JPS62137753A - Laminar photomagnetic recording medium and its production - Google Patents

Laminar photomagnetic recording medium and its production

Info

Publication number
JPS62137753A
JPS62137753A JP26256585A JP26256585A JPS62137753A JP S62137753 A JPS62137753 A JP S62137753A JP 26256585 A JP26256585 A JP 26256585A JP 26256585 A JP26256585 A JP 26256585A JP S62137753 A JPS62137753 A JP S62137753A
Authority
JP
Japan
Prior art keywords
film
layer
rare earth
transition metal
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26256585A
Other languages
Japanese (ja)
Inventor
Tetsuzo Kusuda
楠田 哲三
Shigeo Honda
本多 茂男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP26256585A priority Critical patent/JPS62137753A/en
Publication of JPS62137753A publication Critical patent/JPS62137753A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Abstract

PURPOSE:To provide excellent durability and uniform magnetic characteristics to a titled medium by constituting a thin film layer of >=2 layers of laminar films consisting of rare earth-transition metals and forming said layer in such a manner that the compsn. ratio in number of atom % of the rare earth metal and transition metal in one of the adjacent two layers of such laminar film is different from the compsn. ratio in number of atom % of the other layer. CONSTITUTION:The thin film layer is constituted of >=2 layers of the laminar films consisting of the rare earth-transition metals. The adjacent two layers of such laminar film are constituted of the layer rich with the rare earth element and the layer rich with the transition element and/or the compsn. ratio in number of atom % of the rare earth element and transition element in the adjacent two layers are deviated from each other and/or either or RM and TM is rich at the boundary faces of the two adjacent layer. The film having the approximately specified recording characteristic over a large area is thus produced. The film structure is produced from the backscattering intensity spectra by He<+> using a Rutherford backscattering method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光磁気記録媒体とその製造法に関するものであ
り、特に、レーザー光を用いてサブミクロンオーダーの
記録を行うための希土類−遷移金属合金のアモルファス
薄膜を用いた光磁気ディスク、テープ、カード等の光磁
気記録媒体とその製造法に関する乙のである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a magneto-optical recording medium and a method for manufacturing the same, and particularly relates to a rare earth-transition metal recording medium for recording on the submicron order using laser light. This article concerns magneto-optical recording media such as magneto-optical disks, tapes, and cards that use amorphous thin films of alloys, and their manufacturing methods.

(従来技術) E−DRAWディスク等の高密度情報記録媒体の記録材
料としては既に種々のらのが提案されているが、その中
で希土類金属(RM)と遷移金属(TM)とを物理的蒸
着法を用いてガラス、プラスチック等で作られた基板上
に薄膜状に形成したアモルファスRM −T M合金膜
は垂直磁化膜を大面積にわたって比較的容易に形成でき
るため実用化へ向けて開発が進められている。
(Prior art) Various materials have already been proposed as recording materials for high-density information recording media such as E-DRAW discs, but among them, rare earth metals (RM) and transition metals (TM) have been physically The amorphous RM-TM alloy film, which is formed in the form of a thin film on a substrate made of glass, plastic, etc. using the vapor deposition method, is a perpendicularly magnetized film that can be relatively easily formed over a large area, so it is being developed for practical use. It is progressing.

このRM−TMアモルファス膜は光磁気記録媒体として
要求される条件、すなわち(1)均質な垂直磁化を大面
積に形成できること(Ku>2πMs)(2)安定な最
小磁区径(δW / M s T(c )が十分小さい
こと(Heが大きい)(3)書込みパワー(Tcまたは
T compと保持温度TOの差)が100〜200°
Cであること、(4)光吸収係数(α)が十分であるこ
と(αt> 2 :tは膜厚’)(5)S/Nが大きい
こと等の条件を一応満足するものが試作されているが、
コマーンヤルヘースで製造されるまでには至っていない
。その最大の理由は耐久性すなわち長期保存安定性に欠
けるという点にある。これは上記アモルファス膜が酸化
等の化学的変化を受け、膜組成が変質してしまうためと
考えられている。この変質を防止するためには保護膜を
用いるか、酸化等の変質をしにくい膜組成にするかの2
つの対策が考えられる。前者については種々の提案がな
されているが、後者について提案されている方法は第3
成分の添加による酸化防止法か、遷移金属としてCO系
のものを用いる方法が主である。酸化防止用に第3成分
を添加する方法は他の光磁気特性の要求条件に悪影響を
与え易く、Go系の膜の場合には垂直磁化とならせろた
めの成膜条件が厳しく、工業的生産が難しい。
This RM-TM amorphous film meets the conditions required as a magneto-optical recording medium, namely (1) ability to form homogeneous perpendicular magnetization over a large area (Ku > 2πMs), and (2) stable minimum magnetic domain diameter (δW / M s T (c) is sufficiently small (He is large) (3) Write power (difference between Tc or T comp and holding temperature TO) is 100 to 200°
(4) The light absorption coefficient (α) is sufficient (αt > 2: t is the film thickness') (5) The S/N ratio is large. Although,
It has not yet been manufactured in Komanjarges. The biggest reason for this is that they lack durability, that is, long-term storage stability. This is thought to be because the amorphous film undergoes chemical changes such as oxidation, resulting in alteration of the film composition. There are two ways to prevent this deterioration: use a protective film, or create a film composition that is less susceptible to deterioration such as oxidation.
There are two possible countermeasures. Various proposals have been made for the former, but the method proposed for the latter is the third method.
The main methods are to prevent oxidation by adding components or to use CO-based transition metals. The method of adding a third component to prevent oxidation tends to have a negative effect on other requirements for magneto-optical properties, and in the case of Go-based films, the film-forming conditions to achieve perpendicular magnetization are strict, making it difficult for industrial production. is difficult.

