JPS62133028A - Manufacture of self lubricative sintered copper alloy - Google Patents
Manufacture of self lubricative sintered copper alloyInfo
- Publication number
- JPS62133028A JPS62133028A JP60274212A JP27421285A JPS62133028A JP S62133028 A JPS62133028 A JP S62133028A JP 60274212 A JP60274212 A JP 60274212A JP 27421285 A JP27421285 A JP 27421285A JP S62133028 A JPS62133028 A JP S62133028A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- copper alloy
- raw material
- sintered copper
- compact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 81
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000011230 binding agent Substances 0.000 claims abstract description 23
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 22
- 239000000057 synthetic resin Substances 0.000 claims abstract description 22
- 229920005989 resin Polymers 0.000 claims abstract description 13
- 239000011347 resin Substances 0.000 claims abstract description 13
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 10
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 229910052718 tin Inorganic materials 0.000 claims abstract description 6
- 239000002994 raw material Substances 0.000 claims description 56
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 15
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 9
- 239000011574 phosphorus Substances 0.000 claims description 9
- 230000001050 lubricating effect Effects 0.000 claims description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- 239000011135 tin Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 18
- 239000000463 material Substances 0.000 abstract description 18
- 239000010439 graphite Substances 0.000 abstract description 17
- 229910002804 graphite Inorganic materials 0.000 abstract description 17
- 238000005245 sintering Methods 0.000 abstract description 15
- 238000002156 mixing Methods 0.000 abstract description 4
- 229910045601 alloy Inorganic materials 0.000 abstract 2
- 239000000956 alloy Substances 0.000 abstract 2
- 239000007789 gas Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 239000007791 liquid phase Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 229910052750 molybdenum Inorganic materials 0.000 description 8
- 239000011733 molybdenum Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000007872 degassing Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 239000003522 acrylic cement Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011990 functional testing Methods 0.000 description 1
- 239000011874 heated mixture Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910000597 tin-copper alloy Inorganic materials 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
A0発明の目的
(1)産業上の利用分野
本発明は、プレス機のウェアプレート等に用いられる自
己潤滑性焼結銅合金の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION A0 Object of the Invention (1) Field of Industrial Application The present invention relates to a method for manufacturing a self-lubricating sintered copper alloy used for wear plates of press machines and the like.
(2)従来の技術
従来、この種焼結銅合金の製造方法として、ニッケル、
スズ、リンおよび黒鉛を含む銅系原料粉末を焼結する手
法が知られている(特公昭58−52547号公報参照
)。(2) Conventional technology Conventionally, as a manufacturing method for this type of sintered copper alloy, nickel,
A method of sintering copper-based raw material powder containing tin, phosphorus, and graphite is known (see Japanese Patent Publication No. 58-52547).
(3)発明が解決しようとする問題点
前記黒鉛は潤滑材として機能するもので、その機能を十
分に発揮させるため前記従来法においては多量の黒鉛粉
末が用いられている。(3) Problems to be Solved by the Invention The graphite functions as a lubricant, and in order to fully exhibit its function, a large amount of graphite powder is used in the conventional method.
その結果、焼結銅合金の圧縮強さが低下し、また前記化
学成分に起因して焼結銅合金の靭性、したがって耐衝撃
性が低いという問題がある。As a result, there is a problem that the compressive strength of the sintered copper alloy is reduced, and the toughness and therefore the impact resistance of the sintered copper alloy are low due to the chemical components.
さらに前記原料粉末は粉末状態のまま使用されるので、
その取扱性が悪く、焼結銅合金の生産能率に支障を来た
すといった問題もある。Furthermore, since the raw material powder is used in a powdered state,
There are also problems in that it is difficult to handle and interferes with the production efficiency of sintered copper alloys.
本発明は上記に鑑み、黒鉛の含有量を減らし、また黒鉛
のM量分を潤滑性を有し耐摩耗性向上に寄与すると共に
靭性向上効果を発揮するモリブデンによって補い、これ
により優れた耐摩耗性および高圧縮強さを備えた自己潤
滑性焼結銅合金を得ることのできる生産性の良好な前記
製造方法を提供することを目的とする。In view of the above, the present invention reduces the graphite content, and supplements the M content of graphite with molybdenum, which has lubricating properties and contributes to improving wear resistance, as well as exhibiting the effect of improving toughness, thereby achieving excellent wear resistance. It is an object of the present invention to provide the above-mentioned manufacturing method with good productivity, which makes it possible to obtain a self-lubricating sintered copper alloy having high properties and high compressive strength.
