JPS62137605A - Method and device for heat treatment - Google Patents

Method and device for heat treatment

Info

Publication number
JPS62137605A
JPS62137605A JP60276986A JP27698685A JPS62137605A JP S62137605 A JPS62137605 A JP S62137605A JP 60276986 A JP60276986 A JP 60276986A JP 27698685 A JP27698685 A JP 27698685A JP S62137605 A JPS62137605 A JP S62137605A
Authority
JP
Japan
Prior art keywords
temperature
power
heating furnace
heat treatment
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60276986A
Other languages
Japanese (ja)
Inventor
Takatoshi Chiba
隆俊 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP60276986A priority Critical patent/JPS62137605A/en
Priority to KR1019860009394A priority patent/KR910002596B1/en
Priority to US06/932,223 priority patent/US4761538A/en
Publication of JPS62137605A publication Critical patent/JPS62137605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To improve responsiveness by obtaining a temperature control signal including proportion, integration and differentiation components from the difference between a detected temperature value and a set one, and executing four operations and correcting it so as to input to a power controller. CONSTITUTION:A heat treatment device consists of a heating furnace 11, a temperature detector 12, a temperature setter 13, a temperature controller 14 by proportion, integration and differentiation (PID) controls, the power controller 15 and a heating means 17. At that time, a fourth power corrector 18 is installed at the subsequent stage of the temperature controller 14, and an output B obtained by raising to fourth power to the output signal A of the temperature controller 14 is inputted to the power controller 15. Thus a temperature control signal A is obtained from a temperature difference DELTAT between a target temperature To and a temperature Tr in the heating furnace 11. Then electric power is controlled according to a control signal B to which the four operation corrector 18 applies four operations. If the power controller 15 gives electric power in proportion to the control signal B to the heating means 17, the temperature Tr of an object to be heated in the heating furnace 11 becomes a temperature in proportion to the temperature control signal A.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体基板等(以下「ウェハ」と称す。)
の被熱処理体を加熱して、熱処理を行うようにする熱処
理方法及び装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to semiconductor substrates, etc. (hereinafter referred to as "wafers").
The present invention relates to a heat treatment method and apparatus for heating an object to be heat treated to perform heat treatment.

特に、ウェハを加熱炉内に搬入し、光照射により所要の
温度の熱処理を施す熱処理方法及び装置に関する。
In particular, the present invention relates to a heat treatment method and apparatus in which a wafer is carried into a heating furnace and subjected to heat treatment at a required temperature by light irradiation.

〔従来の技術〕[Conventional technology]

一般にウェハの熱処理プロセスは、イオン注入の後処理
として、イオン注入層を活性化し、均一な組成とするた
めの熱処理を始め、シリコン膜を安定化させるための熱
処理、オーミックコンタクトとするための熱処理等、非
常に広範囲にわたって利用されている。
Generally, the wafer heat treatment process includes heat treatment to activate the ion implantation layer and make the composition uniform, heat treatment to stabilize the silicon film, heat treatment to form ohmic contact, etc. as a post-treatment of ion implantation. , is used very widely.

これらの熱処理のいずれかにおいても、ウェハの表面に
、均一で、かつ所要の温度上昇特性(目標温度)をもっ
て、急速な加熱を施す必要がある。
In any of these heat treatments, it is necessary to uniformly and rapidly heat the surface of the wafer with a required temperature increase characteristic (target temperature).

そこでこの加熱手段としては、ハロゲンランプ等の加熱
用光源を使用して、ウェハに対する加熱光源からの光照
射を、均一、かつ急速に、しかも、予め定められた所望
の温度上昇特性をもって制御することが必要となる。
Therefore, as this heating means, a heating light source such as a halogen lamp is used, and the light irradiation from the heating light source to the wafer is controlled uniformly and rapidly, and with a predetermined desired temperature increase characteristic. Is required.

従来の熱処理炉の温度制御装置としては、特開昭53−
120075号公報に記載されているように、ウェハを
収納する熱処理炉の温度に相当する電圧と、所定の基準
電圧とを比較し、その誤差信号を演算装置で演算処理し
1次に、出力装置で電力増幅して熱処理炉の加熱手段に
加え、熱処理炉を所望の温度に制御する装置が開示され
ている。
As a conventional temperature control device for a heat treatment furnace, there is a
As described in Japanese Patent No. 120075, a voltage corresponding to the temperature of the heat treatment furnace in which the wafer is stored is compared with a predetermined reference voltage, and the error signal is processed by an arithmetic device. Disclosed is an apparatus for amplifying the power and controlling the temperature of the heat treatment furnace to a desired temperature in addition to the heating means of the heat treatment furnace.

また、従来の加熱炉内のウェハを、均一に光照射にて加
熱する方法として、例えば本出願人が特願昭59−10
5571号明細書に開示しているように、ウェハを加熱
炉内に搬入する前に、記憶装置にあらかじめ記憶させて
おいた光源への入力を制御するための出力プログラムに
基づいて、炉内を予備加熱しておき、ウェハの加熱炉内
への搬入を、所定温度範囲内で行うようにした熱処理方
法がある。
Furthermore, as a method of uniformly heating a wafer in a conventional heating furnace by irradiating light, the present applicant has proposed, for example, a patent application published in
As disclosed in the specification of No. 5571, before carrying the wafer into the heating furnace, the inside of the furnace is controlled based on an output program for controlling the input to the light source, which is stored in advance in the storage device. There is a heat treatment method in which the wafer is preheated and then carried into a heating furnace within a predetermined temperature range.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、例えば特願昭59−105571号明細書におい
て本出願人が開示しているように、加熱炉内の温度と、
所定の設定温度とを比較し、その比較した結果によって
、加熱手段への入力を、比例(P)、積分(I)、微分
(D)等のいずれか、もしくはそれらの組み合せによる
制御(以下PID制御と称する)をしていた。
Conventionally, as disclosed by the present applicant in Japanese Patent Application No. 59-105571, for example, the temperature inside the heating furnace,
The temperature is compared with a predetermined set temperature, and depending on the comparison result, the input to the heating means is controlled by proportional (P), integral (I), differential (D), etc., or a combination thereof (hereinafter referred to as PID). control).

