JPS62137872A - Infrared ray detector - Google Patents

Infrared ray detector

Info

Publication number
JPS62137872A
JPS62137872A JP60279711A JP27971185A JPS62137872A JP S62137872 A JPS62137872 A JP S62137872A JP 60279711 A JP60279711 A JP 60279711A JP 27971185 A JP27971185 A JP 27971185A JP S62137872 A JPS62137872 A JP S62137872A
Authority
JP
Japan
Prior art keywords
electrodes
doped region
bias current
circumference
highly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60279711A
Other languages
Japanese (ja)
Inventor
Naoki Oda
直樹 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60279711A priority Critical patent/JPS62137872A/en
Publication of JPS62137872A publication Critical patent/JPS62137872A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve the sensitivity of a photoconductive type infrared ray detector by a method wherein a fixed number of narrow voltage measuring electrodes, having a highly-doped region on the circumference, are provided on the edge of the light-receiving part located in the vicinity of the other electrodes of fixed number, to be used to run a bias current, on the part separated from the latter, and the noise generated on the two electrodes used to run the bias current is suppressed. CONSTITUTION:Besides electrodes 1 and 2, narrow voltage measuring electrodes 3 and 4 which are separated from said two electrodes are provided on the edge of a light-receiving part 5 located in the vicinity of said electrodes on the circumference of a highly-doped region 11 in order to prevent the shortening of life of the excessive minority carrier. At this time, the amperage 1/f noise caused by the recombination of the carrier can be prevented by the electrodes 1 and 2 by picking out the potential difference between narrow voltage measuring electrodes 3 and 4 having highly-doped region 11 on the circumference, and the shortening of life of the excessive minority carrier can also be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は赤外線検出器に関し、特に低インピーダンスの
光伝導型の赤外線検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared detector, and particularly to a low impedance photoconductive infrared detector.

〔従来の技術〕[Conventional technology]

従来、この種の光伝導型赤外線検出器は第3図に示すよ
うになっていた。第3図は従来の光伝導型赤外線検出器
の一例を示すブロック図で、バイアス電流を流すための
2個の電極1.2を有し、赤外線輻射によって受光部5
に発生する過剰少数キャリアの密度に比例した電位差を
電極1,2から取り出して増幅器6で増幅していたくエ
ム・ニー・キンチ(M、 A、 HinCい等、インフ
ラレッド・フィジクス(Infrared Physi
cs)第15巻1975年、111ページ)。
Conventionally, this type of photoconductive infrared detector has been constructed as shown in FIG. FIG. 3 is a block diagram showing an example of a conventional photoconductive infrared detector, which has two electrodes 1.2 for passing a bias current, and which uses infrared radiation to
The potential difference proportional to the density of excess minority carriers generated in
cs) Volume 15, 1975, page 111).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の光伝導型赤外線検出器では、電極でも発
生すると言われている電流性の17/fノイズのため、
バイアス電流を大きくすれGfするほど低周波領域にお
いて検出器の感度が劣化してくるという問題点がある。
In the conventional photoconductive infrared detector described above, due to current-based 17/f noise, which is said to be generated even in the electrodes,
There is a problem in that the larger the bias current Gf is, the more the sensitivity of the detector deteriorates in the low frequency region.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の赤外線検出器は、バイアス電流を流すために受
光部の両端に配置された2個の電極と、前記受光部内両
端に前記電極から離して配置され且つドープ量の高い領
域を周囲に設けた幅の狭い2個の電圧測定用電極とを備
えている。
The infrared detector of the present invention includes two electrodes arranged at both ends of a light receiving section for flowing a bias current, and a region with a high doping amount arranged at both ends of the light receiving section and having a high doping amount. and two narrow voltage measurement electrodes.

〔作用〕[Effect]

第1図(a)は本発明の赤外線検出器の一実施例を示す
光伝導型赤外線検出器のブロック図、第1図(b)、(
c)はそれぞれ第1図(a)におけるA−A′、113
−B’断面図である。
FIG. 1(a) is a block diagram of a photoconductive infrared detector showing one embodiment of the infrared detector of the present invention, FIG. 1(b), (
c) are A-A′ and 113 in FIG. 1(a), respectively.
-B' sectional view.

