JPS6213336A - Manufacture of heat-resistant printed substrate - Google Patents

Manufacture of heat-resistant printed substrate

Info

Publication number
JPS6213336A
JPS6213336A JP60153507A JP15350785A JPS6213336A JP S6213336 A JPS6213336 A JP S6213336A JP 60153507 A JP60153507 A JP 60153507A JP 15350785 A JP15350785 A JP 15350785A JP S6213336 A JPS6213336 A JP S6213336A
Authority
JP
Japan
Prior art keywords
resin
copper foil
molding
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60153507A
Other languages
Japanese (ja)
Other versions
JPH0157643B2 (en
Inventor
寛行 大越
正己 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP60153507A priority Critical patent/JPS6213336A/en
Publication of JPS6213336A publication Critical patent/JPS6213336A/en
Publication of JPH0157643B2 publication Critical patent/JPH0157643B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、熱可塑性樹脂を基材とするプリント基板の製
造方法に係る。より詳細には、本発明は270℃以上の
成形温度を有する熱可塑性樹脂の絶縁材料基板と銅箔を
一体化したプリント基板を大気中で製造し得る、耐熱性
プリント基板の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a printed circuit board using a thermoplastic resin as a base material. More specifically, the present invention relates to a method for manufacturing a heat-resistant printed circuit board that can manufacture a printed circuit board that integrates a thermoplastic resin insulating material substrate and copper foil with a molding temperature of 270° C. or higher in the atmosphere.

[従来の技術] 従来、リジッド型プリント基板の基材としては、ガラス
エポキシ樹脂、エポキシ変成付加型ポリイミド樹脂等の
熱硬化性樹脂が使用されており、銅箔等の金属箔との成
形温度は150〜220℃程度の低温で行なわれる。そ
のため、銅の酸化等の問題はそれほど顕著なものではな
かった。
[Prior art] Conventionally, thermosetting resins such as glass epoxy resins and epoxy modified addition polyimide resins have been used as base materials for rigid printed circuit boards, and the molding temperature with metal foils such as copper foils is low. It is carried out at a low temperature of about 150 to 220°C. Therefore, problems such as copper oxidation were not so significant.

ところが前記のガラスエポキシ樹脂は耐熱難燃性に劣り
、付加型ポリイミド樹脂では化学反応及び架橋において
ガス発生を伴なう等の欠点を有し電気材料のプリント基
板基材としては信頼性の乏しいものであった。
However, the above-mentioned glass epoxy resin has poor heat resistance and flame retardancy, and addition type polyimide resin has drawbacks such as gas generation during chemical reactions and crosslinking, making it unreliable as a base material for printed circuit boards for electrical materials. Met.

そこで優れた耐熱性、機械的特性等を有する、プリント
基板基材として適した素材を採用することが望ましいが
、そのような素材を化学的反応によらず金属箔と一体成
形するためには高い成形温度を必要とし、そのため大気
中での成形では銅箔の酸化等の問題により所望の製品は
製造し得ない。
Therefore, it is desirable to use a material that has excellent heat resistance, mechanical properties, etc. and is suitable as a base material for a printed circuit board, but it is expensive to integrally mold such a material with metal foil without using a chemical reaction. A high molding temperature is required, and therefore, molding in the atmosphere cannot produce the desired product due to problems such as oxidation of the copper foil.

従ってそのような問題を取り除くためには、上記のよう
な成形を窒素雰囲気のような無酸素雰囲気下で行わなけ
ればならず、いわゆる真空成形、ホットプレス成形等の
成形法を採用しな(プればならないが、これ等は高価な
成形方法であり産業利用上好ましくない。
Therefore, in order to eliminate such problems, the above-mentioned molding must be performed in an oxygen-free atmosphere such as a nitrogen atmosphere, and molding methods such as so-called vacuum molding and hot press molding should not be adopted. However, these are expensive molding methods and are not suitable for industrial use.