本発明者達はRM −T M、アモルファス膜の微細構
造をX線回折、レプリカ電顕法、’1”EM法、オージ
ェ分析法、磁気ヒステリシス測定およびラザフォード後
方散乱法等を用いて調べ、それにより磁気的微細構造を
解明する基礎的研究を行っている過程で、極めて興味深
い減少を発見し、それが前記の光磁気記録媒体の実用化
上の問題点を解決する一つの錠になることを見出し、本
発明を完成した。
The present inventors investigated the fine structure of the RM-TM amorphous film using X-ray diffraction, replica electron microscopy, '1'' EM method, Auger analysis, magnetic hysteresis measurement, and Rutherford backscattering method, and found that In the process of conducting basic research to elucidate the magnetic microstructure, we discovered an extremely interesting phenomenon, and discovered that this could be a key to solving the problems in the practical application of magneto-optical recording media. , completed the invention.

(発明の目的) 従って、本発明の目的は耐久性に浸れ、しかも均一な磁
気特性を有するR M −T Mアモルファス光磁気記
録媒体およびその製法を提供することにある。
(Object of the Invention) Therefore, an object of the present invention is to provide an RM-TM amorphous magneto-optical recording medium that is highly durable and has uniform magnetic properties, and a method for manufacturing the same.

本発明の他の目的は超格子の層状構造体あるいはそれに
類似した新規な膜とその製造方法を提供することにある
。本発明に上るこの新規な層状構造体の製造方法は光磁
気記録媒体の工業的製造法に限定されろものではなく、
一般に物質の微細構造とその物理特性との関係を解明す
る手段として、さらにはそれを他の工業用途に適用する
上で極めて重要な方法である。すなわち、従来の超格子
が分子線エピタキシャルのような極めて高価な設備を用
いて微小面積にしか作れなかったものに対し、工業的に
大面積に超格子層状体が作成できるという点て大きな意
味を有している。
Another object of the present invention is to provide a superlattice layered structure or a novel film similar thereto, and a method for manufacturing the same. The method of manufacturing this novel layered structure according to the present invention is not limited to the industrial manufacturing method of magneto-optical recording media;
In general, it is an extremely important method for elucidating the relationship between the fine structure of a material and its physical properties, and for applying it to other industrial applications. In other words, whereas conventional superlattices could only be created in small areas using extremely expensive equipment such as molecular beam epitaxial techniques, this method has great significance in that superlattice layered bodies can be created industrially over large areas. have.

本発明のさらに他の目的は耐酸化性に優れたCo系のR
M−TMアモルファス膜を大面積にわたって均一に作る
ための新規な方法を提供することにある。
Still another object of the present invention is to use Co-based R with excellent oxidation resistance.
The object of the present invention is to provide a new method for uniformly producing an M-TM amorphous film over a large area.

(発明の構成) 本発明の第1の観点によって提供される光磁気記録媒体
は基板と、この基板上に形成された希土類−遷移金属合
金薄膜層とで構成され、上記希土類金属と遷移金属とが
原子数%比率で垂直磁化膜となる組成比になっている光
磁気記録媒体において、上記薄膜層が希土類−遷移金属
の2層以上の層状膜により構成され、この層状膜の隣接
する2層においてその一方の層の希土類元素と遷移金属
の原子数%組成比がその他方の層の原子数%組成比と異
っていることを特徴としている。
(Structure of the Invention) The magneto-optical recording medium provided by the first aspect of the present invention is composed of a substrate and a rare earth-transition metal alloy thin film layer formed on the substrate, and the rare earth metal and transition metal In the magneto-optical recording medium, the thin film layer is composed of a layered film of two or more layers of rare earth-transition metal, and two adjacent layers of the layered film are The atomic percentage composition ratio of rare earth elements and transition metals in one layer is different from the atomic percentage composition ratio in the other layer.

上記の層状膜の各々の層の膜厚は600Å以下にするの
が好ましく、さらに好ましくは100Å以下にするのが
好ましい。
The thickness of each layer of the above layered film is preferably 600 Å or less, more preferably 100 Å or less.

上記希土類金属(RM)としてはTb、 Gd、 Dy
The rare earth metals (RM) include Tb, Gd, Dy
.

Ho、Er等を、また、遷移金属(’rM)としてはG
o、 Fe、 Ni等を挙げろことができるが、耐酸化
性を向上さd゛るためにはCOをベースとするのが好ま
しく、特に、TbCo、Tb Co Peが池の特性と
の兼ね合いて好ましい。
Ho, Er, etc., and G as a transition metal ('rM).
For example, carbon dioxide, Fe, Ni, etc. can be mentioned, but in order to improve the oxidation resistance, it is preferable to use CO as a base, and TbCo and TbCoPe are particularly preferable in view of the characteristics of the pond. .