第11図は、従来の温度制御方法の概要を示すブロック
図であり、第12図は、第11図の温度制御方法に、よ
る加熱炉内の温度及び加熱手段たる光源への注入電力等
の時間的変化を示している。
FIG. 11 is a block diagram showing an outline of a conventional temperature control method, and FIG. 12 is a block diagram showing an outline of the conventional temperature control method, and FIG. It shows changes over time.

加熱炉(1)内の所定の位置での、温度検知器(2)に
より検出した温度(Tr″)を、第12図の曲線〔■〕
で示し、第11図の温度設定器(3)にあらかじめ設定
した所定の温度上昇特性をもつ温度(目標温度)(To
)変化を、第12図の曲線(1)とする。
The temperature (Tr″) detected by the temperature detector (2) at a predetermined position in the heating furnace (1) is measured by the curve [■] in Figure 12.
The temperature (target temperature) (To
) change is represented by curve (1) in FIG.

加熱開始からの経過時間(1)における加熱炉(1)内
の温度(Tr’)と、所定の設定温度(To)との差を
、温度制御器(4)にてPID制御し、その出力信号(
A)をもって、電力制御器(5)を制御し、加熱手段(
7)へ注入される電力CP)を制御する。
The difference between the temperature (Tr') in the heating furnace (1) at the elapsed time (1) from the start of heating and a predetermined set temperature (To) is PID-controlled by the temperature controller (4), and its output is signal(
A) controls the power controller (5) and the heating means (
7) controls the power CP) injected into the

このときの温度制御器(4)の出力(A)及び加熱手段
(7)の入力電力(P)の変化を、第12図の曲線(m
)に示す。
The changes in the output (A) of the temperature controller (4) and the input power (P) of the heating means (7) at this time are expressed by the curve (m
).

加熱手段(7)の入力電力(P)の効果が、加熱炉(1
)内の温度(Tr’)となり、温度検知器(2)により
検出されて、温度制御器(4)へフィードバックされる
The effect of the input power (P) of the heating means (7) is
), which is detected by the temperature sensor (2) and fed back to the temperature controller (4).

この従来の温度制御におけるPID制御方式は、第12
図のように、例えば、数秒間で200〜300℃から、
1000℃以上の範囲で上昇させるような急速な温度変
化に対しては、加熱の追従が適応不充分であった。
The PID control method in this conventional temperature control is
As shown in the figure, for example, from 200 to 300°C in a few seconds,
The heating response was insufficient for rapid temperature changes such as increases in the range of 1000° C. or higher.

また、PID制御における偏差値に対する比例係数(K
工)、積分係数(K2)又は微分係数(K、)は、一般
的に、プロセスの特性に合わせて最適値に調整されるた
め、目標温度が常に一定の場合、又は、加熱手段の入力
に対し、目標温度が一次比例的関係で変化する場合には
、充分な制御が可能であるが、被加熱物の熱平衡時の温
度と、加熱手段から被加熱物への放射照度は、−次比例
的関係でなく、後述のように4次比例的関係であるため
、従来のPID制御のままでは、比例、積分、微分の各
係数を一意に定めて、低温域から高温域にわたるいかな
る温度に対しても、最適な制御特性を得ることは不可能
であった。
In addition, the proportional coefficient (K
The integral coefficient (K2), integral coefficient (K2), or differential coefficient (K, ) is generally adjusted to the optimum value according to the characteristics of the process. On the other hand, if the target temperature changes in a linear proportional relationship, sufficient control is possible, but the temperature at thermal equilibrium of the heated object and the irradiance from the heating means to the heated object change in a -order proportional It is not a linear relationship, but a fourth-order proportional relationship as described below. Therefore, with conventional PID control, the proportional, integral, and differential coefficients must be uniquely determined, and the relationship can be controlled for any temperature from low to high temperatures. However, it was not possible to obtain optimal control characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、放射加熱手段を有する加熱炉内に被加熱物を
収納して、当該加熱炉内の温度を温度検知手段にて検出
し、加熱炉の放射加熱手段に注入するエネルギーを制御
する熱処理方法において、温度検知手段の出力値(温度
)と、予め設定した加熱炉内の温度との差の値に基づい
て、加熱エネルギーの注入景を制御する比例、積分、微
分成分を含む温度制御信号を求め、 前記温度制御信号を所要累乗補正し、必要に応じてこの
値に前記温度制御信号の微分成分を加算した信号に基づ
いて、加熱炉の放射加熱手段に注入するエネルギーを制
御するようにしている。
The present invention provides heat treatment in which an object to be heated is housed in a heating furnace having a radiation heating means, the temperature inside the heating furnace is detected by a temperature detection means, and the energy injected into the radiation heating means of the heating furnace is controlled. In the method, a temperature control signal including proportional, integral, and differential components that controls the injection pattern of heating energy based on the value of the difference between the output value (temperature) of the temperature detection means and the preset temperature in the heating furnace. The temperature control signal is corrected to a required power, and the energy injected into the radiant heating means of the heating furnace is controlled based on a signal obtained by adding a differential component of the temperature control signal to this value as necessary. ing.

またこの発明は、上記の方法を実現するために、内部に
被加熱物を収納する加熱炉と。
In addition, the present invention provides a heating furnace in which an object to be heated is housed in order to realize the above method.

加熱炉に配設され、被加熱物に放射エネルギーを与えて
、それを加熱する放射加熱手段と、加熱炉内適所の温度
を検知する温度検知手段と。
A radiant heating means that is disposed in the heating furnace and applies radiant energy to an object to be heated to heat it; and a temperature detection means that detects the temperature at a suitable location within the heating furnace.