[発明の目的] 本発明者等は上記状況に鑑み、鋭意研究の結果本発明に
到達した。即ち、本発明の目的は270℃以上の成形温
度を有する耐熱性熱可塑性樹脂を基材とした、優れた耐
熱性、機械的特性を有するプリント基板を大気中におい
て安価に製造し得る耐熱性プリント基板の製造方法を提
供することである。
[Object of the Invention] In view of the above circumstances, the present inventors have arrived at the present invention as a result of intensive research. That is, the object of the present invention is to provide a heat-resistant printed circuit board that is made of a heat-resistant thermoplastic resin having a molding temperature of 270° C. or higher and that has excellent heat resistance and mechanical properties and can be manufactured at low cost in the atmosphere. An object of the present invention is to provide a method for manufacturing a substrate.

[発明の構成] 本発明の製造方法は、270℃以上の成型温度を有する
耐熱性熱可塑性樹脂粉末を加熱加圧して予備成形した基
板と、銅箔と、ポリ四フッ化エチレン樹脂(以下PTF
Eという。)とをこの順に金型中に重ね合せ、加熱加圧
時にPTFEが溶融流延して銅箔表面を覆い銅箔が大気
から密閉されるようにように加熱加圧して銅箔と基板を
一体化させ、次いで基板銅箔一体化成形物からPTFE
を除去することから成る。
[Structure of the Invention] The manufacturing method of the present invention comprises a substrate preformed by heating and pressing heat-resistant thermoplastic resin powder having a molding temperature of 270° C. or higher, a copper foil, and a polytetrafluoroethylene resin (hereinafter referred to as PTF).
It's called E. ) in this order in a mold, and heat and pressurize the copper foil and the board so that the PTFE melts and spreads to cover the surface of the copper foil and seal the copper foil from the atmosphere. PTFE from the substrate copper foil integrated molded product.
consists of removing.

本発明において使用される270℃以上の成形温度を有
する熱可塑性樹脂としては、ポリメタフェニレンイソフ
タルアミドのような芳香族ポリアミド樹脂、アップジョ
ン社より「ポリイミド2080」の商品名で市販されて
いる芳香族ポリイミド樹脂等が挙げられるが、特にポリ
メタフェニレンイソフタルアミドが好ましい。
The thermoplastic resin having a molding temperature of 270°C or higher used in the present invention includes an aromatic polyamide resin such as polymetaphenylene isophthalamide, and an aromatic resin commercially available from Upjohn Co. under the trade name "Polyimide 2080". Among them, polymetaphenylene isophthalamide is particularly preferred.

ポリメタフェニレンイソフタルアミドは下記のような特
徴を有しており、プリント基板用基材としては最適なも
のである。
Polymetaphenylene isophthalamide has the following characteristics and is optimal as a substrate for printed circuit boards.

■湿度により電気特性が変化することがない。■Electrical characteristics do not change due to humidity.

■高周波特性が優れている。■Excellent high frequency characteristics.

■耐熱性に優れ、ハンダ耐性が良好である。■Excellent heat resistance and good solder resistance.

■耐溶剤性に優れている。■Excellent solvent resistance.

■難燃性に優れている。■Excellent flame retardancy.

■硬度が高い。■High hardness.

ここで270℃以上の成形温度を有する樹脂とは、軟化
点が270℃以上であり成形特特殊な化学反応や架橋が
生じないポリマー樹脂を意味する。
Here, the resin having a molding temperature of 270° C. or higher means a polymer resin that has a softening point of 270° C. or higher and does not undergo any special chemical reaction or crosslinking during molding.

原料樹脂は粉末で使用し、好ましくは60メツシユアン
ダーの粒度を有するものを使用する。
The raw material resin is used in the form of powder, preferably having a particle size of 60 mesh under.

基板を予備成形する工程は、粉末原料から出発した場合
に後の銅箔との一体化工程での取り扱い性を良くし、生
産性を高めること、及び完成製品の平板性を確保するこ
とを目的として行なうものであり、粉末が自己支持性を
有する薄板となるように成形すればよい。従って、該成
形は樹脂のガラス転移点(ポリメタフェニレンイソフタ
ルアミドの場合270℃)以下で行ない、粉末が圧着し
て自己支持性を有するように圧粉するだけでもよく、さ
らに高温で樹脂溶融成形物となるように成形してもよい
The purpose of the process of preforming the board is to improve handling in the subsequent integration process with copper foil when starting from powder raw materials, increase productivity, and ensure flatness of the finished product. The powder may be formed into a self-supporting thin plate. Therefore, the molding can be carried out at a temperature below the glass transition point of the resin (270°C in the case of polymetaphenylene isophthalamide), and the powder can be simply compacted so that it has self-supporting properties, and the resin can be melt-molded at a higher temperature. It may also be molded into objects.

