JPS62134162A - Production of casting - Google Patents

Production of casting

Info

Publication number
JPS62134162A
JPS62134162A JP27286885A JP27286885A JPS62134162A JP S62134162 A JPS62134162 A JP S62134162A JP 27286885 A JP27286885 A JP 27286885A JP 27286885 A JP27286885 A JP 27286885A JP S62134162 A JPS62134162 A JP S62134162A
Authority
JP
Japan
Prior art keywords
casting
mold
melting
molten metal
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27286885A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamada
博之 山田
Toshiharu Noda
俊治 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP27286885A priority Critical patent/JPS62134162A/en
Publication of JPS62134162A publication Critical patent/JPS62134162A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable sound production of a casting which is thin-walled and has particularly intricate shape by melting an active metal such as titanium or the alloy thereof by a plasma arc in an inert gaseous atmosphere and pouring such molten metal into a casting mold the inside of which is sucked to a reduced pressure. CONSTITUTION:The inert gaseous atmosphere of Ar, etc., is maintained in a melting chamber 1. A plasma torch 2 and a water-cooled crucible 8 made of copper, etc. is connected to a power source to generate the plasma arc 20 to melt the raw material of the active metal or alloy in the crucible 8. Such molten metal is poured through a runner 18 to a product part 19 in a casting device. A negative pressure is applied to the casting mold 12 by a vacuum pump so that the molten metal is degassed and is spread to all the corners of the product part 19 prior to casting. The contamination with impurities during melting is eliminated by such constitution by which the production of even thin-walled and intricate casting at a high yield is possible and the casting mold is easily executed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はチタン等の活性な金属又は合金の鋳物を製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing castings of active metals or alloys, such as titanium.

(従来の技術及び問題点) チタン、ジルコニウム、ニオブ又はそれらの合金などの
活性金属又は合金は、非常に化学反応性が強く、高融点
であるために特殊な溶解炉を用いる必要があり、通常は
Ar等の不活性ガス或いは真空中にてアーク溶解され、
鋳塊を得ている。アーク溶解炉としては鋳塊の用途(加
工用・鋳造品用)によって異なるが、鋳造品の鋳込みに
は、消耗電極アーク或いは非消耗電極アークにより原料
を溶解し、水冷ルツボの内壁に沿ってスカル層を形成し
、このスカル層上で更に原料をアーク溶解し、得られた
溶湯を鋳型に注入して鋳物が得られる6鋳型材料として
は黒鉛等が使用されている。
(Prior Art and Problems) Active metals or alloys such as titanium, zirconium, niobium, or their alloys have very strong chemical reactivity and high melting points, so it is necessary to use a special melting furnace. is arc melted in an inert gas such as Ar or in vacuum,
Obtaining ingots. The type of arc melting furnace differs depending on the purpose of the ingot (processing or casting), but when casting a casting, the raw material is melted by a consumable electrode arc or a non-consumable electrode arc, and a skull is melted along the inner wall of a water-cooled crucible. A layer is formed, the raw material is further arc-melted on this skull layer, and the resulting molten metal is poured into a mold to obtain a casting.6 Graphite or the like is used as the mold material.

しかし、溶解すべきチタン等々の原料は非常に活性であ
るために、水冷ルツボ中で溶解されるが、消耗電極アー
ク等では十分なスーパーヒートが得られないため、薄物
鋳物又は薄肉で複雑な形状の鋳物をブローホール等の欠
陥なく健全に得ることが困難であった。
However, since the raw materials such as titanium to be melted are very active, they are melted in a water-cooled crucible, but sufficient superheat cannot be obtained with consumable electrode arcs, etc. It was difficult to obtain castings in good condition without defects such as blowholes.

(発明の目的) 本発明は、かへる従来技術の欠点を解消し、チタン等の
活性金属又は合金のg料を不純物汚染が少なく溶解でき
、かつ、薄肉で特に複雑な形状の鋳物を健全に製造でき
る方法を提供することを目的とするものである。
(Objective of the Invention) The present invention solves the drawbacks of the prior art, and is capable of melting active metals such as titanium or alloys with less contamination from impurities, and is capable of melting thin-walled castings with particularly complex shapes. The purpose of this invention is to provide a method that allows for the production of

(発明の構成) 上記目的を達成するため、本発明者らは、将に溶解法及
び鋳造法について種々検討した結果、プラズマアークを
熱源とするプラズマアーク溶解炉にてルツボ並び°に鋳
型に改良を加えることにより、可能であることを見い出
した。
(Structure of the Invention) In order to achieve the above object, the present inventors conducted various studies on melting methods and casting methods, and as a result, improved crucibles and molds in a plasma arc melting furnace that uses a plasma arc as a heat source. We discovered that this is possible by adding .