上記RM−TM合金薄膜で垂直磁化膜の得られる組成領
域は公知であり、スパッタ法で膜を作った場合には、例
えばTbx Go +oo−x (13<X<32)、
  Gdx  Co  100−X  (13<x< 
35)、  DYXCo  +00  X  (15<
X<25)、  f(OX  Co  Ion  X(
18<x< 35 )、Tbx (Coy F e +
oo−Y)+oo  X(15<X<25.5<Y<3
0)等である。
The composition range in which a perpendicularly magnetized film can be obtained from the above RM-TM alloy thin film is known, and when the film is made by sputtering, for example, Tbx Go +oo-x (13<X<32),
Gdx Co 100-X (13<x<
35), DYXCo +00 X (15<
X<25), f(OX Co Ion X(
18<x<35), Tbx (Coy F e +
oo-Y)+oo X(15<X<25.5<Y<3
0) etc.

基板としてはガラス、プラスチック、金属等の任意のも
のが使用できろ。
Any material such as glass, plastic, or metal can be used as the substrate.

本発明の特徴はRM  TM合合金7ルルフアス薄膜少
なくとも2層以上層状に積層され、隣接した2層におい
てはその一方の層のRMとTMの原子数%組成比が他方
の層の原子数%組成比と異っている点にある。すなわち
、前記垂直磁化膜が層状積層構造膜によ・り構成されて
おり、且つ(1)隣接する2層が希土類元素リッチの層
と遷移元素リッチの層との組合せで構成されるかおよび
/または(2)隣接する2層において希土類元素と遷移
元素との原子類%組成比が互いにずれているか、および
/または(3)2つの隣接層の境界面でRMとTMの一
方がリッチになっている。
The feature of the present invention is that at least two or more layers of the RM TM alloy 7 Rulfurous thin film are laminated, and in two adjacent layers, the atomic % composition ratio of RM and TM in one layer is the same as the atomic % composition ratio of the other layer. This is different from the ratio. That is, the perpendicular magnetization film is composed of a layered stacked structure film, and (1) two adjacent layers are composed of a combination of a layer rich in rare earth elements and a layer rich in transition elements, and/ or (2) the atomic percentage composition ratios of rare earth elements and transition elements in two adjacent layers are shifted from each other, and/or (3) one of RM and TM is rich at the interface between two adjacent layers. ing.

−例として、Tb FeまたはTb Coのターゲット
を用いて本発明の下記の方法を用いて作った多層膜は第
1層目に純鉄のみまたは純コバルトのみの層、第2層目
に垂直磁化膜となるTbFe。
- As an example, a multilayer film made using the following method of the present invention using a Tb Fe or Tb Co target has a first layer made of pure iron or pure cobalt, and a second layer made of perpendicular magnetization. TbFe that becomes the film.

Tb Coの層、第3層に再び純鉄または純コバルトの
眉を多層に形成することが可能であり、上記第2層をさ
らに組成比の異る多層にすることらできろ。 一般に、
スパッタリングを用いた場合には金属元素(またはその
クラスター)の粒子間にアルゴン等の不活性ガスが入っ
ている。一方、蒸着法では粒子間に酸素が入り易く、酸
化劣化の問題となる。特に、バイアススパッタ法を用い
るとこの酸素の侵入を大1]に低下できる。上記アルゴ
ン1−) +@ Fjf m rh +−乃ヱ凹A、1
”−tf I+中’I(、f−s、÷11・7グ)大気
中の酸素と置換したり、RMTMの再配置を促進する。
It is possible to form multiple layers of pure iron or pure cobalt in the Tb Co layer and the third layer, and the second layer can be further formed into multiple layers with different composition ratios. in general,
When sputtering is used, an inert gas such as argon is contained between particles of metal elements (or clusters thereof). On the other hand, in the vapor deposition method, oxygen tends to enter between the particles, resulting in oxidative deterioration. In particular, when bias sputtering is used, the intrusion of oxygen can be reduced to a large degree. Argon 1-) +@Fjf m rh +-NoヱConcave A, 1
``-tf I+ Medium 'I (,f-s, ÷11.7g) Replaces atmospheric oxygen and promotes RMTM rearrangement.

こうした現象を実用上制御するためにはRMTMの組成
比や粒子の分布、配列等をコントロールしなければなら
ないが、本発明方法では層状構造体にすることによって
これが容易に達成できる。
In order to practically control such a phenomenon, it is necessary to control the composition ratio, particle distribution, arrangement, etc. of RMTM, but this can be easily achieved in the method of the present invention by forming a layered structure.

なお、本発明の層状光磁気記録層に他の公知の任意の保
護膜、例えばSiOx、ArN等を組合せることらでき
る。
Note that the layered magneto-optical recording layer of the present invention may be combined with any other known protective film, such as SiOx, ArN, etc.

上記層状膜全体の厚さは用途によって適当に選択でき、
光ディスクの場合には約1000大作度が選択される。
The overall thickness of the above layered film can be appropriately selected depending on the application.
In the case of an optical disc, a maximum performance of about 1000 is selected.