B1発明の構成
(11問題点を解決するための手段
本発明は、ニッケル、スズおよびリンを含有する銅合金
粉末に、潤滑性粉末としてモリブデン粉末および黒鉛粉
末を添加してなる原料粉末と合成樹脂バインダとの混合
物より成形体を得る工程と;前記成形体を550℃以上
650℃以下の樹脂分解温度域に保持し、前記合成樹脂
バインダを熱分解して前記原料粉末からなる粉末成形体
を残置する工程と;前記粉末成形体を800℃以上90
0℃未満の固相線温度域に保持して均熱化する工程と;
前記粉末成形体を900℃以上1050℃以下の半成相
温度域に保持して該粉末成形体より焼結銅合金を得る工
程と;を用いることを特徴とする。B1 Structure of the Invention (Means for Solving 11 Problems) The present invention consists of a raw material powder and a synthetic resin made by adding molybdenum powder and graphite powder as lubricating powder to a copper alloy powder containing nickel, tin, and phosphorus. Obtaining a molded body from a mixture with a binder; holding the molded body in a resin decomposition temperature range of 550°C or higher and 650°C or lower, thermally decomposing the synthetic resin binder and leaving a powder molded body made of the raw material powder; the step of heating the powder compact to 800°C or higher at 90°C
A step of maintaining the temperature in a solidus temperature range of less than 0° C. for soaking;
It is characterized by using the step of maintaining the powder compact in a semi-phase formation temperature range of 900° C. or more and 1050° C. or less to obtain a sintered copper alloy from the powder compact.
(2)作 用
潤滑性粉末として、モリブデン粉末と黒鉛粉末の混合粉
末を用いるので、モリブデンの含有量に応じて黒鉛の含
有量を減少し、これにより焼結銅合金の圧縮強さおよび
靭性を向上させることが可能となる。(2) Function Since a mixed powder of molybdenum powder and graphite powder is used as the lubricating powder, the graphite content is reduced in accordance with the molybdenum content, thereby improving the compressive strength and toughness of the sintered copper alloy. It becomes possible to improve the performance.
また原料粉末を、それと合成樹脂バインダとの混合物よ
り得られた成形体の形態で用いるので、原料粉末の取扱
性が良好となる。Further, since the raw material powder is used in the form of a molded body obtained from a mixture of the raw material powder and a synthetic resin binder, the raw material powder can be easily handled.
さらに合成樹脂バインダは樹脂分解温度域で熱分解され
、その分解ガスは原料粉末の構成粉末間より排出される
ので、焼結銅合金における残留ガスに起因した巣の発生
、有害ガス成分の侵入等の不具合を確実に回避すること
ができる。その上前記温度域では合成樹脂バインダの熱
分解ガスが緩徐に行われるので、残置された粉末成形体
は前記成形体と略同−の形状を有し、したがって粉末成
形体の変形を抑制することができる。Furthermore, the synthetic resin binder is thermally decomposed in the resin decomposition temperature range, and the decomposed gas is emitted from between the constituent powders of the raw material powder, resulting in the formation of cavities due to residual gas in the sintered copper alloy and the intrusion of harmful gas components. problems can be reliably avoided. Furthermore, since the thermal decomposition gas of the synthetic resin binder occurs slowly in the above temperature range, the remaining powder compact has approximately the same shape as the above compact, thus suppressing deformation of the powder compact. I can do it.
さらに粉末成形体は固相線温度域で均熱化されるので、
焼結時における粉末成形体の局部的な溶出、したがって
焼結銅合金の変形を防止することができる。Furthermore, since the powder compact is uniformly heated in the solidus temperature range,
Local elution of the powder compact during sintering and therefore deformation of the sintered copper alloy can be prevented.
さらにまた粉末成形体は液相と固相が共存する半成相温
度域で焼結されるので、黒鉛の浮遊、偏析が発生せず、
したがって焼結銅合金の潤滑特性をその全体に亘って均
等にすることができる。また液相により固相間の気孔が
埋められるので、焼結銅合金の密度を向上させることが
できる。Furthermore, since the powder compact is sintered in the semi-phase temperature range where the liquid phase and solid phase coexist, floating and segregation of graphite does not occur.
Therefore, the lubrication properties of the sintered copper alloy can be made uniform throughout. Furthermore, since the pores between the solid phases are filled with the liquid phase, the density of the sintered copper alloy can be improved.