温度検知手段の出力値と、加熱目標温度に対応する信号
との差の値によって、比例、積分、成分を含む温度制御
信号を演算する温度制御器と、前記温度制御信号を所要
累乗する累乗補正器と、必要に応じて、前記累乗補正器
の出力値と温度制御信号の微分成分値とを加算する加算
器とを設け、 累乗補正器又は加算器の出力信号をエネルギー注入制御
器に注入するようにした熱処理装置にも関する。
A temperature controller that calculates a temperature control signal including proportional, integral, and component signals based on the difference between the output value of the temperature detection means and the signal corresponding to the heating target temperature, and a power correction that raises the temperature control signal to a required power. and, if necessary, an adder that adds the output value of the power corrector and the differential component value of the temperature control signal, and injects the output signal of the power corrector or the adder to the energy injection controller. The present invention also relates to a heat treatment apparatus having such a structure.

〔作   用〕[For production]

加熱炉内の所定の位置の温度を、温度検知手段にて検出
した値と、予め所望の温度変化を設定した値との差によ
って、比例、積分、微分成分を含む温度制御信号を求め
、この温度制御信号を四乗補正し、必要に応じて四乗補
正成分と微分成分とを加算して、電力制御器に入力させ
たので、予め設定した所望の温度変化により近似して追
従する加熱炉内の温度変化を実現することができる。
A temperature control signal containing proportional, integral, and differential components is obtained from the difference between the temperature at a predetermined position in the heating furnace detected by the temperature detection means and the value set in advance for the desired temperature change. The temperature control signal is corrected to the fourth power, the fourth power correction component and the differential component are added as necessary, and the result is input to the power controller, so that the heating furnace can approximate and follow the desired temperature change set in advance. Temperature changes within can be realized.

〔実 施 例〕〔Example〕

(実施例の基本原理) まず、この発明の実施例により、所期の目的を達成する
ことができる理由と思われるところを説明する。
(Basic Principle of the Embodiments) First, the reasons why the desired objectives can be achieved by the embodiments of the present invention will be explained.

ステファンボルツマンの法則、即ち絶対温度T(K)の
黒体の表面の単位面積当たり、単位時間に放出される放
射エネルギーの総量Sは、絶対温度T(K)の四乗に比
例するという事実により、放射加熱において、被加熱物
体が平板状で、その表裏両面より放射加熱を受けるとき
、被加熱物体内に投射された放射エネルギーが全て吸収
されたとすると、比重(ρ)、厚さくd)、比熱(c)
の平板のt秒後における熱平衡状態dθ/dt=o状態
での被加熱物温度0(K)は。
Due to Stefan Boltzmann's law, that is, the total amount of radiant energy S emitted per unit time per unit area of the surface of a black body at absolute temperature T (K) is proportional to the fourth power of the absolute temperature T (K). In radiation heating, when the object to be heated is a flat plate and receives radiation heating from both the front and back surfaces, if all the radiant energy projected into the object to be heated is absorbed, the specific gravity (ρ), thickness d), Specific heat (c)
The temperature of the heated object in the thermal equilibrium state dθ/dt=o state after t seconds of the flat plate is 0 (K).

pda’−’=t l−2EaO’+2εage’ =
(1)t で表わしうる。
pda'-'=tl-2EaO'+2εage'=
(1) It can be expressed as t.

■は、放射熱源による被加熱物の単位面積当たりの放射
照度、εは、被加熱物体の放射率、Oeは周囲温度、σ
は定数である。
■ is the irradiance per unit area of the heated object by the radiant heat source, ε is the emissivity of the heated object, Oe is the ambient temperature, σ
is a constant.

ここで、(1)式の右辺第3項は、加熱炉の炉壁など炉
内雰囲気からの列対エネルギーであるが、この炉壁など
を、被加熱物体の湿度に比べて充分に低い温度(0’>
>Oe’)として近似させ、それを放射照度(I)につ
いて解くと、 ■=L±旦リー+すσ04    ・・・・・・(2)
ε    dt となる。
Here, the third term on the right side of equation (1) is the column versus energy from the atmosphere inside the furnace, such as the furnace wall of the heating furnace. (0'>
>Oe') and solve it for irradiance (I), ■=L±dan Lee+Sσ04...(2)
ε dt .

即ち、放射照度(I)は、被加熱物の温度θ(K)の四
乗と、θ(K)の時間微分dθ/dtとの和に比例する
ことが判る。
That is, it can be seen that the irradiance (I) is proportional to the sum of the temperature θ(K) of the heated object to the fourth power and the time differential dθ/dt of θ(K).

また、電熱ヒーターやタングステンランプの様な放射熱
源では、その放射束のエネルギー密度は、印加した電力
にほぼ比例するから、その比例定数を(r)、印加する
電力を(P)とすると、I=rPとなり、(2)式は、 P=L±二リー十す工θ・   ・・・・・・(3)r
ε    dt     r となる。
In addition, in a radiant heat source such as an electric heater or a tungsten lamp, the energy density of its radiant flux is approximately proportional to the applied power, so if the proportionality constant is (r) and the applied power is (P), I = rP, and the formula (2) is: P = L ± 2 Li + S θ... (3) r
ε dt r .

従来技術の問題点である、(あらかじめ設定した所定の
温度上昇特性をもつ温度)目標温度への追従性の低さは
、この被加熱物の表面温度θ(K)と、被加熱物に照射
される放射エネルギーとが、−次比例的関係で求められ
ていたからである。
The problem with the conventional technology is the poor followability to the target temperature (temperature with preset temperature rise characteristics), which is due to the surface temperature θ (K) of the heated object and the irradiation on the heated object. This is because the radiant energy emitted by the radiant energy was calculated using a -th order proportional relationship.

その問題点を解決するための手段は、(3)式右辺第2
項に基づいて、θを温度制御器の出力信号(A)とし、
これを四乗する四乗補正器を、温度制御器と電力制御ユ
ニット間に挿入することである。
The means to solve this problem is the second equation on the right side of equation (3).
Based on the term, let θ be the output signal (A) of the temperature controller,
A fourth power corrector that raises this to the fourth power is inserted between the temperature controller and the power control unit.

