 figure (C
) The melt was poured into a variable cooling rate casting bed and cooled. As shown in Fig. 4, the molten metal was cooled by forced air cooling for 2 hours from 2500 to 1500°C.

1500〜1000℃の間は、80℃/hr、130℃
/hr、 300℃/hrの冷却速度で冷却した。冷却
後クラツシングし、磁選して製品を得た。
Between 1500 and 1000℃, 80℃/hr, 130℃
/hr, at a cooling rate of 300°C/hr. After cooling, it was crushed and subjected to magnetic separation to obtain a product.

各製品の成分及び安定化率を下掲表に示す・また比較例
として、冷却制御を行わず、従来の酸化焼成処理による
製品の成分を示す。
The ingredients and stabilization rate of each product are shown in the table below. Also, as a comparative example, the ingredients of a product processed by conventional oxidation firing treatment without cooling control are shown.

本発明法によれば酸化焼成処理を行わなくても十分な安
定化率を得ることができ、また安定化率の調整も任意に
行なうことができる。
According to the method of the present invention, a sufficient stabilization rate can be obtained without performing oxidation firing treatment, and the stabilization rate can also be adjusted as desired.

また脱炭も十分に行われている。Also, decarburization has been sufficiently carried out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法の説明図、第2図は0゜吹込量と溶湯
中C%の関係を示すグラフ。 第3図は冷却速度と安定化率の関係を示すグラフ、第4
図は実施例の冷却速度の説明図である。 (1)・・・電気炉、(2)・・・酸素ランス、(3)
・・・鋳床。 特許出願人  日本鋼管株式会社 発  明 者   北   原   正   人間  
       下   村   貢   昭代理人弁理
士   吉   原   省   三同   同   
  高   橋        消量  弁護士   
吉   原   弘   子第  2  図 第  3  図 冷畔速度(’C/Hr) (A)             (B)(C)
FIG. 1 is an explanatory diagram of the method of the present invention, and FIG. 2 is a graph showing the relationship between 0° injection amount and C% in molten metal. Figure 3 is a graph showing the relationship between cooling rate and stabilization rate.
The figure is an explanatory diagram of the cooling rate of the example. (1)...Electric furnace, (2)...Oxygen lance, (3)
...Casthouse. Patent applicant Nippon Kokan Co., Ltd. Inventor Masa Kitahara Human
Mitsuaki Shimomura Patent Attorney Sho Yoshihara Sando
Attorney Takahashi
Hiroko Yoshihara Figure 2 Figure 3 Cold ridge speed ('C/Hr) (A) (B) (C)

Claims (1)

【特許請求の範囲】 電気炉で原材料を溶融し、該溶融材料中 に酸素を吹込み酸化処理を行った後出湯し、1500〜
1000℃の間を80〜300℃/時間の冷却速度で冷
却することを特徴とする電 融安定化ジルコニアの直接製造方法。
[Claims] Raw materials are melted in an electric furnace, oxygen is blown into the molten material to perform oxidation treatment, and then the melt is tapped.
A method for directly producing electrofused stabilized zirconia, characterized by cooling between 1000°C at a cooling rate of 80 to 300°C/hour.
JP27502085A 1985-12-09 1985-12-09 Direct production of electromelting stabilized zirconia Pending JPS62138327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27502085A JPS62138327A (en) 1985-12-09 1985-12-09 Direct production of electromelting stabilized zirconia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27502085A JPS62138327A (en) 1985-12-09 1985-12-09 Direct production of electromelting stabilized zirconia

Publications (1)

Publication Number Publication Date
JPS62138327A true JPS62138327A (en) 1987-06-22

Family

ID=17549755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27502085A Pending JPS62138327A (en) 1985-12-09 1985-12-09 Direct production of electromelting stabilized zirconia

Country Status (1)

Country Link
JP (1) JPS62138327A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442813A (en) * 1990-06-07 1992-02-13 Nippon Kenmazai Kogyo Kk Molten zirconia fireproofing material having high-temperature heat resistance and corrosion resistance and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442813A (en) * 1990-06-07 1992-02-13 Nippon Kenmazai Kogyo Kk Molten zirconia fireproofing material having high-temperature heat resistance and corrosion resistance and its production
US5177040A (en) * 1990-06-07 1993-01-05 Japan Abrasive Co., Ltd. Fused zirconia refractory materials having high-temperature heat resistance and corrosion resistance and a method for producing the same

Similar Documents

Publication Publication Date Title
US2535526A (en) Stabilized zirconia and method for producing same
EP0460959B1 (en) Fused zirconia refractory materials having high-temperature heat resistance and corrosion resistance and a method for producing the same
JPS62138327A (en) Direct production of electromelting stabilized zirconia
US4333766A (en) Calcium process for manufacturing silicate and/or aluminate based products
RU2672972C2 (en) Method for obtaining a fused zirconium dioxide pure from carbon and carbides
CN100569659C (en) A kind of method for preparing partially stabilized zirconia
JPS60194004A (en) Method for controlling combustion of hot stove
SU1507803A1 (en) Method of cooling blast furnace air heater lined with silica brick refractory in high-temperature zone
SU1392057A1 (en) Method of thermal treatment of crushed mixture for producing fused magnesia-silicate refractory materials
JPH02232310A (en) Method for operating blast furnace
SU981223A1 (en) Process for producing periclase powder
SU1302444A1 (en) Method of controlling electric conditions of electric-arc furnace
SU1735217A1 (en) Method for heat treatment of white portland cement clinker
RU2172304C2 (en) Method of preparing high-melting materials
JPS60239355A (en) Chromium oxide refractories
JPS62162625A (en) Treatment for prevention of destabilization of electrofused and stabilized zirconia
SU702227A1 (en) Method and apparatus for roasting materials
JP2741050B2 (en) Method and apparatus for producing antimony trioxide
SU954420A1 (en) Method for operating a group of blast furnaces
SU1103799A3 (en) Method for controlling blast furnace smelting
JPH0420970B2 (en)
SU1047858A1 (en) Method of producing white portland cement clinker
CN107298578A (en) A kind of gold sand and its production technology
SU673830A1 (en) Method of controlling process of roasting clinker in rotary furnace
JPS63259010A (en) Smelting reduction method for metallic oxide and smelting reduction furnace