JPH0648732B2 - Photovoltaic infrared detector - Google Patents
Photovoltaic infrared detectorInfo
- Publication number
- JPH0648732B2 JPH0648732B2 JP62213401A JP21340187A JPH0648732B2 JP H0648732 B2 JPH0648732 B2 JP H0648732B2 JP 62213401 A JP62213401 A JP 62213401A JP 21340187 A JP21340187 A JP 21340187A JP H0648732 B2 JPH0648732 B2 JP H0648732B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor
- photodiode
- infrared detector
- semi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Light Receiving Elements (AREA)
- Electrodes Of Semiconductors (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は狭禁制帯幅の半導体を用いた光起電力型赤外線
検知器の構造に関する。The present invention relates to a structure of a photovoltaic infrared detector using a semiconductor having a narrow bandgap.
一般に、赤外線検知器においては狭禁制帯幅の半導体を
用いたものが高感度である事が知られている。この検知
器としは、例えばHg1-X CDXTeを用いた光伝導型
の光起電力型素子がある。このうち、前者は現在の主流
であるが、後者はその低消費電力等の特徴より今後の主
流になると考えられている。It is generally known that an infrared detector using a semiconductor having a narrow bandgap has high sensitivity. As this detector, for example, there is a photoconductive photovoltaic element using Hg 1-X CD X Te. Of these, the former is the current mainstream, but the latter is considered to be the mainstream in the future due to its features such as low power consumption.
光起電力型素子の代表的な形態は、pn接合を用いたフ
ォトダイオードであり、この構造の一例を第2図の断面
図に示す。図において、21はサファイア基板、4はp
型Hg0.8 Cd0.2 Te、22はエポキシ等の接着剤、
5はp型Hg0.8 Cd0.1 Te4上にイオン注入等の方
法によって形成されたn+層、6はZnS等の表面保護
絶縁膜、7,8はそれぞれp側,n+側の電極、10は
金リード線、11は入射赤外光である。この例において
は、イオン注入等により形成されたn+p接合部がフォ
トダイオードとして動作し、Hg0.8 Cd0.2 Teの禁
制帯幅に対応して波長約10μm以下の赤外光が検知で
きる。A typical form of the photovoltaic element is a photodiode using a pn junction, and an example of this structure is shown in the sectional view of FIG. In the figure, 21 is a sapphire substrate, 4 is p
Type Hg 0.8 Cd 0.2 Te, 22 is an adhesive such as epoxy,
5 is an n + layer formed on p-type Hg 0.8 Cd 0.1 Te 4 by ion implantation or the like, 6 is a surface protective insulating film such as ZnS, 7 and 8 are p-side and n + -side electrodes, 10 Gold lead wire, 11 is incident infrared light. In this example, the n + p junction formed by ion implantation or the like operates as a photodiode, and infrared light having a wavelength of about 10 μm or less can be detected corresponding to the forbidden band width of Hg 0.8 Cd 0.2 Te.
一般に、この様な狭禁制帯幅のフォトダイオードにおい
て問題となるのは暗電流が大きいという事である。この
暗電流の成分としては、例えばアカデミックプレス社の
雑誌「セミコンダクターズ アンド セミメタルス(Se
miconductors and semimetals)」18巻(1981)
の第6章に説明されている様に、拡散電流、G−R電
流、トンネル電流の三種類が考えられる。このうち、光
起電力型素子が使用される温度である77゜K付近では
トンネル電流が他者に比べて無視できる。また雑誌「ジ
ャーナル オブ アプライトフィジクス(Journal of A
pplied Physics)」,Vol.58,P372(198
5))で述べられている様に、表面保護絶縁膜6として
陽極硫化膜とZnSとの複合絶縁膜等を用いれば、G−
R電流は拡散電流に比べて無視できる様になる。従って
この暗電流をさらに減少させるには拡散電流を減らす事
が重要となる。Generally, a problem with such a narrow bandgap photodiode is that the dark current is large. The component of this dark current is, for example, "Semiconductors and Semimetals (Se
miconductors and semimetals) "18 volumes (1981)
As described in Chapter 6 of the above, three types of diffusion current, GR current, and tunnel current can be considered. Among them, the tunnel current is negligible in the vicinity of 77 ° K, which is the temperature at which the photovoltaic element is used, compared to others. In addition, the magazine "Journal of Upright Physics (Journal of A
pplied Physics) ", Vol. 58, P372 (198
As described in 5)), if a composite insulating film of an anodic sulfide film and ZnS is used as the surface protective insulating film 6, G-
The R current becomes negligible compared to the diffusion current. Therefore, in order to further reduce this dark current, it is important to reduce the diffusion current.