すなわち、本発明に係る活性全屈・合金鋳物の製造方法
は、不活性ガス雰囲気下で、水冷ルツボ中に装入した活
性全屈又は合金の原料をプラズマアークによって溶解し
、得られた溶湯を、背後から減圧吸引した鋳型中に注湯
することを特徴とするものである。
In other words, the method for producing active full-flex alloy castings according to the present invention involves melting raw materials for active full-flex alloy castings or alloys charged into a water-cooled crucible using a plasma arc in an inert gas atmosphere, and melting the resulting molten metal. This method is characterized by pouring the metal into the mold using vacuum suction from behind.

以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.

(実施例) 第1図及び第2図は本発明の実施に用いるプラズマ溶解
炉及び鋳型の一例を示す図である。
(Example) FIGS. 1 and 2 are diagrams showing an example of a plasma melting furnace and a mold used for carrying out the present invention.

プラズマ溶解炉の溶解チャンバ1には、その上部にプラ
ズマトーチ2と原料タンク3及びフィーダ4が設けられ
ている。プラズマトーチ2には、炉内をAr等の不活性
ガス雰囲気にするための不活性ガス導入口5が設けてあ
り、炉内ガスを置換するためのガス排出口6が溶解チャ
ンバ1に設けられている。なお、7はバルブである。フ
ィーダ4は原料タンク3の下部に配設され、原料を所定
、Gtずつ切り出して溶解チャンバ1内に載置したルツ
ボ8に装入できるようになっている。
A melting chamber 1 of a plasma melting furnace is provided with a plasma torch 2, a raw material tank 3, and a feeder 4 at its upper part. The plasma torch 2 is provided with an inert gas inlet 5 for creating an inert gas atmosphere such as Ar in the furnace, and the melting chamber 1 is provided with a gas outlet 6 for replacing the gas in the furnace. ing. Note that 7 is a valve. The feeder 4 is disposed at the lower part of the raw material tank 3, and is capable of cutting out the raw material in predetermined Gt portions and charging it into a crucible 8 placed in the melting chamber 1.

ルツボ8は銅製で水冷式とし、鋳込みのために傾倒可能
である。
The crucible 8 is made of copper and water-cooled, and can be tilted for casting.

ルツボ8の近傍下方には鋳型装置9が載置されている。A mold device 9 is placed near and below the crucible 8 .

第2図に示すように、鋳型装置9は、適宜材料からなる
耐火物10にてボックス11を構成し、このボックス1
1の内側に鋳型12が載置又は保持されている。鋳型1
2の背後でボックス11との間に形成される空間13は
底部開口14でのみ開口し、この開口14はホース15
を介して溶解チャンバ1の底部開口16に接続され、真
空ポンプ(図示せず)に接続されている。また、耐火物
10には鋳型12を予熱するために適当個数の鋳型加熱
用ヒータ17が埋設されている。
As shown in FIG. 2, the molding device 9 includes a box 11 made of a refractory 10 made of an appropriate material.
A mold 12 is placed or held inside the mold 1 . Mold 1
2 and the box 11 is open only with a bottom opening 14, which is connected to the hose 15.
is connected to the bottom opening 16 of the lysis chamber 1 via a vacuum pump (not shown). Further, an appropriate number of mold heaters 17 are embedded in the refractory 10 to preheat the mold 12.

鋳型12はTi等の溶湯との反応が少なく、かつ適度に
ポーラスな鋳型材料で造型されている。
The mold 12 is made of a mold material such as Ti that has little reaction with molten metal and is appropriately porous.