この層状膜の各々の層の膜厚は希望する膜の組成を考慮
して決められ、使用するRM−TMの組合せや成膜条件
(例えばバイアススパッタのバイアスの値)によって異
るが、一般的には600Å以下、好ましくは100Å以
下にする。
The thickness of each layer of this layered film is determined by considering the composition of the desired film, and varies depending on the combination of RM-TMs used and film formation conditions (e.g. bias value of bias sputtering), but is generally The thickness is preferably 600 Å or less, preferably 100 Å or less.

第1図は本発明の層状膜の概念を示す図で、図中の○は
一方の金属(例えばRM)を、また0は他方の金属(例
えばT M )を示し、その各々は単−県子あるいは同
一あるいは異種の元素の集合体(例えばクラスターや微
結晶等)である。第1図の(a)は隣接2層の各々の層
で単一元素がリッチになっている場合、(b)は隣接2
層の各々の層で原子数%組成比が異っている場合、(c
)は隣接2層の境界面において一方の元素の原子数%が
大きくなっている場合をそれぞれ概念図で示している。
FIG. 1 is a diagram showing the concept of the layered film of the present invention. In the figure, ○ indicates one metal (for example, RM), and 0 indicates the other metal (for example, TM), and each of them is a single prefecture. It is a child or an aggregate of the same or different elements (for example, a cluster or a microcrystal). Figure 1 (a) shows a case in which each of the two adjacent layers is rich in a single element;
When the atomic percentage composition ratio of each layer is different, (c
) are conceptual diagrams showing cases where the atomic percentage of one element is large at the interface between two adjacent layers.

この第1図は単なる概念図であって、各層または境界層
が注状構造をとる場合や局所的に一定秩序(オーダリン
グ)していてもよい。
This FIG. 1 is merely a conceptual diagram, and each layer or boundary layer may have a note-like structure or may have a local ordering.

また、アルゴンのような不活性ガスが各粒子間に入って
いる。
Additionally, an inert gas such as argon is present between each particle.

要は膜面と垂直な方向においてRM−TMの原子数%の
組成比が異っていればよい。また、各層の厚さは一定で
ある必要はなく、さらに3層以上の各層の組合せは同一
の組合せの反復でなく、全く別の組合にすることができ
る。
In short, it is sufficient that the composition ratio of RM-TM in atomic percentages differs in the direction perpendicular to the film surface. Further, the thickness of each layer does not need to be constant, and the combination of three or more layers may not be a repetition of the same combination, but may be a completely different combination.

本発明の特殊な一実施例ではRMとしてTbを、またT
MAして耐酸化性に優れたCoを用いている。このT 
IIX CQ +oo−Xの系はXが約13<Xく約3
2の時に補償組成となり、補償点記録に用いられている
が、組成変化により記録動作温度が急激に変化するため
実用」二問題があった。すなわち、大面積にわたって極
めて狭い範囲の組成比の膜を作らねばならないが、実際
に従来のスパッタリングでそのように狭い範囲の組成比
の膜を大面積にわたって作ることは不可能であった。
In a particular embodiment of the invention, Tb is used as RM and Tb is
Co is used as MA and has excellent oxidation resistance. This T
IIX CQ +oo-X system has X of about 13<X and about 3
2, it becomes a compensation composition and is used for compensation point recording, but there are two problems in practical use because the recording operation temperature changes rapidly due to composition changes. That is, a film with a composition ratio in an extremely narrow range must be produced over a large area, but it is actually impossible to produce a film with a composition ratio in such a narrow range over a large area using conventional sputtering.

本発明の以下で述べる新規な方法を用いると大面積にわ
たってほぼ一定の記録特性を存する嘆を作ることができ
、しかもその膜構造は上記定義のような新規な構造にな
っているものと考えることがラダフォード後方散乱法を
用いたHe+による後方散乱強度スペクトルからできる
。この膜構造と上記利点との間の因果関係は現在のとこ
ろ理論的に説明できない。
By using the novel method of the present invention described below, it is possible to create a film that has almost constant recording characteristics over a large area, and furthermore, it can be considered that the film structure has a novel structure as defined above. can be obtained from the backscattered intensity spectrum of He+ using the Raddaford backscattering method. The causal relationship between this membrane structure and the above advantages cannot be explained theoretically at present.

本発明の第2の観点により提供される層状積層膜の製造
方法は、スパッタリングを用いて2種類以上の金属を基
板上に薄膜状に付着させる薄膜形成方法において、スパ
ッタリング操作条件を時間的に変化させることによって
隣接2層において上記2種類の金属の原子数%組成比が
異るようにして、組成比が互いに異る少なくとも2層以
上の多層膜を形成することを特徴としている。
A method for producing a layered laminated film provided by the second aspect of the present invention is a thin film forming method in which two or more metals are deposited in a thin film form on a substrate using sputtering, and the sputtering operation conditions are changed over time. By doing so, the atomic percentage composition ratios of the two types of metals are different in two adjacent layers, thereby forming a multilayer film including at least two or more layers having mutually different composition ratios.