圧粉の場合、具体的には150〜270℃の温度で行い
、200℃でポリメタフェニレンイソフタルアミドを予
備成形したばあい、成形圧力500 K9 / cm、
成形時間5分で充分である。
In the case of compacted powder, specifically, it is carried out at a temperature of 150 to 270 °C, and when polymetaphenylene isophthalamide is preformed at 200 °C, the molding pressure is 500 K9 / cm,
A molding time of 5 minutes is sufficient.

予備成形された基板が圧粉されただけではなく溶融成形
物の場合は債の銅箔との一体化において銅箔との接合面
の樹脂が溶融するのみでよく、成形時間を短縮し得る。
If the preformed substrate is not only pressed into powder but also melt-molded, it is only necessary to melt the resin on the bonding surface with the copper foil when integrating the bond with the copper foil, which can shorten the molding time.

本発明の製造方法によって得られるプリント基板はリジ
ッド型のものであり、樹脂成形部分の厚さが0.5〜2
mmとなるように予備成形する。
The printed circuit board obtained by the manufacturing method of the present invention is of a rigid type, and the thickness of the resin molded part is 0.5 to 2.
Preform to a size of mm.

銅箔との一体化成形は樹脂の分解点以下で行い、分解点
365℃のポリメタフェニレンイソフタルアミドの場合
、270〜360℃で行い得るが、好ましくは300〜
330℃である。一体化において成形温度が高い程、成
形時間が短くてすみ、270℃で1時間、360℃では
10数分で良い。
The integral molding with the copper foil is performed at a temperature below the decomposition point of the resin, and in the case of polymetaphenylene isophthalamide whose decomposition point is 365°C, it can be performed at a temperature of 270 to 360°C, but preferably at a temperature of 300 to 360°C.
The temperature is 330°C. The higher the molding temperature in the integration process, the shorter the molding time, which may be 1 hour at 270°C or 10 minutes at 360°C.

320℃の成形温度、50(ly/cIIの成形圧力で
成形した場合、10〜30分で成形は終了する。
When molding is performed at a molding temperature of 320° C. and a molding pressure of 50 (ly/cII), molding is completed in 10 to 30 minutes.

ポリイミド2080の場合320℃で20分程度である
In the case of polyimide 2080, it takes about 20 minutes at 320°C.

銅箔を覆う樹脂としてPTFEを使用するが、該樹脂は
低温フロー性、成形収縮性あるいは良好な剥離性及び分
解温度が高いことから、最も好ましいものである。
PTFE is used as the resin covering the copper foil, and this resin is most preferred because it has low-temperature flowability, mold shrinkage or good peelability, and high decomposition temperature.

PTFEは一体化成形時に溶融流延して銅箔表面を覆う
ように銅箔上に載置すればよいが、製品の銅箔表面の平
滑性を確保するため、表面の滑らかな市販のPTFEス
カイビングシートを用い、厚さ0.1〜4mの範囲で載
置することが好ましい。
PTFE can be melt-cast during integral molding and placed on the copper foil to cover the copper foil surface, but in order to ensure the smoothness of the copper foil surface of the product, commercially available PTFE sky with a smooth surface is used. It is preferable to use a Bing sheet and place it in a thickness range of 0.1 to 4 m.

使用する銅箔は通常プリント基板に使用されるものでよ
く、厚さが18〜50μであり、最も一般的には35μ
程度である。
The copper foil used may be that normally used for printed circuit boards, and has a thickness of 18-50μ, most commonly 35μ.
That's about it.

[発明の効果] 本発明の特徴は下記のメカニズムにより得られるもので
ある。
[Effects of the Invention] The features of the present invention are obtained through the following mechanism.