この拡散電流を減少させる手段としては、前述の「セミ
コンダクターズ アンド セミメタルズ」に述べられて
いる様に、p型Hg0.8 Cd0.8 Te4の厚さを小さ
く、かつ裏面(接着剤側の面)での表面再結合速度を小
さくする事が必要である。この時、p型Hg0.8 Cd
0.2 Te4の厚さはその小数キャリア拡散長に対して小
さくする必要があり、小数キャリア拡散長は数10μm
程度であるので厚さはこれ以下にする事になる。As a means for reducing this diffusion current, as described in the above-mentioned “Semiconductors and Semimetals”, the thickness of p-type Hg 0.8 Cd 0.8 Te 4 is small and the back surface (the surface on the adhesive side) is It is necessary to reduce the surface recombination rate. At this time, p-type Hg 0.8 Cd
The thickness of 0.2 Te4 needs to be smaller than the fractional carrier diffusion length, and the fractional carrier diffusion length is several tens of μm.
Since it is a degree, the thickness will be less than this.
裏面の表面再結合速度を減少させるには、例えば前述の
ように表面保護絶縁膜を裏面に形成すれば良いが、更に
この表面再結合の影響を減少させるには、裏面付近をp
+層として、全体をnpp+結合とするのが有効であ
る。これにより、p型Hg0.8 Cd0.8 Te中の少数キ
ャリアはp+層の存在により裏面に達しにくくなり、表
面再結合の影響が小さくなる。In order to reduce the surface recombination rate of the back surface, for example, a surface protective insulating film may be formed on the back surface as described above. To further reduce the influence of this surface recombination, p near
For the + layer, it is effective to use npp + coupling as a whole. As a result, the minority carriers in p-type Hg 0.8 Cd 0.8 Te are less likely to reach the back surface due to the presence of the p + layer, and the influence of surface recombination is reduced.
このp+層を形成するには、金、燐等のアクセプタとな
る物質を熱拡散させる必要がある。しかし、Hg0.8 C
d0.2 Teの様に原子間結合の弱い物質では、温度を1
00℃以上に上げると、その構成元素である水銀等が表
面から離脱して表面付近で空孔等の格子欠陥が発生する
ため、この様に高温を用いる工程はその制御が極めて難
しい。また、金を拡散する場合、p型Hg0.8 Cd0.2
Teが薄いほどその裏面のみにp+層を形成する事は極
めて困難である。従って、このような方法で拡散電流を
減少させる事は困難である。In order to form this p + layer, it is necessary to thermally diffuse a substance that serves as an acceptor, such as gold or phosphorus. However, Hg 0.8 C
For substances with weak atomic bonds such as d 0.2 Te, the temperature should be 1
If the temperature is raised to above 00 ° C., the constituent elements, such as mercury, are separated from the surface and lattice defects such as vacancies occur near the surface, so it is extremely difficult to control such a process using high temperature. When diffusing gold, p-type Hg 0.8 Cd 0.2
The thinner Te, the more difficult it is to form the p + layer only on the back surface. Therefore, it is difficult to reduce the diffusion current by such a method.
本発明の目的は、このような問題を解決し、裏面にp+
層を形成する事なしに裏面の表面再結合の影響を小さく
して拡散電流を小さくした孔起電力型半導体赤外線検知
基を提供する事にある。The object of the present invention is to solve such a problem and to provide p + on the back surface.
It is an object of the present invention to provide a porphomotive type semiconductor infrared detecting group in which the influence of surface recombination on the back surface is reduced and the diffusion current is reduced without forming a layer.