加熱炉内の温度(Tr’)と、設定温度(To)との差
ΔTは、 ΔT = To−Tr’          −−(4
)となり、温度制御器の出力(A)は。
The difference ΔT between the temperature in the heating furnace (Tr') and the set temperature (To) is ΔT = To-Tr' --(4
), and the output (A) of the temperature controller is.

と表わされる。但し、には係数。It is expressed as However, is a coefficient.

(5)式において、熱平衡状態においては、微分成分は
零となる。差成分と、積分成分の和に相当する信号を(
3)式の右辺第2項に相当させると、(3)式において
も、熱平衡状態においては微分成分は零となる。それゆ
え、(5)式の比例、積分成分を一部のままでは、従来
と同じであるから、(3)式の右辺第2項の0にみたて
て、四乗したのである。
In equation (5), the differential component becomes zero in a state of thermal equilibrium. The signal corresponding to the sum of the difference component and the integral component is expressed as (
Corresponding to the second term on the right side of equation (3), the differential component becomes zero in the thermal equilibrium state also in equation (3). Therefore, if some of the proportional and integral components in equation (5) are left unchanged, they are the same as before, so they were treated as 0 in the second term on the right side of equation (3) and raised to the fourth power.

なお、(3)式右辺第1項は、被加熱物の温度変化に応
じた温度変化に係数をもって変動するが。
Note that the first term on the right side of equation (3) varies with a coefficient depending on the temperature change according to the temperature change of the object to be heated.

一般にこの温度係数変動は、(3)式右辺第2項に比し
て小さい。
Generally, this temperature coefficient variation is smaller than the second term on the right side of equation (3).

それゆえ、(3)式右辺第1項における微分成分につい
ても、制御信号の一部とし、四乗補正器からの出力と加
算した信号を電力制御器の入力とすることにより、更に
応答特性を改善することができる。
Therefore, the response characteristics can be further improved by making the differential component in the first term on the right side of equation (3) part of the control signal, and using the signal added with the output from the fourth power corrector as the input to the power controller. It can be improved.

(第1実施例) 第1図は、この発明の第1実施例を示すもので、加熱炉
(11)、温度検知器(12)、温度設定器(13) 
(First Embodiment) FIG. 1 shows a first embodiment of the present invention, which includes a heating furnace (11), a temperature detector (12), a temperature setting device (13).
.

比例、積分、微分(P I D)制御による温度制御器
(14)、電力制御器(15)、加熱手段(17)は、
第11図の従来のものと同じである。
A temperature controller (14), a power controller (15), and a heating means (17) using proportional, integral, and differential (PID) control are as follows:
This is the same as the conventional one shown in FIG.

第1図(a)は、温度制御器(14)が微分成分を分離
できないものを使用する場合を示し、第1図(b)は、
温度制御器(14)が微分成分を分離できる場合を示し
ている。
FIG. 1(a) shows a case where a temperature controller (14) that cannot separate differential components is used, and FIG. 1(b) shows a case in which a temperature controller (14) that cannot separate differential components is used.
A case is shown in which the temperature controller (14) can separate differential components.

この実施例においては、温度制御器(14)の後段に四
乗補正器(18)が設けられ、この四乗補正器(18)
は、温度制御器(14)の出力信号(A)を四乗した出
力 B=C0A4     ・・・・(6)(但しCは係数
以降同じ)をエネルギー注入制御器、すなわち、電力制
御器(15)へ入力している。
In this embodiment, a fourth power corrector (18) is provided after the temperature controller (14), and this fourth power corrector (18)
is the output signal (A) of the temperature controller (14) raised to the fourth power B=C0A4 (6) (where C is the same after the coefficient) as the energy injection controller, that is, the power controller (15 ).

この第1図の温度制御装置によって得られる加熱炉(1
1)内温度(Tr)及び加熱手段(17)の電力(W)
の時間的変化を、第2図に示す。
The heating furnace (1
1) Internal temperature (Tr) and power (W) of heating means (17)
Figure 2 shows the temporal changes in .

目標温度(To)の曲線[1)に対し、加熱炉(11)
内の所定の位置の温度(Tr)の曲線(n)は、従来の
場合の第12図に比較し、応答性が速く、低温域から高
温域にわたり、より安定している。
For the target temperature (To) curve [1], the heating furnace (11)
The curve (n) of the temperature (Tr) at a predetermined position in FIG. 12 has a faster response and is more stable from a low temperature range to a high temperature range, compared to the conventional case shown in FIG.

これは、常に、適切な放射エネルギーが被加熱物に注入
されることにより、PID制御が最適にされていること
を示している。
This shows that PID control is optimized by always injecting appropriate radiant energy into the heated object.

温度制御器(14)の出力信号(A)と加熱炉(11)
内の温度(Tr)との関係を、従来方式と本発明と比較
して説明すると、従来の第11図の場合は、加熱炉(1
)内の温度(Tr)と、設定温度(TO)との差ΔTに
より、温度制御器(4)にて、PID制御に基づいて温
度制御信号(A)を出す。
Output signal (A) of temperature controller (14) and heating furnace (11)
Comparing and explaining the relationship between the temperature (Tr) in the heating furnace (1
Based on the difference ΔT between the temperature (Tr) in ) and the set temperature (TO), the temperature controller (4) outputs a temperature control signal (A) based on PID control.

この温度制御信号(A)により、電力(P)が制御され
る。加熱炉(1)の加熱手段(7)に加えられるエネル
ギーPは、 P=C2A             ・・・・・・(
7)となる。
Power (P) is controlled by this temperature control signal (A). The energy P added to the heating means (7) of the heating furnace (1) is: P=C2A (
7).

0を温度Tr’に書き替えると、(3)式は、と書き替
えられる。
If 0 is replaced with temperature Tr', equation (3) can be rewritten as follows.