(3)実施例
第1図は摺動部材1を示し、その摺動部材1はベース材
2と、その−面に溶着された自己潤滑性焼結銅合金3と
よりなる。焼結銅合金3はその焼結時ベース材2に溶着
されたものである。(3) Embodiment FIG. 1 shows a sliding member 1, which consists of a base material 2 and a self-lubricating sintered copper alloy 3 welded to its negative surface. The sintered copper alloy 3 is welded to the base material 2 during sintering.
焼結銅合金3は原料粉末と合成樹脂バインダとの混合物
より得られた成形体としての原料シートを用いて製造さ
れる。The sintered copper alloy 3 is manufactured using a raw material sheet as a molded body obtained from a mixture of raw material powder and a synthetic resin binder.
原料粉末としては、ニッケル 5〜30重量%、スズ
7〜13重量%およびリン 0.3〜2重量%を含有す
る銅合金粉末に、それに対し潤滑性粉末としてモリブデ
ン粉末 1〜5重量%および黒鉛粉末 1〜2.5重量
%を添加したものが該当する。As raw material powder, nickel 5-30% by weight, tin
Copper alloy powder containing 7 to 13% by weight and 0.3 to 2% by weight of phosphorus, to which 1 to 5% by weight of molybdenum powder and 1 to 2.5% by weight of graphite powder are added as lubricating powder. Applicable.
この原料粉末において、各化学成分の配合量を前記のよ
うに限定した理由および各化学成分の役割は以下の通り
である。In this raw material powder, the reason why the blending amount of each chemical component was limited as described above and the role of each chemical component are as follows.
ニッケルはろう材として機能し、原料粉末の焼結性、ベ
ース材に対する焼結銅合金の溶着性および銅マトリック
スの強度を向上させる効果を発揮するが、その配合量が
5重量%を下回ると前記効果が得られず、また30重量
%を上回っても前記効果の向上は望めず、その上コスト
高となる。Nickel functions as a brazing material and has the effect of improving the sintering properties of the raw material powder, the adhesion of the sintered copper alloy to the base material, and the strength of the copper matrix, but if its content is less than 5% by weight, the above-mentioned No effect can be obtained, and even if it exceeds 30% by weight, no improvement in the effect can be expected, and furthermore, the cost will increase.
スズは銅と合金化して銅マトリックスの強度および耐摩
耗性を向上させる効果を発揮するが、その配合量が7重
量%を下回ると前記効果が得られず、また13重量%を
上回ると銅合金の融点が低下して焼結銅合金の形状維持
性が悪化する。Tin alloys with copper and exhibits the effect of improving the strength and wear resistance of the copper matrix, but if the content is less than 7% by weight, the above effects cannot be obtained, and if the content exceeds 13% by weight, the copper alloy The melting point of the sintered copper alloy decreases, and the shape retention of the sintered copper alloy deteriorates.
リンは銅マトリックスに析出してその強度および耐摩耗
性を向上させる効果を発揮するが、その配合量が0.3
重量%を下回ると銅合金の融点が高くなって原料粉末の
焼結性が悪化し、また2重量%を上回ると銅合金の融点
が低下して焼結銅合金の形状維持性が悪化する。Phosphorus precipitates in the copper matrix and has the effect of improving its strength and wear resistance, but when the amount of phosphorus is 0.3
If it is less than 2% by weight, the melting point of the copper alloy will increase and the sinterability of the raw material powder will deteriorate, and if it exceeds 2% by weight, the melting point of the copper alloy will decrease and the shape retention of the sintered copper alloy will deteriorate.
モリブデンは銅合金と強固に結合して焼結銅合金の靭性
、耐摩耗性および潤滑性を向上させる効果を発揮するが
、その配合量が1重量%を下回ると前記効果が得られず
、また5重量%を上回ると原料シートの成形が困難とな
り、また焼結銅合金の焼結強度および密度が低下する。Molybdenum has the effect of strongly bonding with copper alloys and improving the toughness, wear resistance, and lubricity of sintered copper alloys, but if the amount of molybdenum is less than 1% by weight, the above effects cannot be obtained; If it exceeds 5% by weight, it becomes difficult to form the raw material sheet, and the sintering strength and density of the sintered copper alloy decrease.
黒鉛は焼結銅合金の潤滑性を向上させる効果を発揮する
が、その配合量が1重量%を下回ると前記効果が得られ
ず、また2、5重量%を上回ると焼結銅合金の圧縮強さ
が低下する。Graphite has the effect of improving the lubricity of the sintered copper alloy, but if the amount is less than 1% by weight, the above effect cannot be obtained, and if it exceeds 2.5% by weight, it will cause compression of the sintered copper alloy. Strength decreases.