本発明の光起電力型赤外線検知器の構成は、エピタキシ
ャル成長した基板上に半金属より成る半金属層、半絶縁
性の半導体より成る絶縁層、狭禁制帯幅の半導体より成
る半導体層が順次形成され、前記狭禁制帯幅の半導体層
上にホトダイオードが形成され、かつ前記半金属層に電
圧を印加すべき電極が設けられた事を特徴とする。The photovoltaic infrared detector of the present invention has a structure in which a semimetal layer made of a semimetal, an insulating layer made of a semi-insulating semiconductor, and a semiconductor layer made of a semiconductor having a narrow band gap are sequentially formed on an epitaxially grown substrate. In addition, a photodiode is formed on the semiconductor layer having the narrow bandgap, and an electrode to which a voltage is applied is provided on the semi-metal layer.
本発明の構成は、エピタキシャル成長した基板上に半金
属の半導体層と半絶縁性の半導体層とを介してフォトダ
イオード部となる半導体層が形成されているため、フォ
トダイオードの裏面に実質的にMIS(金属−絶縁物−
半導体)構造が形成されている事になり、半金属の半導
体層に適当な電圧を印加する事により、フォトダイオー
ドの裏面を蓄積状態にする事が可能である。この場合
に、フォトダイオードは、n+pp+接合をとる事と等
価であるので、拡散電流が減少し、少ない暗電流のフォ
トダイオードとして動作する。According to the configuration of the present invention, since the semiconductor layer serving as the photodiode portion is formed on the epitaxially grown substrate via the semi-metal semiconductor layer and the semi-insulating semiconductor layer, the MIS is substantially formed on the back surface of the photodiode. (Metal-insulator-
Since the (semiconductor) structure is formed, by applying an appropriate voltage to the semi-metal semiconductor layer, the back surface of the photodiode can be put into an accumulation state. In this case, the photodiode is equivalent to taking an n + pp + junction, so that the diffusion current is reduced and the photodiode operates with a small dark current.
次に本発明の実施例を図面を図面を参照して説明する。 Embodiments of the present invention will now be described with reference to the drawings and drawings.
第1図は本発明の一実施例を示す断面図である。図にお
いて、1はエピタキシャル成長のCdTe等の基板、2
はHg0.8 Cd0.8 Te層、3は半絶縁性CdTe層、
4はp型Hg0.8 Cd0.2 Te層、5はp型Hg0.8 C
d0.2 Te層4上にイオン注入等の方法によって形成さ
れたn+層、6はZnS等の表面保護絶縁膜、7,8は
それぞれp側,n+側の電極、9はHg0.9 Cd0.1 T
e層2への電圧印加用電極、10は金リード線、11は
入射赤外光である。この例においては、赤外線検知部が
Hg0.8 Cd0.1 Te中に形成されたn+p接合による
フォトダイオードから成り、最大波長10μm程度まで
の赤外線を検知する事ができる。FIG. 1 is a sectional view showing an embodiment of the present invention. In the figure, 1 is a substrate of epitaxially grown CdTe or the like, 2
Is a Hg 0.8 Cd 0.8 Te layer, 3 is a semi-insulating CdTe layer,
4 is p-type Hg 0.8 Cd 0.2 Te layer, 5 is p-type Hg 0.8 C
An n + layer formed by a method such as ion implantation on the d 0.2 Te layer 4, 6 is a surface protective insulating film such as ZnS, 7 and 8 are p-side and n + -side electrodes, and 9 is Hg 0.9 Cd 0.1. T
Electrodes for voltage application to the e-layer 2 are gold lead wires, 11 is incident infrared light. In this example, the infrared detecting section is composed of a photodiode with an n + p junction formed in Hg 0.8 Cd 0.1 Te and can detect infrared rays with a maximum wavelength of about 10 μm.