予備成形した基板、その上に一体化する銅箔、該銅箔上
に分解開始温度が高く、熱軟化しゃすいPTFEシート
の順で金型中に重ね合せ、加熱加圧すると予備成形した
絶縁材料が溶融する前にPTFEシートが溶融流延して
銅箔表面に密着し、さらに金型と基材の間隙に侵入して
銅箔は完全に大気から密閉される。
A preformed substrate, a copper foil integrated thereon, and a PTFE sheet that has a high decomposition onset temperature and is easily softened by heat are placed on top of the copper foil in this order in a mold, and when heated and pressed, the preformed insulating material is created. Before the PTFE sheet melts, the PTFE sheet is melt-cast and tightly adheres to the surface of the copper foil, and further penetrates into the gap between the mold and the base material, completely sealing the copper foil from the atmosphere.

その後に絶縁材料の溶融が生じ、成形が完了する。冷却
プロセスにおいてもPTFEの収縮率が大きく、シール
された状態で成形が完了する。
Melting of the insulating material then occurs and the molding is completed. Even during the cooling process, the shrinkage rate of PTFE is large, and the molding is completed in a sealed state.

従って銅箔はPTFEが溶融フローしてシールが完了し
た後成形が完了するまで大気から完全に密閉されており
(シール効果)、酸化されることなく成形が完了するも
のである。
Therefore, the copper foil is completely sealed from the atmosphere (sealing effect) until the molding is completed after the PTFE melts and flows to complete the sealing, and the molding is completed without being oxidized.

金型と基材の間隙は基材を金型中に挿入するのに必要な
りリアランス程度でよく実際には0.06m程度である
The gap between the mold and the base material is necessary for inserting the base material into the mold, and may be about a clearance, and is actually about 0.06 m.

PTFEは離型性が良い(非粘着)ので成形侵容易に除
去し得、また一体化の成形温度はPTFEの分解温度以
下であるため、繰り返し使用できるので損失はほとんど
なく経済的である。
PTFE has good mold releasability (non-adhesive), so it can be easily removed due to molding, and since the molding temperature for integration is below the decomposition temperature of PTFE, it can be used repeatedly, so it is economical with almost no loss.

このように本発明の製造方法によれば、優れた耐熱性、
、機械的特性を有するプリント基板を大気中において安
価に製造し得るものである。
As described above, according to the manufacturing method of the present invention, excellent heat resistance,
, it is possible to manufacture printed circuit boards having mechanical properties at low cost in the atmosphere.

以下、実施例により本発明の楢成及び効果をさらに説明
する。
Hereinafter, the structure and effects of the present invention will be further explained with reference to Examples.

実施例1 密度が0.30’J/7の芳香族ポリアミド樹脂(帝人
社のコーネツクス樹脂粉末)を140℃で15分間乾燥
し、150℃に加温した金型に充填し、150Kg/C
!iの圧力で5分間圧粉した。加圧したまま、金型温度
を310℃に昇温させ、成形圧力を150Kg/dに保
って15分間成形した。
Example 1 Aromatic polyamide resin with a density of 0.30'J/7 (Teijin Co., Ltd.'s Cornex resin powder) was dried at 140°C for 15 minutes, filled into a mold heated to 150°C, and 150Kg/C
! The powder was compacted for 5 minutes at a pressure of i. While pressurizing, the mold temperature was raised to 310° C., and molding was carried out for 15 minutes while maintaining the molding pressure at 150 kg/d.

次いで金型温度を150℃に冷却した後、開型して縦5
0m+、横’100#I、厚さ2i*の成形物を得た。
Next, after cooling the mold temperature to 150℃, the mold was opened and
A molded product with a width of 0 m+, a width of '100#I, and a thickness of 2i* was obtained.

 このようにして得た芳香族ポリアミド樹脂成形板、厚
さ35μの銅箔(古河サーキットフォイル四より市販の
もの)、厚さ1,4IlnのP −’r FEスカイビ
ングシートをこの順に金型中に重ね合せ、成形温度32
0℃、圧力400Kg/aA、成形温度保持時間20分
で成形した。
The aromatic polyamide resin molded plate thus obtained, a copper foil with a thickness of 35 μm (commercially available from Furukawa Circuit Foil 4), and a P-'r FE skiving sheet with a thickness of 1.4 ln were placed in a mold in this order. superimposed on the molding temperature 32
Molding was carried out at 0°C, at a pressure of 400 kg/aA, and at a molding temperature holding time of 20 minutes.

冷却後取り出し、PTFEシートを除去して銅箔樹脂成
形板一体成形板を得た。
After cooling, it was taken out and the PTFE sheet was removed to obtain an integrally molded copper foil resin molded board.