合成樹脂バインダとしては熱可塑性合成樹脂エマルジョ
ンが該当し、その合成樹脂バインダは原料粉末に対して
1〜4重量%配合される。その理由は合成樹脂バインダ
の配合量が1重量%を下回ると原料シートの保形性が悪
く、また原料粉末間の結合力が弱くなってその粉末の脱
落を発生し、一方4重量%を上回ると焼結銅合金の気孔
率が高くなって密度の低下、形状精度の悪化等を招来し
、また残留炭素が多くなって焼結性の阻害、ベース材に
対する焼結銅合金の溶着不良等を招来するからである。The synthetic resin binder is a thermoplastic synthetic resin emulsion, and the synthetic resin binder is blended in an amount of 1 to 4% by weight based on the raw material powder. The reason for this is that when the amount of synthetic resin binder is less than 1% by weight, the shape retention of the raw material sheet is poor, and the binding force between the raw material powders becomes weak, causing the powder to fall off, whereas when it exceeds 4% by weight. This increases the porosity of the sintered copper alloy, resulting in a decrease in density and deterioration of shape accuracy, and increases residual carbon, which inhibits sinterability and causes poor welding of the sintered copper alloy to the base material. Because it invites you.
次に第2、第3図を参照しながら前記摺動部材1の製造
方法について説明する。Next, a method for manufacturing the sliding member 1 will be explained with reference to FIGS. 2 and 3.
i、原料シートの製造
噴霧法により得られた、ニッケル 25重量%、スズ
10重量%、リン 1.1ffl量%および残部銅から
なり、標準篩110メソシユを通過し得る粒度の銅合金
粉末 92重量%、
機械的粉砕法により得られた、標準篩270メツシユを
通過し得る粒度のモリブデン粉末 2.5重量%、およ
び
機械的粉砕法により得られた、標準篩28メツシユを通
過し得るが、65メツシユを通過し得ない粒度の人造黒
鉛粉末 2.5重量%
よりなる原料粉末と、
四フッ化エチレン樹脂とアクリル樹脂をl:1に混合し
、その混合樹脂にそれに対し50重量%の水全添加して
エマルジョン化した合成樹脂バインダ 3重量%と
を、第2図(alに示すようにニーダ4に投入し、それ
らを3分間混合して原料粉末を合成樹脂バインダ中に均
一に分散させた混合物Mを得る。i. 25% by weight of nickel, tin obtained by the spraying method for manufacturing raw material sheets.
Copper alloy powder consisting of 10% by weight, phosphorus 1.1ffl% and the balance copper, with a particle size that can pass through a standard sieve of 110 mesh. 92% by weight, obtained by mechanical grinding, that can pass through a standard sieve of 270 mesh. Raw material consisting of 2.5% by weight of molybdenum powder with a particle size that can pass through a standard sieve of 28 mesh but not 65 mesh, obtained by mechanical grinding. The powder was mixed with 3% by weight of a synthetic resin binder made by mixing a tetrafluoroethylene resin and an acrylic resin at a ratio of 1:1 and adding 50% by weight of water to the mixed resin to form an emulsion, as shown in Figure 2 ( As shown in al., they are put into a kneader 4 and mixed for 3 minutes to obtain a mixture M in which the raw material powder is uniformly dispersed in a synthetic resin binder.
第2図(b)に示すように、混合物Mをヒータ5上に移
し、それを80〜150℃に加熱して水分を蒸発し乾燥
する。As shown in FIG. 2(b), the mixture M is transferred onto the heater 5 and heated to 80 to 150°C to evaporate water and dry it.
第2図(C1に示すように、加熱状態に在る混合物Mを
ロール機6に数回通し、厚さ2〜3鰭の原料シートSを
得る。As shown in FIG. 2 (C1), the heated mixture M is passed through the roll machine 6 several times to obtain a raw material sheet S having a thickness of 2 to 3 fins.
第2図(dlに示すように、原料シートSをヒータ5上
に移し、それを80〜120“Cで30分間加熱し、ロ
ール成形時の歪を除去する。As shown in FIG. 2 (dl), the raw material sheet S is transferred onto the heater 5 and heated at 80 to 120"C for 30 minutes to remove distortion during roll forming.