(8)式の右辺第1項はOとなり、加熱炉(1)内の温
度、特に熱平衡時の被加熱物の温度(Tr’)は、注入
エネルギー、すなわち電力(P)の四乗根に比例するこ
とから、 Tr’=C3P’          −(9)ここで
、 P=C2A          ・・・・・・(7)(
再掲)を代入すると、 T rl = C4Au          ・= −
(10)となり、第3図のように、温度制御信号の四乗
根に比例して、加熱炉(1)内における被加熱物の温度
(Tr’)が維持される。
The first term on the right side of equation (8) is O, and the temperature inside the heating furnace (1), especially the temperature of the heated object at thermal equilibrium (Tr'), is the fourth root of the injected energy, that is, the electric power (P). Since it is proportional, Tr'=C3P'-(9) Here, P=C2A...(7)(
(reprinted), T rl = C4Au ・= −
(10), and as shown in FIG. 3, the temperature (Tr') of the object to be heated in the heating furnace (1) is maintained in proportion to the fourth root of the temperature control signal.

温度制御器(4)内にて、いかにPID制御をしても、
それによって電力を制御した結果、第3図のように温度
(Tr’)が変化するため、温度制御信号(A)が−次
式のままでは、低温から高温にわたる正確な加熱炉(1
)内の温度制御が困難であることを示している。
No matter how much PID control is done in the temperature controller (4),
As a result of controlling the electric power, the temperature (Tr') changes as shown in Figure 3. Therefore, if the temperature control signal (A) remains in the following equation, the heating furnace (1
) indicates that it is difficult to control the temperature within the range.

本発明では、第1図により、目標温度(To)と、加熱
炉(11)内温度(Tr)との温度差へTによって、温
度制御器(14)にて、例えば第(5)式により、温度
制御信号(A)を出力し、四乗補正器(18)にて温度
制御信号(A)を四乗し、制御信号(B)を出力し。
In the present invention, according to FIG. 1, the temperature difference between the target temperature (To) and the temperature inside the heating furnace (11) (Tr) is determined by the temperature controller (14), for example, by equation (5). , outputs a temperature control signal (A), squares the temperature control signal (A) in a fourth power corrector (18), and outputs a control signal (B).

その制御信号(B)によって電力(P)を制御する。Power (P) is controlled by the control signal (B).

電力制御器(15)にて、制御信号(B)に比例した電
力(P)を、加熱炉(11)の加熱手段(17)に与え
れば、電力(P)は、 P=C9B          ・・・・・・(11)
となり、加熱炉(11)内の被加熱物の温度(Tr)は
、Tr=C,P+A・・・・・・(12)であるから、
ここに、 (11)式及び(6)式を代入すれば、 Tr=C,A          −−(13)となる
If the power controller (15) supplies electric power (P) proportional to the control signal (B) to the heating means (17) of the heating furnace (11), the electric power (P) becomes P=C9B... ...(11)
Since the temperature (Tr) of the object to be heated in the heating furnace (11) is Tr=C, P+A (12),
By substituting equations (11) and (6) here, it becomes Tr=C,A --(13).

すなわち、加熱炉(11)内の被加熱物の温度(T r
 )は、温度制御信号(A)に比例し、第4図の特性の
如くなる。
That is, the temperature of the object to be heated in the heating furnace (11) (T r
) is proportional to the temperature control signal (A) and has the characteristics shown in FIG.

第4図は、従来の第3図に比べて、1次比例で温度制御
することができ、温度制御器(14)でのPID制御が
有効に適用できることを示している。
Fig. 4 shows that, compared to the conventional Fig. 3, the temperature can be controlled in linear proportion, and PID control using the temperature controller (14) can be effectively applied.

(第2実施例) 第5図(a)にこの発明の第2実施例を示す。(Second example) FIG. 5(a) shows a second embodiment of the invention.

これは、第1実施例に比べて、(2)式の温度変化分d
θ/dtを別扱いとするよう配慮したもので、そのため
に加算器(24)を追加しである。
Compared to the first embodiment, the temperature change d in equation (2) is
This is done so that θ/dt is treated separately, and an adder (24) is added for this purpose.

温度制御信号のうちの比例成分と積分成分の和を、四乗
補正器(18)にて四乗したものと、湿度制御信号のう
ちの微分成分とを、加算器(24)にて加算した信号を
、電力制御器(15)に入力させる。
The sum of the proportional component and the integral component of the temperature control signal is raised to the fourth power by a quadratic corrector (18), and the differential component of the humidity control signal is added by an adder (24). The signal is input to the power controller (15).

温度変化分を考慮したことにより、第1図(a)及び(
b)の実施例に比にで、温度制御の精度が向上する。
By taking into account the temperature change, Figures 1(a) and (
The accuracy of temperature control is improved compared to the embodiment b).

第5図(b)に示すように、微分成分のみが分離でき、
かつ比例成分、積分成分、微分成分が、和として出力さ
れる温度制御器(14)であってもよい。
As shown in Figure 5(b), only the differential components can be separated,
The temperature controller (14) may also output the proportional component, integral component, and differential component as a sum.

(第3実施例) 実施例の基本原理の説明において、(1)式から(2)
式の変換のときに、e’>>Oe’とし、Oe4の項を
省いた。
(Third Example) In the explanation of the basic principle of the example, from equation (1) to (2)
When converting the equation, e'>>Oe' was set, and the term Oe4 was omitted.

Oe4が省けないときは、(2)式は、I = 膣” 
+2 a 04−2 σθe ’  −(14)ε  
 dt となるべきである。
When Oe4 cannot be omitted, equation (2) becomes I = vagina.
+2 a 04-2 σθe' −(14)ε
It should be dt.

第6図は、(14)式右辺の第2項と第3項に基づいた
この発明の第3の実施例を示す。
FIG. 6 shows a third embodiment of the present invention based on the second and third terms on the right side of equation (14).

第6図は、第1図に示す第1実施例に対して、(14)
式右辺第3項に相当するものとして、β、設定器(22
)と減算器(21)を追加し、また、追加したことによ
るバランスを図るために、α設定器(20)と加算器(
I9)を追加したものである。
FIG. 6 shows (14) the first embodiment shown in FIG.
β, setting device (22
) and subtractor (21), and in order to balance the addition, α setter (20) and adder (21) were added.
I9) was added.