得られた成形板は色調の変化がなく銅箔の酸化は認られ
ず、ハンダ耐熱は300℃の温度を10秒間接触しても
外観に変化はなく良好なものであった。
The obtained molded plate had no change in color tone, no oxidation of the copper foil was observed, and the solder heat resistance was good with no change in appearance even after contact at a temperature of 300° C. for 10 seconds.

JISC6481に準じ引き剥し力をインストロンにて
測定したところ、1.0Kg/csであった。
The peeling force was measured using an Instron according to JISC6481 and was found to be 1.0 Kg/cs.

また、ASTMD790に準じた曲げ強度は1500K
g/dであった。
In addition, the bending strength according to ASTM D790 is 1500K.
g/d.

衷11丸Z 密度が0.30g/cIjの芳香族ポリアミド樹脂(帝
人社のコーネツクス樹脂粉末)を200℃に加温した金
型に充填し、500Kg/ciの圧力で5分間圧粉した
Round 11 Z Aromatic polyamide resin (Teijin Co., Ltd.'s Cornex resin powder) having a density of 0.30 g/cIj was filled into a mold heated to 200° C., and compacted for 5 minutes at a pressure of 500 Kg/ci.

このようにして得た芳香族ポリアミド樹脂圧粉体、厚さ
35μの銅箔(古河サーキットフォイル観より市販のも
の)、厚さ1.41のPTFEスカイビングシートをこ
の順に金型に充填し、成形温度320℃、圧力500/
(y/ri、成形温度保持時間20分で成形した。
The aromatic polyamide resin compact obtained in this way, a copper foil with a thickness of 35 μm (commercially available from Furukawa Circuit Foil Kan), and a PTFE skiving sheet with a thickness of 1.41 μm were filled in a mold in this order. Molding temperature 320℃, pressure 500/
(Molded at y/ri, molding temperature held for 20 minutes.

得られた成形板は色調の変化がなく銅箔の酸化は認られ
ず、ハンダ耐熱は300℃の温度を10秒間接触させて
も外観には変化がなく良好なものであった。
The obtained molded plate had no change in color tone, no oxidation of the copper foil was observed, and the solder heat resistance was good with no change in appearance even after contact at a temperature of 300° C. for 10 seconds.

J l5C6481に準じ引き剥し力をインストロンに
て測定したところ、1.1に9/asであった。
When the peeling force was measured using an Instron according to J15C6481, it was 1.1 to 9/as.

実施例3 実施例1と同様の条件で、芳香族ポリアミド樹脂成形板
を中心層とし、両面に銅箔を一体化したプリント基板を
一回の加熱加圧で製造した。
Example 3 Under the same conditions as in Example 1, a printed circuit board having an aromatic polyamide resin molded plate as the center layer and integrated copper foil on both sides was manufactured by heating and pressing once.

即ち、金型中にPTFEシート、銅箔、芳香族ポリアミ
ド樹脂成形板、銅箔、PTFEシートの順で充填し、加
熱加圧成形した。
That is, a PTFE sheet, copper foil, aromatic polyamide resin molded plate, copper foil, and PTFE sheet were filled in this order into a mold, and molded under heat and pressure.

両面の銅箔及び基板について実施例1で得られたプリン
ト基板と同様の物性を有するプリント基板が得られた。
A printed circuit board having the same physical properties as the printed circuit board obtained in Example 1 was obtained regarding the copper foil on both sides and the substrate.

実施例4 「ポリイミド2080J樹脂粉末を140℃で15分間
乾燥し、150℃に加温した金型に充填し、150醇/
mの圧力で圧粉した。加圧したまま、金型温度を350
℃に昇温させ、成形圧力を500kg/C1iに保って
20分間成形した。次いで金!lf!温度を150℃に
冷却した後、開型して縦50#、横100#、厚さ2m
+の成形物を得た。
Example 4 "Polyimide 2080J resin powder was dried at 140°C for 15 minutes, filled into a mold heated to 150°C, and
The powder was compacted at a pressure of m. While pressurizing, set the mold temperature to 350℃.
The temperature was raised to .degree. C., and the molding pressure was maintained at 500 kg/C1i for 20 minutes. Next is money! lf! After cooling the temperature to 150℃, open the mold and make it 50# in length, 100# in width, and 2m thick.
A molded product with a rating of + was obtained.