原料シートSの密度は4.8g/cm’で、第2図te
lに示すようにロール状に巻いて保存される。The density of the raw material sheet S is 4.8 g/cm', and
It is stored by rolling it into a roll as shown in 1.
ii 、摺動部材の製造
第2図(flに示すように、原料シートSから縦200
龍、横200鰭の原料板Pを裁断し、その原料板Pを縦
200n、横2000、厚さ19鰭のJTS 5S4
1で表わされる鋼板製ベース材2の上面にアクリル系接
着剤を用いて貼着し、その上面を′#1210n、横2
10額、厚さ211のセラミックファイバ(商品名カオ
ウール)よりなり通気性を有するガス抜き用シート6を
用いて覆い、さらにシート6の上面に縦200M、横2
00鶴、厚さ38龍の前記と同材質の鋼板よりなる加圧
体7を載置する。ii. Manufacture of sliding member As shown in Figure 2 (fl), 200 mm
Cut a raw material board P with a width of 200 fins, and cut the raw material board P into a JTS 5S4 with a length of 200 nm, a width of 2000 nm, and a thickness of 19 fins.
It is attached to the upper surface of the steel plate base material 2 represented by 1 using acrylic adhesive, and the upper surface is
It is covered with a breathable degassing sheet 6 made of ceramic fiber (trade name Kao Wool) with a thickness of 211 mm and a thickness of 211 mm, and is further covered with a gas venting sheet 6 having a length of 200 M and a width of 2 mm on the top surface of the sheet 6.
A pressurizing body 7 made of the same material as above and having a thickness of 38 mm and a thickness of 38 mm is placed.
加圧体7は、焼結時において原料粉末を加圧し焼結銅合
金3の密度を向上させるために用いられるものであるが
、この加圧体7を直接原料板P上に載せると、合成樹脂
バインダ等より生しる分解ガスのガス抜き性が悪く、ま
た原料板Pにおける外周部の、結合力を失った原料粉末
が分解ガスの噴出圧により飛散する。そこで加圧体7と
原料板Pとの間に原料板Pよりも大きな前記シート6を
介在させ、その通気性を利用してガス排出路を形成し、
また原料粉末の飛散を防止する。このような使用目的を
十分に達成するためには、原料板Pの大きさとシート6
の厚さとの間に相関関係がある。例えば、原料板Pの厚
さ2酊において、その大きさが縦80龍、横80mmで
はシート6の厚さは1wm、縦200wm、横200
鰭ではシート6の厚さは2龍となる。なお、前記厚さを
有する原料板Pの大きさが縦60璽−1横60龍以下で
ある場合、合成樹脂バインダ等の熱分解が極めて遅い場
合等においてはシート6が無くても分解ガスのガス抜き
が容易に行われ、また原料粉末の飛散は生しない。The pressurizing body 7 is used to press the raw material powder during sintering to improve the density of the sintered copper alloy 3, but if this pressurizing body 7 is placed directly on the raw material plate P, the synthesis The degassing performance of the decomposed gas generated from the resin binder and the like is poor, and the raw material powder on the outer periphery of the raw material plate P that has lost its binding strength is scattered by the ejection pressure of the decomposed gas. Therefore, the sheet 6, which is larger than the raw material plate P, is interposed between the pressurizing body 7 and the raw material plate P, and a gas discharge path is formed using its breathability.
It also prevents the raw material powder from scattering. In order to fully achieve this purpose, the size of the raw material plate P and the sheet 6 must be
There is a correlation between the thickness of For example, if the thickness of the raw material plate P is 2 mm, and its size is 80 mm long and 80 mm wide, the thickness of the sheet 6 is 1 wm, 200 wm long, and 200 mm wide.
In the fin, the thickness of the sheet 6 is 2 mm. In addition, when the size of the raw material plate P having the above-mentioned thickness is less than 60 x 1 x 60 x 1 x 60 x 1, and when the thermal decomposition of synthetic resin binder etc. is extremely slow, the decomposition gas will not be released even without the sheet 6. Degassing is easy, and the raw material powder does not scatter.
ガス抜き用シート6は、原料粉末の焼結温度でその粉末
および加圧体7に対して非融着性を持つことが必要であ
る。この要件を満たす材料としては前記セラミックファ
イバの外にアスベスト、ロックウール等が該当する。ま
たシート6を用いない場合には、原料粉末に対する加圧
体7の融着を防止すべく、加圧体7に離型剤を塗布する
、加圧体7と原料板Pとの間にアルミナ等のセラミック
体を介在させる等の手段を採用する。The degassing sheet 6 is required to have non-adhesive properties to the powder and the pressurizing body 7 at the sintering temperature of the raw material powder. Materials that meet this requirement include asbestos, rock wool, and the like, in addition to the ceramic fibers. In addition, when the sheet 6 is not used, a mold release agent is applied to the pressurizing body 7 in order to prevent the pressurizing body 7 from fusing to the raw material powder. A method such as interposing a ceramic body such as the like is adopted.