同図において従来例と同じ構成要件には第3図と同じ符
号を付しである。すなわち、本実施例の光伝導型赤外線
検出器は、電極1.2の他に第1図(a)に示すように
、両電極1,2から離れしかもその近傍の受光部5内の
端に配置され且つ過剰少数キャリアの寿命を減少させな
いためにドープ量の高い領域11を周囲に設けた幅の狭
い電圧測定用電極3,4を有する。
In the figure, the same components as in the conventional example are given the same reference numerals as in FIG. 3. That is, in addition to the electrode 1.2, the photoconductive infrared detector of this embodiment has an electrode at the end of the light-receiving section 5, which is apart from and near both the electrodes 1 and 2, as shown in FIG. 1(a). It has narrow voltage measuring electrodes 3 and 4 surrounded by a highly doped region 11 in order not to reduce the lifetime of excess minority carriers.

ここで、できるだけ大きな出力電圧を得るなめに電極1
.2のなるべく近傍に電圧測定用電極3゜4を設ける。
Here, in order to obtain as large an output voltage as possible, electrode 1
.. A voltage measuring electrode 3.4 is provided as close as possible to the electrode 2.

赤外線輻射によって受光部5に発生した過剰少数キャリ
アは電極1,2に印加された電場によって電極間をドリ
フトする間に結晶内。
Excess minority carriers generated in the light receiving part 5 by infrared radiation drift within the crystal between the electrodes due to the electric field applied to the electrodes 1 and 2.

界面及び電極1,2で再結合する。電極1,2で再結合
するキャリアは該電極1.2を電圧測定用電極として用
いると、電流性の1/fノイズを発生ずる原因になる。
Recombine at the interface and electrodes 1 and 2. When the electrodes 1 and 2 are used as voltage measurement electrodes, the carriers recombined at the electrodes 1 and 2 cause current-related 1/f noise.

そこでドープ基の高い領域11を周囲に有する幅の狭い
電圧測定用電極3.4の間の電位差を収り出して増幅器
6によって増幅することにより電極1−12でキャリア
が再結&することに起因する電流性の1/イ゛ノイズを
回避することかできるとともに、過剰少数キャリアの寿
命を減少させないようにすることができる。電圧測定用
電極3.4の幅を狭くする理由は、単位時間当りに同電
極に向って流れ込んで再結りしようとするキャリアーこ
れらのキャリアがノイズの原因になる−の個数を減らず
ためである。例えばポール係数測定時に使われる4端子
法では、4つの電極の幅は普通同じである。しかしそれ
では光電変換における] /’fノイズを減少させるこ
仁はできない9次に、電圧測定用電極3,4の周囲にド
ープ基の高い領域11を設ける理由は、該領域11と結
晶内に;Jでテンシャル勾配をつけることによって過剰
少数キャリアを電圧測定用電極3,4に近づけないよう
にするため、つまり電圧測定用電極3,4において再結
合することによる過剰少数キャリアの短命化を防ぐため
である。その結果としていわゆるレスボンシビティの値
は理論で予想される以上には減少しない。
Therefore, by collecting the potential difference between the narrow voltage measuring electrodes 3 and 4 surrounding the highly doped region 11 and amplifying it with the amplifier 6, the carriers are recombined at the electrodes 1-12. The resulting current-related 1/I noise can be avoided, and the lifetime of excess minority carriers can be prevented from decreasing. The reason for narrowing the width of the voltage measurement electrode 3.4 is to avoid reducing the number of carriers that flow toward the electrode per unit time and attempt to recombine, which causes noise. be. For example, in the four-terminal method used when measuring the pole coefficient, the widths of the four electrodes are usually the same. However, in this case, it is not possible to reduce ]/'f noise in photoelectric conversion.Next, the reason for providing the highly doped region 11 around the voltage measurement electrodes 3 and 4 is that between the region 11 and the crystal; In order to prevent excess minority carriers from approaching the voltage measurement electrodes 3 and 4 by creating a tensile gradient at J, that is, to prevent excess minority carriers from becoming short-lived due to recombination at the voltage measurement electrodes 3 and 4. It is. As a result, the so-called responsiveness value does not decrease as much as predicted by theory.

〔実施例〕〔Example〕

次に、本発明について第2図を参照して説明する。 Next, the present invention will be explained with reference to FIG.

第2図(a)は第1図における一具体例を示す平面図、
第2図(b)、(c)はそれぞれ第2図(ao)におけ
るA−A′、B−B′断面図である。
FIG. 2(a) is a plan view showing one specific example in FIG. 1,
FIGS. 2(b) and 2(c) are sectional views taken along line AA' and line BB' in FIG. 2(ao), respectively.

第2図<a)に示すように、本具体例において、電極1
,2の間の長さは765 B m 、電圧測定用電極3
,4間の長さは645μm、幅は65μm。
As shown in FIG. 2<a), in this specific example, the electrode 1
, 2 is 765 B m, voltage measurement electrode 3
, 4 is 645 μm in length and 65 μm in width.