通常、加熱炉(11)の炉壁は、200〜;300℃に
予め加熱しである。
Usually, the furnace wall of the heating furnace (11) is preheated to 200 to 300°C.

この加熱しである炉内温度がOeに相当し、この温度に
応じて、2αDa’の値を13設定器(22)に設定し
て補正を行うようにする。
The temperature inside the furnace during this heating corresponds to Oe, and according to this temperature, the value of 2αDa' is set in the setting device 13 (22) to perform correction.

また、α設定器(20)については1本来は、予め加熱
している状態に相当するPID制御のうちの積分成分が
、温度制御器(14)がら出力されるべきであるが、加
熱開始前は、温度制御器(14)からは、零出力である
ようにするため、α設定器(2o)により、PID制御
のうちの積分成分を予め加えるようにしている。
Regarding the α setting device (20), originally, the integral component of the PID control corresponding to the preheating state should be output from the temperature controller (14), but the In order to ensure zero output from the temperature controller (14), an integral component of the PID control is added in advance by the α setting device (2o).

第6図(a)において、温度制御器(14)の出力Aは
、 A=に1ΔT 十KJΔTdt十に、     ・・・
(5)(再掲)dΔT dt であり、加算器(19)の出力A1は、A1=A+α であるから、四乗補正器(18)を経て。
In FIG. 6(a), the output A of the temperature controller (14) is A=1ΔT 10KJΔTdt0, .
(5) (Reposted) Since dΔT dt and the output A1 of the adder (19) is A1=A+α, it is passed through the fourth power corrector (18).

減算器(21)の出力(B2)は、 B、=C,(A+α)4−β となる。The output (B2) of the subtracter (21) is B, =C, (A+α)4-β becomes.

この信号B2を電力制御器(15)に与えるということ
は、第4図において、座標原点を(α、β)に移したこ
とに相当し、その様子を第7図に示す。
Giving this signal B2 to the power controller (15) corresponds to moving the coordinate origin to (α, β) in FIG. 4, and the situation is shown in FIG.

(第4実施例) 第8図は、この発明の第4実施例を示す。(Fourth example) FIG. 8 shows a fourth embodiment of the invention.

I =−Li−9−” + 2 a O’ −2t a
 (?e’−(14)(再掲)ε    dt (14)式における右辺第1項と第3項を無視したもの
が、第1図の第1の実施例であり、 (14)式におけ
る右辺第3項を無視したものが、第5図の第2の実施例
であり、また、(14)式における右辺第1項を無視し
たものが、第6図における第3の実施例である。
I =-Li-9-" + 2 a O' -2t a
(?e'-(14) (reprinted) ε dt The first embodiment of FIG. 1 ignores the first and third terms on the right-hand side in equation (14), and the right-hand side in equation (14) is The second embodiment shown in FIG. 5 ignores the third term, and the third embodiment shown in FIG. 6 ignores the first term on the right side of equation (14).

第4の実施例では、(14)式をほぼ満たすようにして
いる。
In the fourth embodiment, the equation (14) is almost satisfied.

第8図に示す第4実施例では、PID制御における微分
成分を、独立した信号(Ad)として温度制御器(14
)から出力し、比例成分と積分成分の和をもう1つの独
立した信号(Api)として出力している。
In the fourth embodiment shown in FIG. 8, the differential component in PID control is sent to the temperature controller (14
), and outputs the sum of the proportional component and the integral component as another independent signal (Api).

比例積分信号(A pi)は、第6図の制御信号と同様
、オフセット信号(α)をα設定器(20)にセットし
、加算器(19)にて加算し、四乗補正器(18)にて
四乗したのち、オフセット信号(β)をβ設定器(22
)にセットし、減算器(21)にて減算し、前記微分信
号(Ad)と加算器(24)にて加算して、電力制御器
(15)に入力させる。
Similar to the control signal in FIG. 6, the proportional integral signal (A pi) is generated by setting the offset signal (α) in the α setter (20), adding it in the adder (19), and adding it in the fourth power corrector (18). ), then the offset signal (β) is given to the β setter (22
), subtracted by a subtracter (21), added to the differential signal (Ad) by an adder (24), and inputted to the power controller (15).

この結果、微分成分の信号(Ad)は、被加熱物の温度
上昇率と目標温度(’ro)の温度上昇率を常に等しく
するように作用して、第1第2及び第3の実施例以上に
目標温度(To)に対する加熱温度(Tr)の追従性が
高まる。
As a result, the differential component signal (Ad) acts to always equalize the rate of temperature increase of the object to be heated and the rate of temperature increase of the target temperature ('ro). As described above, the followability of the heating temperature (Tr) to the target temperature (To) is improved.

第9図は、第4実施例における目標温度(TO)、被加
熱物表面温度(Tr)、電力CP)の関係を示す。
FIG. 9 shows the relationship among the target temperature (TO), the surface temperature of the heated object (Tr), and the electric power CP in the fourth embodiment.

また、応答性の良さと温度追従性の良さから、目標温度
(To)の温度上昇率を一定としだもの以外に、複雑な
温度変化をもつ目標温度(To)を予めプログラムして
、その目標温度に正確に追従させた熱処理も、容易に可
能となる。その様子を、第10図に示す。
In addition, due to its good responsiveness and temperature followability, in addition to setting the temperature increase rate of the target temperature (To) constant, it is also possible to program a target temperature (To) with complicated temperature changes in advance to set the target temperature (To). Heat treatment that accurately follows the temperature can also be easily performed. The situation is shown in FIG.

第10図(a)は、本発明の第4実施例における複雑な
温度変化に対する追従性のよさを示す特性図の一例を示
し、第12図(b)は、本発明の第1実施例における複
雑な温度変化に対する追従性のよさを示す特性図の一例
を示している。
FIG. 10(a) shows an example of a characteristic diagram showing good followability to complicated temperature changes in the fourth embodiment of the present invention, and FIG. 12(b) shows an example of a characteristic diagram in the fourth embodiment of the present invention. An example of a characteristic diagram showing good followability to complicated temperature changes is shown.