前記積層物を真空焼結炉8内に設置して第3図に示す加
熱条件で合成樹脂バインダおよびアクリル系接着剤の熱
分解、原料粉末の焼結およびベース材に対する焼結銅合
金の溶着を行う。キャリアガスとしては窒素ガスが用い
られ、真空度は1Torrである。The laminate was placed in a vacuum sintering furnace 8, and the synthetic resin binder and acrylic adhesive were thermally decomposed, the raw material powder was sintered, and the sintered copper alloy was welded to the base material under the heating conditions shown in FIG. conduct. Nitrogen gas is used as a carrier gas, and the degree of vacuum is 1 Torr.
+a) 第1加熱ゾーン(第3図AI)この加熱ゾー
ンA、は常温から600°Cまでである。常温からの昇
温速度は20°C/分で、炉内は600℃にて60分間
恒温状態に保持される。+a) First heating zone (FIG. 3 AI) This heating zone A is from room temperature to 600°C. The temperature increase rate from room temperature was 20°C/min, and the inside of the furnace was maintained at a constant temperature of 600°C for 60 minutes.
この加熱ゾーンA、では、先ず、積層物の水分が蒸発し
、次いで560℃以上600℃以下の樹脂分解温度域で
合成樹脂バインダ中の四フッ化エチレン樹脂およびアク
リル樹脂並びにアクリル系接着剤が熱分解されてガス化
する。分解ガスは原料粉末の構成粉末間よりシート6を
通じて排出され粉末成形体が残置される。この樹脂分解
温度域では、樹脂分の分解が緩徐に行われるので粉末成
形体の形状変化は殆ど生じない。またベース材2の外周
部に在る結合力を失った原料粉末の飛散はソート6によ
り防止される。In this heating zone A, the moisture in the laminate is first evaporated, and then the tetrafluoroethylene resin, acrylic resin, and acrylic adhesive in the synthetic resin binder are heated in the resin decomposition temperature range of 560°C to 600°C. Decomposed and gasified. The decomposed gas is discharged from between the constituent powders of the raw material powder through the sheet 6, leaving behind a powder compact. In this resin decomposition temperature range, the resin component decomposes slowly, so that the shape of the powder compact hardly changes. Furthermore, the sorting 6 prevents the raw material powder that has lost its bonding strength from scattering around the outer periphery of the base material 2.
(b) 第2加熱ゾーン(第3図Aりこの加熱ゾーン
A2は800℃以上900℃未満である。第1加熱ヅー
ンA1からの昇温速度は20°C/分で、炉内は800
℃以上900℃未満の温度にて30分間恒温状態に保持
される。この加熱ゾーンA2は粉末成形体の固相線温度
域で粉末成形体およびベース材2の均熱化が図られる。(b) Second heating zone (Fig. 3 A Riko's heating zone A2 has a temperature of 800°C or more and less than 900°C. The temperature increase rate from the first heating zone A1 is 20°C/min, and the temperature inside the furnace is 800°C or higher and lower than 900°C.
It is maintained at a constant temperature for 30 minutes at a temperature of .degree. C. or more and less than 900.degree. In this heating zone A2, the powder compact and the base material 2 are uniformly heated in the solidus temperature range of the powder compact.
この加熱処理により原料粉末間の結合が成程度進行する
ので、粉末成形体は仮焼結状態となり、保形性が良好と
なる。This heat treatment promotes the bonding between the raw material powders, so that the powder compact becomes a pre-sintered state and has good shape retention.
(C)第3加熱ゾーン(第3図A3)
この加熱ゾーンA3は900 ’C以上1050℃以下
である。第2加熱ゾーンA2からの昇温速度は10’C
/分で、炉内は900℃以上1050℃以下の温度にて
30分間恒温状態に保持される。(C) Third heating zone (A3 in FIG. 3) The temperature in this heating zone A3 is 900'C or more and 1050C or less. The temperature increase rate from the second heating zone A2 is 10'C
/min, and the inside of the furnace is maintained at a constant temperature for 30 minutes at a temperature of 900° C. or more and 1050° C. or less.
この加熱ゾーンA3は、原料粉末において固相と液相が
共存する手法相温度域であり、液相により固相間の気孔
が埋められ、また加圧体7の加圧力により液相の流動が
増進されて焼結が進行し、密度の高い焼結銅合金3が得
られる。同時に焼結銅合金3かベース材2に溶着する。This heating zone A3 is a process phase temperature range where a solid phase and a liquid phase coexist in the raw material powder, and the liquid phase fills the pores between the solid phases, and the pressure of the pressurizing body 7 prevents the liquid phase from flowing. The sintering progresses and a sintered copper alloy 3 with high density is obtained. At the same time, the sintered copper alloy 3 is welded to the base material 2.