但し、ルツボ8からの注湯により溶湯が湯道18を通っ
て製品部19(第2図中、枝状に左右に複数個形成され
ている)に充満する際、鋳型12の背後の空間13に真
空ポンプにて適度の負圧をかけても形状を維持できるよ
うに造型する必要がある。鋳込みに先立って真空ポンプ
にて鋳型に負圧をかけておき、ここへ溶湯を鋳込む。溶
湯が鋳型に満たされると同時に真空の効果により製品部
19の隅々までゆきわたり、更には溶湯の脱ガス作用も
期待できる。したがって、特に鋳物の形状が薄肉で、ま
た複雑であっても、健全な鋳物を得ることができる。な
お、負圧としては1o−1〜10−”Pa程度であれば
よく、溶解チャンバ内の不活性雰囲気、1気圧中での溶
解に対して、!8型背後の真空引きが可能である。
However, when the molten metal poured from the crucible 8 passes through the runner 18 and fills the product part 19 (a plurality of branches are formed on the left and right in FIG. 2), the space 13 behind the mold 12 It is necessary to mold the product in such a way that it can maintain its shape even when a moderate amount of negative pressure is applied using a vacuum pump. Prior to casting, negative pressure is applied to the mold using a vacuum pump, and molten metal is poured into the mold. At the same time as the molten metal fills the mold, it spreads to every corner of the product section 19 due to the vacuum effect, and furthermore, a degassing effect of the molten metal can be expected. Therefore, even if the shape of the casting is particularly thin and complicated, a sound casting can be obtained. The negative pressure may be about 10-1 to 10-'' Pa, and it is possible to vacuum the back of the !8 mold for melting in an inert atmosphere of 1 atm in the melting chamber.

溶解に際しては、溶解チャンバ1内をAr等の不活性ガ
ス雰囲気にし、プラズマトーチ1及びルツボ8を図示の
如く電源に接続し、プラズマアーク20を発生させてル
ツボ8内の活性全屈・合金原料を溶解する。
During melting, the inside of the melting chamber 1 is made into an inert gas atmosphere such as Ar, the plasma torch 1 and the crucible 8 are connected to a power source as shown in the figure, and the plasma arc 20 is generated to release the active total bending and alloy raw materials in the crucible 8. dissolve.

上記構成のプラズマ溶解炉を使用し、スポンジチタンを
原料として溶解を行い、鋳型背後の負圧を10””Pa
にしてタービンブレード用鋳型に訪込んだところ、鋳物
には不純物汚染が全くみられず、健全な製品が得られた
Using the plasma melting furnace with the above configuration, melting was performed using titanium sponge as a raw material, and the negative pressure behind the mold was set to 10""Pa.
When we visited the turbine blade mold, we found that there was no impurity contamination in the casting, and a sound product was obtained.

また、上記実施例の鋳型12は全体が鋳型材料で造形さ
れているが、製品部19を構成する部分をポーラスな鋳
型材料で造形しても同様な効果を得ることができる。
Further, although the mold 12 in the above embodiment is entirely made of a mold material, the same effect can be obtained even if the portion constituting the product portion 19 is made of a porous mold material.

(発明の効果) 以上詳述したように、本発明によれば、チタン等々の活
性な金属又は合金の溶解を不純物汚染がなく行うことが
でき、しかも加熱鋳型の背後から真空引きして鋳込みを
行うので、薄物鋳物或いは複雑な各種形状の鋳物であっ
ても高歩留りで製造することができる。また、鋳型のガ
ス抜きを改めて行う必要がないので鋳型の製作が容易で
ある。
(Effects of the Invention) As detailed above, according to the present invention, active metals or alloys such as titanium can be melted without impurity contamination, and moreover, the casting can be performed by drawing a vacuum from behind the heated mold. Therefore, even thin castings or castings of various complicated shapes can be manufactured at a high yield. Further, since there is no need to vent gas from the mold again, manufacturing of the mold is easy.