(変形例) 実施例における四乗補正器では、正確に4乗であっても
よいし、それに近い値であってもよい。
(Modification) The fourth power corrector in the embodiment may be exactly the fourth power, or may be a value close to it.

これは、フィードバック制御であるためである。This is because it is feedback control.

それゆえ、従来1乗であったものが、2乗、3乗、・・
・とすることにより、良い結果が得られ、4乗が、実験
結果において、最も良い特性を示した。
Therefore, what used to be 1st power becomes 2nd power, 3rd power, etc.
Good results were obtained by setting ・, and the fourth power showed the best characteristics in the experimental results.

〔効   果〕〔effect〕

(1)温度制御器の出力信号を累乗補正したものと、必
要に応じて微分成分を加算した信号と、加熱炉内の温度
とが一次比例的関係に、補正されているため、温度制御
器内のPID制御の比例係数、積分係数等が最適値に固
定的に設定して、いかなる温度設定値に対しても、又は
温度設定値が変動しても、充分に応答性の高い制御を行
うことができる。
(1) The output signal of the temperature controller is corrected to a power, the signal obtained by adding a differential component as necessary, and the temperature in the heating furnace are corrected to have a linear proportional relationship. The proportional coefficients, integral coefficients, etc. of the PID control within are fixedly set to optimal values, and control with sufficiently high responsiveness is achieved for any temperature set value or even if the temperature set value fluctuates. be able to.

(2)熱処理装置において、予め設定された目標温度上
昇特性に基づいて、温度制御を高精度に行うことができ
るため、品質並びに、生産性が。
(2) In the heat treatment equipment, temperature control can be performed with high precision based on preset target temperature rise characteristics, improving quality and productivity.

従来に比へて、極めて向上する。Significant improvement compared to the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係わる熱処理装置の第1実施例を示
す図、 第2図は、第1図の実施例による熱処理の加熱特性図、 第3図は、従来の温度制御信号と加熱温度の関係を示す
特性図、 第4図は、本発明に係わる温度制御信号と加熱温度の関
係を示す特性図。 第5図は、第2実施例を示す図。 第6図は、第3実施例を示す図。 第7図は、第4図の特性図の原点をシフトした図、 第8図は、第4実施例を示す図、 第9図は、第4実施例による加熱特性図、第10図(a
)は、本発明の第4実施例における複雑な温度変化に対
する追従性のよさを示す特性図。 第1O図(b)は、本発明の第1実施例における複雑な
温度変化に対する追従性のよさを示す特性図。 第11図は、熱処理装置の従来例図、 第12図は、第11図の従来装置による熱処理の加熱特
性図である。 (1)(11)加熱炉     (2)(12)温度検
知器(3) (13)温度設定器   (4)(14)
温度制御器(5)(15)′Ki力制御器   (7)
(17)加熱手段(18)四乗補正器     (19
)加算器(20)α設定器      (21)減算器
(22)β設定器      (24)加算器第9図 第10図(a) 6t3.。。、 第10図(b)
FIG. 1 is a diagram showing a first embodiment of a heat treatment apparatus according to the present invention, FIG. 2 is a heating characteristic diagram of heat treatment according to the embodiment of FIG. 1, and FIG. 3 is a diagram showing conventional temperature control signals and heating. A characteristic diagram showing the relationship between temperature. FIG. 4 is a characteristic diagram showing the relationship between the temperature control signal and heating temperature according to the present invention. FIG. 5 is a diagram showing a second embodiment. FIG. 6 is a diagram showing a third embodiment. 7 is a diagram in which the origin of the characteristic diagram in FIG. 4 has been shifted; FIG. 8 is a diagram showing the fourth embodiment; FIG. 9 is a heating characteristic diagram according to the fourth embodiment;
) is a characteristic diagram showing good followability to complicated temperature changes in the fourth embodiment of the present invention. FIG. 1O(b) is a characteristic diagram showing good followability to complicated temperature changes in the first embodiment of the present invention. FIG. 11 is a diagram of a conventional heat treatment apparatus, and FIG. 12 is a diagram of heating characteristics of heat treatment by the conventional apparatus of FIG. (1) (11) Heating furnace (2) (12) Temperature detector (3) (13) Temperature setting device (4) (14)
Temperature controller (5) (15)'Ki force controller (7)
(17) Heating means (18) Quadrature corrector (19
) Adder (20) α setter (21) Subtractor (22) β setter (24) Adder Figure 9 Figure 10 (a) 6t3. . . , Figure 10(b)

Claims (7)