この場合ニッケルがリンと合金化してそのろう材として
の機能によりベース材2に対する焼結銅合金3の溶着が
確実に行われる。In this case, nickel is alloyed with phosphorus, and its function as a brazing material ensures that the sintered copper alloy 3 is welded to the base material 2.
この加熱ゾーンA、では、原料粉末における液相の流動
が緩慢であるから黒鉛の浮遊、偏析が発生せず、したが
って焼結銅合金の潤滑性はその全体に亘って均等となる
。In this heating zone A, the flow of the liquid phase in the raw material powder is slow, so floating and segregation of graphite does not occur, and therefore the lubricity of the sintered copper alloy is uniform throughout.
(di 冷却ゾーン(第3図B)
真空焼結炉8内に、その内部気圧が50011mHgと
なるまで窒素ガスを導入し、冷却ファンにより窒素ガス
を循環させて焼結銅合金3、ベース材2等を冷却する。(di cooling zone (Fig. 3B) Nitrogen gas is introduced into the vacuum sintering furnace 8 until the internal pressure reaches 50011 mHg, and the nitrogen gas is circulated by a cooling fan to cool the sintered copper alloy 3 and the base material 2. etc. to cool down.
上記加熱冷却工程を経て第1図に示す摺動部材lが得ら
れる。The sliding member l shown in FIG. 1 is obtained through the heating and cooling process described above.
焼結銅合金3は密度 6.3g/cm3、ロックウェル
硬さHMI335以上、気孔率 13%であり、その外
周部の欠落も生じていなかった。Sintered copper alloy 3 had a density of 6.3 g/cm 3 , a Rockwell hardness of HMI 335 or higher, and a porosity of 13%, and no chipping occurred on the outer periphery.
前記摺動部材1を、それに機械加工および含油処理を施
した後プレス機のウェアプレートとして用い、機能テス
トを行ったところ表1の結果が得られた。表中、Aは前
記工程を経て得られた摺動部材に、Bは比較例としての
鋳鉄に黒鉛を埋め込んだ摺動部材にそれぞれ該当する。The sliding member 1 was subjected to mechanical processing and oil impregnation treatment, and then used as a wear plate of a press machine, and a functional test was conducted, and the results shown in Table 1 were obtained. In the table, A corresponds to the sliding member obtained through the above process, and B corresponds to a sliding member obtained by embedding graphite in cast iron as a comparative example.
また相手祠において鋳鉄十黒鉛は比較例Bと同一の構成
を有する。In addition, in the mating shrine, the cast iron ten graphite has the same structure as Comparative Example B.
表 ■
表1から明らかなように摺動部材Aは比較例Bと略同等
の耐摩耗性を(iiffえ、優れた摺動特性を有する。Table 1 As is clear from Table 1, sliding member A has approximately the same wear resistance as Comparative Example B (iiff) and excellent sliding properties.
表■は、ニッケル 28.7重量%、スズ 8.5重量
%、リン 0.63重量%を含有する銅合金粉末に対し
モリブデン粉末(Mo)および黒鉛粉末(G)の配合量
を種々変更した原料粉末を用いて前記同様に原料シート
を製造し、その原料シートから裁断された原料板を10
40℃、20分間加熱の焼結条件下で真空焼結して得ら
れた焼結銅合金のロックウェル硬さHRBを示す。Table ■ shows that the blending amounts of molybdenum powder (Mo) and graphite powder (G) were varied in copper alloy powder containing 28.7% by weight of nickel, 8.5% by weight of tin, and 0.63% by weight of phosphorus. A raw material sheet is manufactured in the same manner as described above using raw material powder, and the raw material sheet cut from the raw material sheet is
The Rockwell hardness HRB of a sintered copper alloy obtained by vacuum sintering under sintering conditions of heating at 40° C. for 20 minutes is shown.
表 ■
表nから明らかなように、黒鉛含有量の減少に伴い焼結
銅合金の硬さが向上し、また同一黒鉛含有量においてモ
リブデン含有量の増加に伴い硬ざが向上する。これによ
り焼結銅合金の耐摩耗性の向上が図られる。Table 2 As is clear from Table n, the hardness of the sintered copper alloy improves as the graphite content decreases, and the hardness improves as the molybdenum content increases at the same graphite content. This improves the wear resistance of the sintered copper alloy.