厚さは10μm、電圧測定用電極3.4の幅は15μm
である。光伝導型赤外線検出器の材料はn型のHg+)
4Ci1g、2Te単結晶8で、電極は蒸着等により形
成した。またInを熱拡散等でドープすることによって
01領域11を形成した。この光伝導型赤外線検出器は
第2図(b)、(c)に示すように厚さ0.5市のサフ
ァイア基板10の上に接着剤9により接着されている。
The thickness is 10 μm, and the width of the voltage measurement electrode 3.4 is 15 μm.
It is. The material of the photoconductive infrared detector is n-type Hg+)
The electrode was formed of 4Ci1g, 2Te single crystal 8 by vapor deposition or the like. Further, the 01 region 11 was formed by doping In by thermal diffusion or the like. As shown in FIGS. 2(b) and 2(c), this photoconductive infrared detector is bonded with adhesive 9 onto a sapphire substrate 10 with a thickness of 0.5 cm.

この検出器を開口部の立体角が2.8 X JO−’s
rのアパーチャと狭帯域干渉フィルタ(中心波長lO1
9μm、波長幅0.75μm。
The solid angle of the aperture of this detector is 2.8 x JO-'s
r aperture and narrowband interference filter (center wavelength lO1
9μm, wavelength width 0.75μm.

透過率75%)とともに液体窒素温度に冷却し、7tト
ンバツクグラウンド〜 I  X  1 0  ”ph
cys−2s−’  の条件下において、10〜100
11zの周波数領域で検出器の感度を測定した。
Cooled to liquid nitrogen temperature with transmittance 75%), 7t ton background ~ IX10”ph
10-100 under the conditions of cys-2s-'
The sensitivity of the detector was measured in the 11z frequency range.

バイアス電流として4〜14mAの範囲で1mA刻みで
ノイズ測定を行った結果、1/′fノイズは約半分にな
り、一方しスボンシビディは約10%の減少にとどまっ
た。これは信号/7雑音比が約1.8@改善されたこと
を意味する。このことにより所定の信号/雑音比を得る
際に測定時間を約1/3,2に短縮することができる。
As a result of measuring noise in 1 mA increments in the range of 4 to 14 mA as a bias current, the 1/'f noise was approximately halved, while the subonshibidi was only reduced by approximately 10%. This means that the signal/7 noise ratio has been improved by about 1.8@. This allows the measurement time to be reduced to about ⅓.2 when obtaining a predetermined signal/noise ratio.

換言すると所定時間内でより精度の高い測定を行うこと
ができる。
In other words, it is possible to perform more accurate measurements within a predetermined period of time.

なお、本発明は上記の実施例に示した結晶材料。Note that the present invention relates to the crystalline materials shown in the above examples.

半導体の型や波長帯に限らず、要するに低インピーダン
スの又は大きいバイアス電流を要する光伝導型赤外線検
出器においてf退的に成り立つものである、例えば単結
晶Pb5nTeを材料とした光伝導型赤外線検出器にも
本発明を適用することができる。また基板は熱伝導率の
高いものであればサファイア基板に限らない。
Regardless of semiconductor type or wavelength band, in short, it is a photoconductive infrared detector that requires low impedance or a large bias current, such as a photoconductive infrared detector made of single crystal Pb5nTe. The present invention can also be applied to. Further, the substrate is not limited to a sapphire substrate as long as it has high thermal conductivity.