上記の時間的にスパッタ操作を変化させる具体的方法は
スパッタ操作中に基板に負のバイアスをかけ、このバイ
アス値を時間的に変化させるか、および/またはスパッ
タ操作中に不活性ガスの分圧値を時間的に変化させるか
すればよい。
The specific method of temporally changing the sputtering operation described above is to apply a negative bias to the substrate during the sputtering operation and change this bias value over time, and/or to change the partial pressure of an inert gas during the sputtering operation. All you have to do is change the value over time.

本発明の好ましい一実施例では上記2種類以上の金属が
希土類と遷移金属である。この希土類金属(RM)と遷
移金属(TM)との合金は光磁気記録媒体用記録材とし
て重要である。
In a preferred embodiment of the present invention, the two or more metals are rare earths and transition metals. This alloy of rare earth metal (RM) and transition metal (TM) is important as a recording material for magneto-optical recording media.

従って、本発明の上記第2の観点によって提供される好
ましい一実施例は、基板上に垂直磁化膜となる原子数%
組成比で希土類−遷移金属のアモルファス薄膜をスパッ
タリングによって形成して光磁気記録媒体を製造する方
法において、上記スパッタリング操作条件を時間的に変
化させることによって隣接する2層において上記原子数
%組成トkが912(小riビふt、’JE号1;Il
−/7’1Eif井霞1−トヘフーμ記垂直磁化膜を構
成したことを特徴としている。
Therefore, a preferred embodiment provided by the second aspect of the present invention is to form a perpendicularly magnetized film on a substrate by atomic percent
In a method for manufacturing a magneto-optical recording medium by forming an amorphous thin film of a rare earth-transition metal at a composition ratio by sputtering, the above-mentioned atomic percentage composition k is obtained in two adjacent layers by temporally changing the sputtering operation conditions. 912 (Kori Bift, 'JE No. 1; Il
-/7'1EifIka 1-TohefuμThe feature is that a perpendicular magnetization film is formed.

上記のスパッタ操作条件を時間的変化させるには基板に
負のバイアスを加える時間を変化させるが、バイアス値
を時間的に変化させるか、および/またはスパッタ装置
中のAr等の不活性ガスの分圧を時間的に変化させれば
よい。このスパッタ操作条件の時間的変動によって2種
類の金属の中の一方、例えば希土類が選択的再スパツタ
効果によりたたき出され、結果的に薄膜中には能力の金
属がリッチになる。
In order to temporally change the above sputtering operating conditions, the time to apply a negative bias to the substrate is changed, but the bias value can be changed over time and/or the amount of inert gas such as Ar in the sputtering equipment can be changed. What is necessary is to change the pressure over time. This temporal variation of the sputtering conditions causes one of the two metals, for example a rare earth, to be knocked out by a selective resputtering effect, resulting in a thin film rich in metal.

このように多層構造にした光磁気記録膜は垂直磁化膜の
物理的微細構造と磁気的微細構造の関係を理論的に説明
する上で重要になるだけてなく、超格子類似の膜が工業
的に得られるという点で重要である。
Magneto-optical recording films with a multilayer structure like this are not only important for theoretically explaining the relationship between the physical and magnetic microstructures of perpendicularly magnetized films, but also superlattice-like films are being used industrially. This is important in that it can be obtained from

本発明の特殊な一実施例では希土類金属としてテルビウ
ムを、また遷移金属としてコバルトを用いている。
One particular embodiment of the invention uses terbium as the rare earth metal and cobalt as the transition metal.

このTb Co系の光磁気記録膜は耐酸化性に浸れた垂
直磁化膜が得られるというfl1点があるため開発が進
められており、その詳細については本出願人による昭和
59年3月12日提出の「光磁気記録媒体の製造方法」
と題する特願昭59−45553号や日本応用磁気学会
誌8(2)149−152(1984)等に記載されて
いる。
This Tb Co-based magneto-optical recording film is being developed because it has the fl1 advantage of being able to obtain a perpendicularly magnetized film with excellent oxidation resistance. Submitted "Method for manufacturing magneto-optical recording media"
It is described in Japanese Patent Application No. 1984-45553 and Japanese Journal of Applied Magnetics 8(2) 149-152 (1984).

しかし、このTb Co系の膜の実用上の欠点は(1)
Hc、Ms、Ku等の組成依頼性が大きく、均一な記録
膜を大面積にわたって形成するのが難しいこと、(2)
Tb Coの垂直磁化膜の形成に一般にバイアススパッ
ター法では磁気特性の経時変化が大きいこと(3)高バ
イアスを加えると基板温度が上昇し、プラスチック基板
が使えないことにある。上記(1)、(3)に関しては
周知であるので他の文献を参照されたい。上記(2)に
ついては第2図、第3図を参照されたい。この第2図は
T b、。
However, the practical drawbacks of this Tb Co-based film are (1)
(2) It is difficult to form a uniform recording film over a large area due to the high compositional dependence of Hc, Ms, Ku, etc.;
Generally, when bias sputtering is used to form a perpendicularly magnetized TbCo film, the magnetic properties change significantly over time. (3) When a high bias is applied, the substrate temperature rises, making it impossible to use a plastic substrate. Since the above (1) and (3) are well known, please refer to other documents. Regarding (2) above, please refer to FIGS. 2 and 3. This figure 2 shows T b.