本実施例においてHg0.8 Cd0.1 Te層2、半絶縁性
CdTe層3の役割を以下に述べる。混晶半導体である
Hg1-X CdXTeはそのX値によって禁制帯幅が変化
し、一般的な検知素子の動作温度である77゜Kでは、
前述の雑誌「セミコンダクターズ アンド セミメタル
ズ」第18巻で述べられている様に、Xが約0.13で
その禁制帯幅はゼロになり、それ以下のXでは半金属と
なる。The roles of the Hg 0.8 Cd 0.1 Te layer 2 and the semi-insulating CdTe layer 3 in this example will be described below. The forbidden band width of Hg 1-X Cd X Te, which is a mixed crystal semiconductor, changes depending on its X value, and at 77 ° K, which is the operating temperature of a general sensing element,
As described in the above-mentioned magazine "Semiconductors and Semimetals", Vol. 18, when X is about 0.13, the forbidden band width becomes zero, and when X is less than that, it becomes a semimetal.
従って、Hg0.9 Cd0.1 Te層2は半金属層とみなす
事ができ、これにより、Hg0.9 Cd0.1 Te層2、半
絶縁性CdTe層3、p型Hg0.8 Cd0.2 Te層4は
MIS(金属−絶縁物−半導体)構造とみなす事ができ
る。この時、CdTeはその格子定数等の物理的性質は
Hg0.8 Cd0.2 Teと極めて近い為に、両者の界面特
性は極めて良好である。Therefore, the Hg 0.9 Cd 0.1 Te layer 2 can be regarded as a semi-metal layer, whereby the Hg 0.9 Cd 0.1 Te layer 2, the semi-insulating CdTe layer 3, and the p-type Hg 0.8 Cd 0.2 Te layer 4 are MIS (metal It can be regarded as an (insulator-semiconductor) structure. At this time, the physical properties of CdTe, such as its lattice constant, are very close to those of Hg 0.8 Cd 0.2 Te, so the interface characteristics between them are extremely good.
従って、電極7を基準電位とし、電極9すなわちHg
0.9 Cd0.1 Te層2に、負の電圧を印加すれば、p型
Hg0.8 Cd0.1 Te層4の下側の面を蓄積状態にする
事ができる。従って、フォトダイオードの形成されたも
のと反対側の面にp+層が形成されたものと同様の効果
をもたらし、実質的にフォトダイオードがn+pp+接
合となるので、このフォトダイオードに流れる拡散電流
は減少し、少ない暗電流の赤外線検知素子として動作す
る事になる。Therefore, the electrode 7 is used as the reference potential, and the electrode 9 or Hg
By applying a negative voltage to the 0.9 Cd 0.1 Te layer 2, the lower surface of the p-type Hg 0.8 Cd 0.1 Te layer 4 can be put into an accumulation state. Therefore, the same effect as that in which the p + layer is formed on the surface opposite to the one in which the photodiode is formed is obtained, and the photodiode is substantially an n + pp + junction, so that this photodiode flows. The diffusion current is reduced, and the device operates as an infrared detection element with a small dark current.
以上説明した様に本発明は、光起電力型赤外線検知器の
暗電流を減少させることが出来、高性能の赤外線検知器
が得られる。As described above, according to the present invention, the dark current of the photovoltaic infrared detector can be reduced, and a high-performance infrared detector can be obtained.
第1図は本発明の一実施例である光起電力型赤外線検知
器の断面図、第2図は従来の光起電力型赤外線検知器の
一例の断面図である。 1……CdTe基板、2……Hg0.9 Cd0.1 Te層、
3……半絶縁性CdTe層、4……p型Hg0.8 Cd
0.2 Te層、5……n+層、6……表面保護絶縁膜、7
……p側電極、8……n+側電極、9……電圧印加用電
極、10……金リード線、11……入射赤外光、21…
…サファイア基板、22……接着剤。FIG. 1 is a sectional view of a photovoltaic infrared detector according to an embodiment of the present invention, and FIG. 2 is a sectional view of an example of a conventional photovoltaic infrared detector. 1 ... CdTe substrate, 2 ... Hg 0.9 Cd 0.1 Te layer,
3 ... Semi-insulating CdTe layer, 4 ... p-type Hg 0.8 Cd
0.2 Te layer, 5 ... n + layer, 6 ... Surface protection insulating film, 7
...... p side electrode, 8 ...... n + side electrode, 9 ...... voltage application electrode, 10 ...... gold lead wire, 11 ...... incident infrared light, 21 ...