特に純チタン、チタン合金(例、An含有のもの)の鋳
物の製造に好適である。
It is particularly suitable for producing castings of pure titanium and titanium alloys (eg, those containing An).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に用いるプラズマ溶解炉の構成例
を示す説明図であり、第2図は上記プラズマ溶解炉内に
配置した鋳型装置を示す断面図である。 1・・・溶解チャンバ、    2・・プラズマトーチ
、3・・・原料タンク、     4・・・フィーダ、
5・・・不活性ガス導入口、 8・・・水冷ルツボ。 9・・・鋳型装置、    10・・・耐火物、11・
・・ボックス、     12・・・鋳型、13・・・
鋳型背後空間、   15・・・ホース、17・・・鋳
型加熱用ヒータ、18 ・湯道、19・・製品部、  
   22・・・溶湯。 特許出願人   大同特殊鋼株式会社 代理人弁理士  中  村   尚 第1図 第2図
FIG. 1 is an explanatory diagram showing an example of the configuration of a plasma melting furnace used for carrying out the present invention, and FIG. 2 is a sectional view showing a mold device disposed in the plasma melting furnace. 1... Melting chamber, 2... Plasma torch, 3... Raw material tank, 4... Feeder,
5...Inert gas inlet, 8...Water-cooled crucible. 9... Mold device, 10... Refractory, 11.
...Box, 12...Mold, 13...
Space behind the mold, 15... hose, 17... heater for heating the mold, 18 - runner, 19... product department,
22... Molten metal. Patent applicant: Daido Steel Co., Ltd. Patent attorney Hisashi Nakamura Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 不活性ガス雰囲気下で、水冷ルツボ中に装入した活性金
属又は合金の原料をプラズマアークによって溶解し、得
られた溶湯を、背後から減圧吸引した鋳型中に注湯する
ことを特徴とする活性金属・合金鋳物の製造方法。
An active metal or alloy raw material charged in a water-cooled crucible is melted by a plasma arc in an inert gas atmosphere, and the resulting molten metal is poured into a mold that is vacuum-suctioned from behind. Manufacturing method for metal/alloy castings.
JP27286885A 1985-12-04 1985-12-04 Production of casting Pending JPS62134162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27286885A JPS62134162A (en) 1985-12-04 1985-12-04 Production of casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27286885A JPS62134162A (en) 1985-12-04 1985-12-04 Production of casting

Publications (1)

Publication Number Publication Date
JPS62134162A true JPS62134162A (en) 1987-06-17

Family

ID=17519880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27286885A Pending JPS62134162A (en) 1985-12-04 1985-12-04 Production of casting

Country Status (1)

Country Link
JP (1) JPS62134162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100659285B1 (en) 2005-09-12 2006-12-20 한국생산기술연구원 Plasma arc melting method and manufacturing method of high melting point active metal light rod using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100659285B1 (en) 2005-09-12 2006-12-20 한국생산기술연구원 Plasma arc melting method and manufacturing method of high melting point active metal light rod using the same

Similar Documents

Publication Publication Date Title
RU2490350C2 (en) METHOD FOR OBTAINING BASIC β-γ-TiAl-ALLOY
JP3003914B2 (en) Method for producing copper alloy containing active metal
GB2244019A (en) Casting of dental metals
US20030106664A1 (en) Method and apparatus for manufacturing copper and/or copper alloy ingot having no shrinkage cavity and having smooth surface without wrinkles
US6006821A (en) Method and apparatus for melting and pouring specialty metals
US5193607A (en) Method for precision casting of titanium or titanium alloy
JPS57146466A (en) Casting method for titanium casting consisting of pure titanium or alloy consisting essentially of titanium
JPWO2010018849A1 (en) Silicon purification method
JPS62134162A (en) Production of casting
US4202997A (en) Atmospheric control of flux pre-melting furnace
JPH0531568A (en) Plasma melting/casting method
JPS6479328A (en) Electron beam melting and casting method for high melting point material
EP0457502B1 (en) Method and apparatus for precision casting
JPS63273562A (en) Production of ti-al alloy casting
RU2209842C2 (en) Metal melting and pouring method
JPS6352983B2 (en)
JPH04294857A (en) Method and device for casting aluminum
GB1166199A (en) Apparatus for use in melting and casting metals.
JPH0335865A (en) Method and apparatus for precision casting
JPH04182056A (en) Precise casting device
JP3149556B2 (en) Method and apparatus for producing melting stock for precision casting
CN111644579A (en) Casting mold and ultrasonic casting device for manufacturing aluminum-lithium alloy cast ingot
GB872243A (en) Improvements in or relating to method of producing superior quality ingot metal
JPH05202435A (en) Melting method for refractory metal
JPS57171564A (en) Precision casting method