【特許請求の範囲】[Claims] (1)放射加熱手段を有する加熱炉内に被加熱物を収納
して、前記加熱炉内の温度を温度検知手段にて検知し、
加熱炉の放射加熱手段に注入するエネルギーを制御する
熱処理方法において、 前記温度検知手段の出力値と、加熱炉内の予め定めた温
度変化に従う設定温度との差の値に基づく、比例、積分
、微分成分を含む温度制御信号を求め、 前記温度制御信号を所要累乗補正し、この補正値に基づ
いて、加熱炉の放射加熱手段に注入するエネルギーを制
御することを特徴とする熱処理方法。
(1) Storing an object to be heated in a heating furnace having a radiation heating means, and detecting the temperature inside the heating furnace with a temperature detection means,
In a heat treatment method for controlling energy injected into a radiation heating means of a heating furnace, proportional, integral, A heat treatment method comprising: obtaining a temperature control signal including a differential component; correcting the temperature control signal to a required power; and controlling energy injected into radiation heating means of a heating furnace based on the correction value.
(2)所要累乗補正した値に、温度検知手段の出力値と
設定温度との偏差の値の微分成分を加算した信号に基づ
いて、加熱炉の放射加熱手段に注入するエネルギーを制
御することを特徴とする特許請求の範囲第(1)項記載
の熱処理方法。
(2) Control the energy injected into the radiation heating means of the heating furnace based on a signal obtained by adding the differential component of the deviation between the output value of the temperature detection means and the set temperature to the value corrected to the required power. A heat treatment method according to claim (1).
(3)所要累乗補正を四乗補正とすることを特徴とする
特許請求の範囲第(1)項又は第(2)項に記載の熱処
理方法。
(3) The heat treatment method according to claim (1) or (2), wherein the required power correction is a fourth power correction.
(4)内部に被加熱物を収納する加熱炉と、加熱炉に配
設され、被加熱物に放射エネルギーを与えて、それを加
熱する放射加熱手段と、加熱炉内適所の温度を検知する
温度検知手段と、温度検知手段の出力値と、加熱目標温
度に対応する信号との差の値によって、比例、積分、微
分成分を含む温度制御信号を演算する温度制御器と、前
記温度制御信号を所要累乗する累乗補正器と、累乗補正
器の出力信号に基づいて、加熱手段に注入するエネルギ
ーを定めるエネルギー注入制御器とからなることを特徴
とする熱処理装置。
(4) A heating furnace that stores an object to be heated inside, a radiant heating means installed in the heating furnace that applies radiant energy to the object to heat it, and detects the temperature at an appropriate location within the heating furnace. a temperature detecting means; a temperature controller that calculates a temperature control signal including proportional, integral, and differential components based on a value of the difference between an output value of the temperature detecting means and a signal corresponding to a heating target temperature; and the temperature control signal. 1. A heat treatment apparatus comprising: a power corrector which raises the power to a required power; and an energy injection controller which determines the energy to be injected into the heating means based on the output signal of the power corrector.
(5)温度検知手段の出力値と、加熱目標温度に対応す
る信号との差の値の微分値を演算する微分演算手段と、
該微分演算手段の出力値と、累乗補正器の出力値とを加
算する加算器の出力信号を、エネルギー注入制御器に入
力するようにしたことを特徴とする特許請求の範囲第(
4)項に記載の熱処理装置。
(5) differential calculation means for calculating the differential value of the difference between the output value of the temperature detection means and the signal corresponding to the heating target temperature;
Claim 1, characterized in that the output signal of an adder for adding the output value of the differential calculation means and the output value of the power corrector is input to the energy injection controller.
4) The heat treatment apparatus described in item 4).
(6)温度制御器出力と定数との加算を行う加算器を設
け、加算器出力を累乗補正器に入力させ、累乗補正器の
出力と、前記とは別の定数との減算を行う減算器を設け
、減算器の出力をエネルギー注入制御器に入力するよう
にしたことを特徴とする特許請求の範囲第(4)項又は
第(5)項に記載の熱処理装置。
(6) An adder that adds the temperature controller output and a constant is provided, the output of the adder is input to a power corrector, and a subtractor that subtracts the output of the power corrector and a constant different from the above. The heat treatment apparatus according to claim 4 or 5, characterized in that the output of the subtracter is input to the energy injection controller.
(7)累乗補正器を、四乗補正器としたことを特徴とす
る特許請求の範囲第(4)項乃至第(6)項のいずれか
に記載の熱処理装置。
(7) The heat treatment apparatus according to any one of claims (4) to (6), wherein the power corrector is a fourth power corrector.
JP60276986A 1985-11-21 1985-12-11 Method and device for heat treatment Pending JPS62137605A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60276986A JPS62137605A (en) 1985-12-11 1985-12-11 Method and device for heat treatment
KR1019860009394A KR910002596B1 (en) 1985-11-21 1986-11-07 Method and apparatus for controlling the temperature of a radiantly heated object
US06/932,223 US4761538A (en) 1985-11-21 1986-11-18 Method and apparatus for controlling the temperature of a radiantly heated object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60276986A JPS62137605A (en) 1985-12-11 1985-12-11 Method and device for heat treatment

Publications (1)

Publication Number Publication Date
JPS62137605A true JPS62137605A (en) 1987-06-20

Family

ID=17577174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60276986A Pending JPS62137605A (en) 1985-11-21 1985-12-11 Method and device for heat treatment

Country Status (1)

Country Link
JP (1) JPS62137605A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202521A (en) * 1983-05-02 1984-11-16 Hitachi Ltd Temperature control method using lamp heating power supply

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202521A (en) * 1983-05-02 1984-11-16 Hitachi Ltd Temperature control method using lamp heating power supply

Similar Documents

Publication Publication Date Title
US6064799A (en) Method and apparatus for controlling the radial temperature gradient of a wafer while ramping the wafer temperature
KR910002596B1 (en) Method and apparatus for controlling the temperature of a radiantly heated object
US7906402B2 (en) Compensation techniques for substrate heating processes
JPH09199491A (en) Method and device for adjusting temperature
JPH0954619A (en) Temperature control method
US20230273596A1 (en) Control System For Adaptive Control Of A Thermal Processing System
JP2004063670A (en) Controller, controlling method, heat treating device and method therefor
JPS62137605A (en) Method and device for heat treatment
JP2004503101A (en) Method and apparatus for heat treating an object
JP2014070227A (en) Filming apparatus, and temperature control method and device for evaporation source of the filming apparatus
JP2002108408A (en) Method for controlling temperature of semiconductor manufacturing device
JPH0630027B2 (en) Method and device for controlling temperature in heat treatment apparatus for semiconductor substrate
JPH07201765A (en) Heat-treating device and heat treatment
US6169271B1 (en) Model based method for wafer temperature control in a thermal processing system for semiconductor manufacturing
JPH10144618A (en) Heater for manufacturing semiconductor device
JP2590709B2 (en) Photoresist oven
JPH05217930A (en) Wafer heating apparatus
JP4391734B2 (en) Manufacturing method of semiconductor device
JPH07200076A (en) Heat treatment device
JPH04183862A (en) Heater of base plate
JPH0552445B2 (en)
JP2006135126A (en) Heat treatment method of semiconductor substrate
JP2619044B2 (en) Temperature control device
JP2758793B2 (en) Lamp annealer
JP2001289714A (en) Temperature measurement method and measurement device of substrate and treating device of the substrate