... Sapphire substrate, 22 ... Adhesive.
Claims (1)
り成る半金属層、半絶縁性の半導体より成る絶縁層、狭
禁制帯幅の半導体より成る半導体層が順次形成され、前
記狭禁制帯幅の半導体層上にホトダイオードが形成さ
れ、かつ前記半金属層に電圧を印加すべき電極が設けら
れた事を特徴とする光起電力型赤外線検知器。1. A semimetal layer made of a semimetal, an insulating layer made of a semi-insulating semiconductor, and a semiconductor layer made of a semiconductor having a narrow bandgap are sequentially formed on an epitaxially grown substrate. A photovoltaic infrared detector characterized in that a photodiode is formed on the layer, and an electrode to which a voltage is applied is provided on the semi-metal layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62213401A JPH0648732B2 (en) | 1987-08-26 | 1987-08-26 | Photovoltaic infrared detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62213401A JPH0648732B2 (en) | 1987-08-26 | 1987-08-26 | Photovoltaic infrared detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6455878A JPS6455878A (en) | 1989-03-02 |
JPH0648732B2 true JPH0648732B2 (en) | 1994-06-22 |
Family
ID=16638606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62213401A Expired - Lifetime JPH0648732B2 (en) | 1987-08-26 | 1987-08-26 | Photovoltaic infrared detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0648732B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2287371A1 (en) | 2003-12-12 | 2011-02-23 | Toyo Boseki Kabushiki Kaisha | High strength polyethylene fiber |
JP7132658B1 (en) * | 2021-12-22 | 2022-09-07 | 株式会社久保製作所 | air purifier |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5403760A (en) * | 1990-10-16 | 1995-04-04 | Texas Instruments Incorporated | Method of making a HgCdTe thin film transistor |
JP2705594B2 (en) * | 1994-11-21 | 1998-01-28 | 日本電気株式会社 | Infrared detector |
-
1987
- 1987-08-26 JP JP62213401A patent/JPH0648732B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2287371A1 (en) | 2003-12-12 | 2011-02-23 | Toyo Boseki Kabushiki Kaisha | High strength polyethylene fiber |
JP7132658B1 (en) * | 2021-12-22 | 2022-09-07 | 株式会社久保製作所 | air purifier |
Also Published As
Publication number | Publication date |
---|---|
JPS6455878A (en) | 1989-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4568960A (en) | Blocked impurity band detectors | |
JPS5980978A (en) | Infrared detector | |
JPS6193681A (en) | Semiconductor device | |
US3502884A (en) | Method and apparatus for detecting light by capacitance change using semiconductor material with depletion layer | |
US4312114A (en) | Method of preparing a thin-film, single-crystal photovoltaic detector | |
US3949223A (en) | Monolithic photoconductive detector array | |
US4700209A (en) | Avalanche photodiode and a method of making same | |
JPS62160776A (en) | Photovoltage detector and manufacture of the same | |
JPH0648732B2 (en) | Photovoltaic infrared detector | |
EP0541973B1 (en) | Photoresponsive device and method for fabricating the same, including composition grading and recessed contacts for trapping minority carriers | |
US4914494A (en) | Avalanche photodiode with central zone in active and absorptive layers | |
US4231053A (en) | High electrical frequency infrared detector | |
Mirsagatov et al. | Mechanism of charge transfer in injection photodiodes based on the In-n+-CdS-n-CdS x Te 1− x-p-Zn x Cd 1− x Te-Mo structure | |
EP0302820B1 (en) | Detector of ionizing particles | |
US4586066A (en) | Avalanche photodetector | |
US4654686A (en) | High efficiency MIS detector | |
JPH0492481A (en) | Photosensor | |
US5079610A (en) | Structure and method of fabricating a trapping-mode | |
JPS61115356A (en) | Photodetecting element | |
JPS5938748B2 (en) | semiconductor photodetector | |
US4973935A (en) | Infrared detector | |
JPS63168057A (en) | Photovoltaic infrared detector | |
JPS6086877A (en) | Optical semiconductor device | |
JPS6138208Y2 (en) | ||
JP2671554B2 (en) | Manufacturing method of infrared detector |