C073を各々バイアス値(VB)を0V、−50V。Bias value (VB) of C073 is 0V and -50V, respectively.

−100V、−+50V、−200V(:変化させてバ
イアススパッタ作成した膜(アルゴン分圧=10m T
orr、膜厚=1000人)のMsの大気放置時間(h
r)変化を示している。(なお、MsはV。
-100V, -+50V, -200V (: Film created by bias sputtering by varying argon partial pressure = 10mT
orr, film thickness = 1000 people) Ms time left in the atmosphere (h
r) indicates a change. (In addition, Ms is V.

S、Mで測定した)図から明らかなように時間経過とと
もに、VBが一100V以上の場合、Msは大きく変化
する。また第3図はファラデーループの保持力(I−1
c)大気放置時間(h r )変化を示しており、同じ
く変化が大きい。
As is clear from the figure (measured at S and M), Ms changes greatly over time when VB is 1100 V or more. Figure 3 also shows the holding force (I-1) of the Faraday loop.
c) It shows the change in air exposure time (hr), which also shows a large change.

本発明の方法を用いると上記の欠点は大巾に改善できる
。以下、実施例を用いて本発明を説明する。
By using the method of the present invention, the above-mentioned drawbacks can be greatly improved. The present invention will be explained below using Examples.

(実施例1) Goディスク上にTbチップを置いた複合ターゲット(
T bz、C073)を用いてRFスパッタ法によりガ
ラス基板上にTb Coアモルファス膜を形成した。投
入電力は100Wで、Ar圧力は3〜60mTorrに
した。
(Example 1) A composite target with a Tb chip placed on a Go disk (
A Tb Co amorphous film was formed on a glass substrate by RF sputtering using Tbz, C073). The input power was 100 W, and the Ar pressure was 3 to 60 mTorr.

本発明の特徴により基板にはバイアス電圧を時間的に変
化させて加えた。すなわち、基板バイアス電圧(VB)
を1分おき+、:VB=0VとVB=−toovの間で
交互に変えて膜厚=1.5μの膜を作成した。
According to the features of the present invention, a bias voltage was applied to the substrate in a time-varying manner. That is, the substrate bias voltage (VB)
+, :VB=0V and VB=-toov were alternately changed every minute to form a film having a film thickness of 1.5μ.

第4図は上記のようにして作成された膜のラブフォード
後方散乱法による2、5MeVのHe+による後方散乱
強度スペクトルであり、420チヤンネル付近での立上
りは膜表面のTb原子によるH e+の散乱であり、3
50チヤンネル付近での立上りはCo原子による散乱で
ある。第4図はTbの原子密度が変調されていることを
示している。
Figure 4 shows the backscattered intensity spectrum of the film prepared as described above due to 2.5 MeV He+ using the Loveford backscattering method. and 3
The rise near channel 50 is due to scattering by Co atoms. FIG. 4 shows that the atomic density of Tb is modulated.

この膜は垂直磁化膜であった。This film was a perpendicularly magnetized film.

(実施例2)・ 実施例1と同様なバイアススパッタを行った。(Example 2)・ Bias sputtering similar to Example 1 was performed.

ただし、実施例2ではVB=0VとVB=−1o。However, in Example 2, VB=0V and VB=-1o.

Vとの交互変化時間を種々変えた。すなわち、全体の膜
厚が約3000人になるようにして層状膜の層数を第5
図の横軸に変えた。
The alternating time with V was varied. In other words, the number of layers of the layered film is increased to 5th so that the total film thickness is approximately 3000.
Changed to the horizontal axis of the figure.

この操作はバイアス回路中にバイアス値を可変時間でO
vと−toovの間で変化させる回路を組込で行った。
This operation changes the bias value in the bias circuit at a variable time.
A circuit that changes between v and -toov was built-in.

従って、例えば2層の場合の各層の厚さは3000/2
=1500人であり、72層の場合の各層の厚さは30
00/72片42人と概算できる。しかし、これを単純
計算で、実際には0Vと一100Vではスパッタレート
と再スパツタによる影響が異り、各層が同一厚さである
とは限らない。
Therefore, for example, in the case of two layers, the thickness of each layer is 3000/2
= 1500 people, and in the case of 72 layers, the thickness of each layer is 30
It can be roughly estimated that there were 42 people in 00/72. However, based on a simple calculation, the effects of sputtering rate and re-sputtering are actually different between 0V and -100V, and each layer does not necessarily have the same thickness.

こうして作成した膜は各層でのTb−Coの組成比が当
然界っている。
In the film thus created, the composition ratio of Tb-Co in each layer is naturally limited.

第5図には上記層数に対応するI−1c上、M s、 
K uの変化が示しである。この第5図かられかるよう
に、単層の場合には0Vと−toovで各磁気特性が大
巾に変化するが、本発明の多層膜にすることによって所
望の値に制御することができる。すなわち保持力の制御
が可能となる。
In FIG. 5, on I-1c corresponding to the above number of layers, M s,
The change in K u is an indication. As can be seen from FIG. 5, in the case of a single layer, each magnetic property changes greatly between 0V and -toov, but by using the multilayer film of the present invention, it is possible to control it to the desired value. . In other words, it becomes possible to control the holding force.