このようにして得た熱可塑性樹脂ポリイミド樹脂成形品
を使用して実施例1と同様の条件及び方法でプリント基
板を製造した。
A printed circuit board was manufactured under the same conditions and method as in Example 1 using the thus obtained thermoplastic polyimide resin molded product.

得られた成形板は色調の変化がなく銅箔の酸化は認られ
ず、ハンダ耐熱は300℃の温度で15秒間異常がなく
良好なものであった。
The obtained molded plate had no change in color tone, no oxidation of the copper foil was observed, and the solder heat resistance was good with no abnormality at a temperature of 300° C. for 15 seconds.

JISC6481に準じ引き剥し力をインストロンにて
測定したところ、0.8KU/asであった。
The peeling force was measured using an Instron according to JISC6481 and was found to be 0.8 KU/as.

また、ASTMD790に準じた曲げ強度は1400 
Kg / ciであった。
In addition, the bending strength according to ASTM D790 is 1400.
It was Kg/ci.

上記の実施例から、本発明の製造方法によれば銅箔が酸
化することなく大気中で優れた耐熱性、機械的特性を有
するプリント基板を製造し得ることが判明した。
From the above examples, it was found that according to the manufacturing method of the present invention, a printed circuit board having excellent heat resistance and mechanical properties in the atmosphere can be manufactured without oxidizing the copper foil.

Claims (7)

【特許請求の範囲】[Claims] (1)270℃以上の成型温度を有する耐熱性熱可塑性
樹脂粉末を加熱加圧して予備成形した基板と、銅箔と、
ポリ四フッ化エチレン樹脂とをこの順に金型中に重ね合
せ、加熱加圧時にポリ四フッ化エチレン樹脂が溶融流延
して銅箔表面を覆い銅箔が大気から密閉されるように加
熱加圧して銅箔と基板を一体化させ、次いで基板銅箔一
体化成形物からポリ四フッ化エチレン樹脂を除去するこ
とから成る耐熱性プリント基板の製造方法。
(1) A substrate preformed by heating and pressing heat-resistant thermoplastic resin powder having a molding temperature of 270°C or higher, and a copper foil;
The polytetrafluoroethylene resin and polytetrafluoroethylene resin are layered in this order in a mold, and the polytetrafluoroethylene resin is melted and cast during heating and pressure, covering the surface of the copper foil and sealing the copper foil from the atmosphere. A method for manufacturing a heat-resistant printed circuit board, which comprises pressing to integrate the copper foil and the board, and then removing polytetrafluoroethylene resin from the integrated molded product of the board and copper foil.
(2)耐熱性熱可塑性樹脂が芳香族ポリアミド樹脂であ
ることを特徴とする特許請求の範囲第1項に記載の方法
(2) The method according to claim 1, wherein the heat-resistant thermoplastic resin is an aromatic polyamide resin.
(3)耐熱性熱可塑性樹脂がポリメタフェニレンイソフ
タルアミドであることを特徴とする特許請求の範囲第1
項あるいは第2項に記載の方法。
(3) Claim 1, characterized in that the heat-resistant thermoplastic resin is polymetaphenylene isophthalamide.
or the method described in Section 2.
(4)耐熱性熱可塑性樹脂が芳香族ポリイミド樹脂であ
ることを特徴とする特許請求の範囲第1項に記載の方法
(4) The method according to claim 1, wherein the heat-resistant thermoplastic resin is an aromatic polyimide resin.
(5)銅箔の厚さが18〜50μであることを特徴とす
る特許請求の範囲第1項乃至第4項に記載の方法。
(5) The method according to any one of claims 1 to 4, wherein the copper foil has a thickness of 18 to 50 μm.
(6)予備成形を樹脂のガラス転移点以下で行ない、樹
脂圧粉体として後の一体化成形に使用することを特徴と
する特許請求の範囲第1項乃至第5項に記載の方法。
(6) The method according to any one of claims 1 to 5, characterized in that the preforming is performed at a temperature below the glass transition point of the resin, and the resin compact is used for subsequent integral molding.
(7)予備成形を樹脂のガラス転移点以上で行ない、樹
脂溶融成形物として後の一体化成形に使用することを特
徴とする特許請求の範囲第1項乃至第6項に記載の方法
(7) The method according to any one of claims 1 to 6, wherein the preforming is carried out at a temperature higher than the glass transition point of the resin, and the resin melt-molded product is used for subsequent integral molding.
JP60153507A 1985-07-12 1985-07-12 Manufacture of heat-resistant printed substrate Granted JPS6213336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60153507A JPS6213336A (en) 1985-07-12 1985-07-12 Manufacture of heat-resistant printed substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60153507A JPS6213336A (en) 1985-07-12 1985-07-12 Manufacture of heat-resistant printed substrate