〔発明の効果J 以上説明したように本発明は、バイアス電流を流すため
の電極2個の他に両電極から離れしかもその近傍の受光
部の端に位置しかつ過剰少数キャリアの寿命を減少させ
ないためにドープ量の高い領域を周囲に有する幅の狭い
電圧測定用電極を2個設けることにより、バイアス電流
を流すための両電%で発生する1/fノイズを抑制して
光伝導型赤外線検出器の感度を改善することができる効
果がある。
[Effects of the Invention J As explained above, the present invention provides, in addition to the two electrodes for passing the bias current, an electrode that is located at the end of the light-receiving section away from both electrodes and in the vicinity thereof, and does not reduce the lifetime of excess minority carriers. Therefore, by providing two narrow voltage measurement electrodes with a highly doped region around them, the 1/f noise generated by the bias current is suppressed and photoconductive infrared detection is achieved. This has the effect of improving the sensitivity of the instrument.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の赤外線検出器の一実施例を示す
光伝導型赤外線検出器のブロック図、第1図(b)、(
c)はそれぞれ第1図(a)におけるA−A’ 、B−
B’断面図、第2図(a、 )は第1図における一具体
例を示す平面図、第2図(b)、(c)はそれぞれ第2
図(a)におけるA−A′、 B−B’断面図、第3図
は従来の光伝導型赤外線検出器の一例を示すブロックレ
1である。 1.2・・・電極、3,4・・・電圧測定用電極、5・
・・受光部、6・・増幅器、S・・・II g Cd 
T e中、結晶、9・・・接着剤、10・、サファイア
基板、11・・・領域。 第 1 語 $ 2 閃 (b) /θ (C)
FIG. 1(a) is a block diagram of a photoconductive infrared detector showing one embodiment of the infrared detector of the present invention, FIG. 1(b), (
c) are AA' and B- in FIG. 1(a), respectively.
B' sectional view, FIGS. 2(a and 2) are plan views showing one specific example in FIG. 1, and FIGS. 2(b) and (c) are respectively the second
The cross-sectional views taken along lines A-A' and B-B' in FIG. 1.2... Electrode, 3, 4... Voltage measurement electrode, 5.
... Light receiving section, 6... Amplifier, S...II g Cd
In T e, crystal, 9...adhesive, 10., sapphire substrate, 11... area. 1st word $ 2 flash (b) /θ (C)

Claims (1)

【特許請求の範囲】[Claims]  バイアス電流を流すために受光部の両端に配置された
2個の電極と、前記受光部内両端に前記電極から離して
配置され且つドープ量の高い領域を周囲に設けた幅の狭
い2個の電圧測定用電極とを備えることを特徴とする赤
外線検出器。
Two electrodes placed at both ends of the light receiving section to flow a bias current, and two narrow voltages placed at both ends of the light receiving section at a distance from the electrodes and surrounded by a highly doped region. An infrared detector comprising a measurement electrode.
JP60279711A 1985-12-11 1985-12-11 Infrared ray detector Pending JPS62137872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60279711A JPS62137872A (en) 1985-12-11 1985-12-11 Infrared ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60279711A JPS62137872A (en) 1985-12-11 1985-12-11 Infrared ray detector

Publications (1)

Publication Number Publication Date
JPS62137872A true JPS62137872A (en) 1987-06-20

Family

ID=17614810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60279711A Pending JPS62137872A (en) 1985-12-11 1985-12-11 Infrared ray detector

Country Status (1)

Country Link
JP (1) JPS62137872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106482287A (en) * 2015-08-31 2017-03-08 青岛海尔空调电子有限公司 Method and air-conditioning wind direction control method that a kind of employing infrared signal positions to thermal source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106482287A (en) * 2015-08-31 2017-03-08 青岛海尔空调电子有限公司 Method and air-conditioning wind direction control method that a kind of employing infrared signal positions to thermal source

Similar Documents

Publication Publication Date Title
US4521682A (en) Photodetecting device having Josephson junctions
US6117690A (en) Method of making thin, horizontal-plane hall sensors for read-heads in magnetic recording
Kruse Indium antimonide photoelectromagnetic infrared detector
Sommers Jr et al. Photoelectromagnetic effect in insulating CdS
US4339715A (en) Carrier-domain magnetometers with compensation responsive to variations in operating conditions
JPS62137872A (en) Infrared ray detector
US3619621A (en) Radiation detectors having lateral photovoltage and method of manufacturing the same
US5111052A (en) Radiation sensor and a radiation detecting apparatus using the same
US4792836A (en) Ion-sensitive photodetector
JPH06109534A (en) Semiconductor element which causes adiabatic transfer in edge channel
US5592081A (en) Magnetic Sensor
JPH0550857B2 (en)
JPS6284573A (en) Infrared detector
US3571593A (en) Infrared and far infrared detector or amplifier using mos structure element
US4973935A (en) Infrared detector
JP3170650B2 (en) Radiation detection element
Sittig Doping inhomogeneities in semiconductors measured by electroreflectance
Sugiyama et al. S/N study of micro-Hall sensors made of single crystal InSb and GaAs
EP0155744B1 (en) Optical absorption spectroscopy for semiconductors
JPS6057716B2 (en) semiconductor optical position detector
JPS62172224A (en) Infrared detector
JPH06258144A (en) Temperature sensor
Goodman Improvements in method and apparatus for determining minority carrier diffusion length
JPH0648732B2 (en) Photovoltaic infrared detector
RU2124733C1 (en) Device for measurement of optical radiation intensity