さらに、経時安定性と磁気特性とのバランスをとるのが
容易となる。すなわち、経時安定性は第1図に示すよう
にVB=0Vの方が一1oovより安定である。一方、
垂直磁気異方性エネルギーKuは−toovの方が0V
よりもはるかに安定であることか他の実験データ(図示
せず)かられかっている。本発明による層状膜はKuを
安定化させることができる。
Furthermore, it becomes easy to balance stability over time and magnetic properties. That is, as for the stability over time, as shown in FIG. 1, VB=0V is more stable than 110V. on the other hand,
The perpendicular magnetic anisotropy energy Ku is 0V for -toov.
Other experimental data (not shown) suggest that it is much more stable. The layered membrane according to the invention can stabilize Ku.

さらに、バイアススパッタ法ではバイアス値を大きくす
ると基板温度が上昇するが、本発明のように0Vと一1
00vを反復することにより基板温度の上昇を防止する
ことができ、プラスチック基板を使用することが可能と
なる。
Furthermore, in the bias sputtering method, when the bias value is increased, the substrate temperature increases;
By repeating 00V, it is possible to prevent the substrate temperature from increasing and it is possible to use a plastic substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の層状膜の一部(図では隣接する2層の
み)における異る元素(図では2種類)の分布の例を示
す概念図。 第2図、第3図は基板バイアス値(VB)を変えた場合
の記録膜のM s(emu/ cm3)とr−1c(K
 Oe)の大気放置時間(hr)に対する変化を示す図
。 第4図は、本発明による層状膜の2.5MeVのHe+
による後方散乱強度スペクトル。 第5図は、本発明の特殊実施例による層状膜のHc”、
  Ku(xi Oo−5er/cc)、 Ms(em
u/cc)を層数を膜軸にして示した図。
FIG. 1 is a conceptual diagram showing an example of the distribution of different elements (two types in the figure) in a part of the layered film of the present invention (in the figure, only two adjacent layers). Figures 2 and 3 show the M s (emu/cm3) and r-1c (K) of the recording film when the substrate bias value (VB) is changed.
FIG. 3 is a diagram showing changes in Oe) with respect to air exposure time (hr). FIG. 4 shows a 2.5 MeV He+ layered film according to the present invention.
backscattered intensity spectrum. FIG. 5 shows a layered film Hc” according to a special embodiment of the present invention;
Ku(xi Oo-5er/cc), Ms(em
FIG. 2 is a diagram showing the number of layers (u/cc) on the film axis.

Claims (1)

【特許請求の範囲】 1)基板と、この基板上に形成された希土類−遷移金属
合金薄膜層とで構成され、上記希土類金属と遷移金属と
が原子数%比率で垂直磁化膜となる組成比になっている
光磁気記録媒体において、上記薄膜層が希土類−遷移金
属の2層以上の層状膜により構成され、この層状膜の隣
接する2層においてその一方の層の希土類金属と遷移金
属の原子数%組成比がその他方の層の原子数%組成比と
異っていることを特徴とする光磁気記録媒体。 2)上記層状膜の各々の層の厚さが600Å以下である
ことを特徴とする特許請求の範囲第1項記載の光磁気記
録媒体。 3)上記遷移金属がコバルトであることを特徴とする特
許請求の範囲第1項記載の光磁気記録媒体。 4)上記希土類金属がテルビウムであり、遷移金属がコ
バルトであることを特徴とする特許請求の範囲第1項記
載の光磁気記録媒体。 5)基板上に垂直磁化膜となる原子数%比率で希土類金
属と遷移金属との合金薄膜をスパッタリングによって形
成して光磁気記録媒体を製造する方法において、上記ス
パッタリング操作条件を時間的に変化させることによっ
て隣接する2層において上記原子数%組成比が異るよう
にして、組成比の異る少なくとも2層以上の層状膜によ
って上記垂直磁化膜を構成するようにしたことを特徴と
する方法。 6)上記のスパッタ操作条件の時間的に変化させること
が基板に負のバイアスを加える時間およびバイアス値を
時間的に変化させること、および/またはスパッター装
置内の不活性ガスの分圧を時間的に変化させることによ
って達成されることを特徴とする特許請求の範囲第5項
記載の方法。 7)上記層状膜の各々の層の厚さが600Å以下である
ことを特徴とする特許請求の範囲第5項記載の方法。 8)上記遷移金属がコバルトであることを特徴とする特
許請求の範囲第5項記載の方法。 9)上記遷移金属がコバルトであり、希土類金属がテル
ビウムであり、上記スパッタリング操作条件の時間的変
化が基板に加える負のバイアス値の時間的変化であるこ
とを特徴とする特許請求の範囲第5項記載の方法。 10)上記のバイアス値の時間的変化が0Vと−100
Vとの間を1分毎に交互に反復することにより達成され
ることを特徴とする特許請求の範囲第9項記載の方法。 11)上記の反復操作を少なくとも2回以上行うことを
特徴とする特許請求の範囲第10項記載の方法。
[Scope of Claims] 1) A composition comprising a substrate and a rare earth-transition metal alloy thin film layer formed on the substrate, the rare earth metal and the transition metal having a composition ratio of atomic % to form a perpendicularly magnetized film. In the magneto-optical recording medium, the thin film layer is composed of a layered film of two or more rare earth metal-transition metal layers, and in two adjacent layers of the layered film, atoms of the rare earth metal and the transition metal in one layer are 1. A magneto-optical recording medium characterized in that a composition ratio of several % is different from a composition ratio of several atomic % of the other layer. 2) The magneto-optical recording medium according to claim 1, wherein each layer of the layered film has a thickness of 600 Å or less. 3) The magneto-optical recording medium according to claim 1, wherein the transition metal is cobalt. 4) The magneto-optical recording medium according to claim 1, wherein the rare earth metal is terbium and the transition metal is cobalt. 5) In a method of manufacturing a magneto-optical recording medium by forming by sputtering a thin alloy film of a rare earth metal and a transition metal at a ratio of several atomic percentages to form a perpendicularly magnetized film on a substrate, the sputtering operating conditions are temporally varied. A method characterized in that the perpendicularly magnetized film is constituted by a layered film of at least two or more layers having different composition ratios, such that the atomic percentage composition ratios are different between two adjacent layers. 6) Temporally changing the sputtering operating conditions described above may include temporally changing the time and bias value for applying a negative bias to the substrate, and/or temporally changing the partial pressure of the inert gas in the sputtering apparatus. 6. The method according to claim 5, characterized in that the method is achieved by changing. 7) The method according to claim 5, wherein each layer of the layered film has a thickness of 600 Å or less. 8) The method according to claim 5, wherein the transition metal is cobalt. 9) Claim 5, wherein the transition metal is cobalt, the rare earth metal is terbium, and the temporal change in the sputtering operating conditions is a temporal change in the negative bias value applied to the substrate. The method described in section. 10) The time change of the above bias value is 0V and -100
10. A method according to claim 9, characterized in that the method is achieved by repeating alternately between V and V every minute. 11) The method according to claim 10, characterized in that the above repetitive operation is performed at least twice.
JP26256585A 1985-11-25 1985-11-25 Laminar photomagnetic recording medium and its production Pending JPS62137753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26256585A JPS62137753A (en) 1985-11-25 1985-11-25 Laminar photomagnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26256585A JPS62137753A (en) 1985-11-25 1985-11-25 Laminar photomagnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPS62137753A true JPS62137753A (en) 1987-06-20