Publications (2)

Publication Number Publication Date
JPS6213336A true JPS6213336A (en) 1987-01-22
JPH0157643B2 JPH0157643B2 (en) 1989-12-06

Family

ID=15564056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60153507A Granted JPS6213336A (en) 1985-07-12 1985-07-12 Manufacture of heat-resistant printed substrate

Country Status (1)

Country Link
JP (1) JPS6213336A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032418A1 (en) * 1999-11-01 2001-05-10 Kaneka Corporation Method and device for manufacturing laminated plate
JP2006137114A (en) * 2004-11-12 2006-06-01 Kaneka Corp Manufacturing method of flexible metal stretched laminate and flexible metal stretched laminate obtained by the method
WO2019087939A1 (en) * 2017-10-31 2019-05-09 Agc株式会社 Molded article, metal-coated layered product, printed wiring board, and methods for producing these

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163883A (en) * 1974-11-30 1976-06-02 Matsushita Electric Works Ltd RYOMENSHORIKINZOKUHAKUBARISEKISOBAN

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163883A (en) * 1974-11-30 1976-06-02 Matsushita Electric Works Ltd RYOMENSHORIKINZOKUHAKUBARISEKISOBAN

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032418A1 (en) * 1999-11-01 2001-05-10 Kaneka Corporation Method and device for manufacturing laminated plate
US7101455B1 (en) 1999-11-01 2006-09-05 Kaneka Corporation Method and device for manufacturing laminated plate
JP2006137114A (en) * 2004-11-12 2006-06-01 Kaneka Corp Manufacturing method of flexible metal stretched laminate and flexible metal stretched laminate obtained by the method
WO2019087939A1 (en) * 2017-10-31 2019-05-09 Agc株式会社 Molded article, metal-coated layered product, printed wiring board, and methods for producing these

Also Published As

Publication number Publication date
JPH0157643B2 (en) 1989-12-06

Similar Documents

Publication Publication Date Title
US5090122A (en) Method for manufacturing a three-dimensional circuit substrate
US4912288A (en) Moulded electric circuit package
JPS6294336A (en) Laminate and manufacture of laminate structure
JPS59112695A (en) Method of producing printed circuit board
JPS6213336A (en) Manufacture of heat-resistant printed substrate
EP0253892B1 (en) Transfer material for printed circuit board and printed circuit board prepared using said transfer material and process for preparation thereof
JPH011292A (en) Manufacturing method of reinforced flexible wiring board
JPH11307904A (en) Molded circuit component and its manufacture
JPS60136299A (en) Method of producing multilayer circuit
JPS62280018A (en) Transfer material for printed-wiring board and printed-wiring board made of said transfer material and manufacture thereof
GB2212333A (en) Method of fabricating multi-layer circuits
JPH01136395A (en) Manufacture of flexible wiring board integral with reinforcing plate
JPS58128846A (en) Manufacture of polyimide group resin one-sided copper lined laminated board
JPS5875884A (en) Method of producing printed circuit board
JPH0541574A (en) Manufacture of printed circuit board
JPH02137293A (en) Multilayer circuit board
JPS61102243A (en) Dielectric substrate
JPS63219189A (en) Manufacture of injection-molded circuit board
JPS6344794A (en) Transcripting material for printed wiring board and printed wiring board employing the transcripting material and manufacture of the printed wiring board
JP4135384B2 (en) Printed wiring board
JPH0350797A (en) Manufacture of multilayer substrate
JPS60241294A (en) Method of producing multilayer printed circuit board
JPS6240793A (en) Electronic circuit device
JPS6286897A (en) Manufacture of metal base printed circuit board
JPH0563111B2 (en)