Family

ID=17377569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26256585A Pending JPS62137753A (en) 1985-11-25 1985-11-25 Laminar photomagnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPS62137753A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217247A (en) * 1983-05-25 1984-12-07 Sony Corp Photomagnetic recording medium and its manufacture
JPS60171652A (en) * 1984-02-16 1985-09-05 Nippon Kogaku Kk <Nikon> Photomagnetic recording medium for compensation point writing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217247A (en) * 1983-05-25 1984-12-07 Sony Corp Photomagnetic recording medium and its manufacture
JPS60171652A (en) * 1984-02-16 1985-09-05 Nippon Kogaku Kk <Nikon> Photomagnetic recording medium for compensation point writing

Similar Documents

Publication Publication Date Title
Weller et al. Extremely high-density longitudinal magnetic recording media
US5792564A (en) Perpendicular recording medium and magnetic recording apparatus
KR930004442B1 (en) Magentic recording medium
US6753072B1 (en) Multilayer-based magnetic media with hard ferromagnetic, anti-ferromagnetic, and soft ferromagnetic layers
Aoyama et al. Fabrication and properties of CoPt patterned media with perpendicular magnetic anisotropy
JPH04102223A (en) Magnetic recording medium and production thereof and magnetic recorder
JP4319059B2 (en) Magnetic film forming method, magnetic pattern forming method, and magnetic recording medium manufacturing method
JPS62137753A (en) Laminar photomagnetic recording medium and its production
JPH05315135A (en) Co/ni artificial lattice film, magnetoresistance element, magnetic head and magnetic recording medium, and manufacture of co/ni artificial lattice film
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
EP0169928A1 (en) Magnetic recording medium
KR100306975B1 (en) Magnetic material containing metastable alloy and its manufacturing method
JP2005223178A (en) Process for forming magnetic film, process for forming magnetic pattern, and process for producing magnetic recording medium
JPS60173746A (en) Photoelectromagnetic recording medium
Lodder Magnetic Properties and Preparation of Thin-Film Magnetic Recording Media
JP3069135B2 (en) Method for manufacturing magneto-optical recording medium
JPH0380445A (en) Magneto-optical recording medium
Lodder Information Storage Material, Magnetic
JPH10501090A (en) Magneto-optical recording medium having a magneto-optical film layer separated by yttrium oxide
JPH1174123A (en) Magneto-resistance effect film
JP2824998B2 (en) Magnetic film
JPS62252546A (en) Magneto-optical recording medium
Buschow et al. High-Density Recording Materials
Simion et al. Epitaxial Magnetic Garnet Thin Films and Heterostructures by Pulsed Laser Deposition
Delaunay et al. Elongated prolate ellipsoid CoPt nanocrystals embedded in graphite-like C magnetic thin films