第4図は焼結銅合金の圧縮強さを示し、この圧縮強さは
モリブデンの含有量とは関係がなく、黒鉛含有量の増加
に伴い減少することが明らかである。プレス機のウェア
プレート等の摺動部材に要求される圧縮強さは17〜2
5kg/n”であり、これを満足するためには黒鉛含有
量を1〜2.5重量%に設定する必要がある。FIG. 4 shows the compressive strength of the sintered copper alloy, and it is clear that this compressive strength is independent of the molybdenum content and decreases with increasing graphite content. The compressive strength required for sliding parts such as press wear plates is 17 to 2.
5 kg/n'', and in order to satisfy this, it is necessary to set the graphite content to 1 to 2.5% by weight.
C1発明の効果
本発明によれば、潤滑性粉末としてモリブデン粉末と黒
鉛粉末との混合粉末を用いるので、モリブデンの含有量
に応じて黒鉛の含有量を減少させることができ、これに
より黒鉛含有量の減少に基づいて優れた圧縮強さを有し
、またモリブデンの添加に基づいて靭性、したがって耐
衝撃特性を向上させた耐摩耗性の良好な自己潤滑性焼結
銅合金を得ることができる。C1 Effects of the Invention According to the present invention, since a mixed powder of molybdenum powder and graphite powder is used as the lubricating powder, the graphite content can be reduced in accordance with the molybdenum content. It is possible to obtain self-lubricating sintered copper alloys with good wear resistance, which have excellent compressive strength due to the reduction of , and also have improved toughness and therefore impact resistance properties based on the addition of molybdenum.
また原料粉末を、それと合成樹脂バインダとの混合物よ
り得られた成形体の形態で用いるので、原料粉末の取扱
性が良好で焼結銅合金の生産能率を向上させることがで
きる。この場合、合成樹脂バインダは樹脂分解温度域で
熱分解され、その分解ガスは原料粉末の構成粉末間より
排出されるので、焼結銅合金における残留ガスに起因し
た巣の発生、有害ガス成分の侵入等の不具合を確実に回
避することができる。その上前記温度域では合成樹脂バ
インダの熱分解が緩徐に行われるので、残置された粉末
成形体は前記成形体と略同−の形状を有し、したがって
粉末成形体の変形を抑制することができる。Further, since the raw material powder is used in the form of a molded body obtained from a mixture of the raw material powder and the synthetic resin binder, the raw material powder can be easily handled and the production efficiency of the sintered copper alloy can be improved. In this case, the synthetic resin binder is thermally decomposed in the resin decomposition temperature range, and the decomposed gas is emitted from between the constituent powders of the raw material powder, resulting in the formation of cavities due to residual gas in the sintered copper alloy, and the removal of harmful gas components. Problems such as intrusion can be reliably avoided. Furthermore, since thermal decomposition of the synthetic resin binder occurs slowly in the above temperature range, the powder compact left behind has approximately the same shape as the compact, and therefore deformation of the powder compact can be suppressed. can.
さらに粉末成形体は固相線温度域で均熱化されるので、
焼結時における粉末成形体の局部的な溶出、したがって
焼結銅合金の変形を防止することができる。Furthermore, since the powder compact is uniformly heated in the solidus temperature range,
Local elution of the powder compact during sintering and therefore deformation of the sintered copper alloy can be prevented.
さらにまた粉末成形体は液相と同相が共存する半成相温
度域で焼結されるので、黒鉛の浮遊、偏析が発生せず、
したがって焼結銅合金の潤滑特性をその全体に亘って均
等にすることができる。また液相により固相間の気孔が
埋められるので、焼結銅合金の密度を向上させることが
できる。Furthermore, since the powder compact is sintered in the semi-phase temperature range where the liquid phase and the same phase coexist, floating and segregation of graphite does not occur.
Therefore, the lubrication properties of the sintered copper alloy can be made uniform throughout. Furthermore, since the pores between the solid phases are filled with the liquid phase, the density of the sintered copper alloy can be improved.
第1図は摺動部材の斜視図、第2図は摺動部材の製造工
程説明図、第3図は焼結工程における時間と温度の関係
を示すグラフ、第4図は焼結銅合金における黒鉛含有量
と圧縮強さの関係を示すグラフである。
S・・・成形体としての原料シート、3・・・焼結銅合
金
特 許 出 願 人 本田技研工業株式会社第2図
(a) (b)(f)
番
(d)Figure 1 is a perspective view of the sliding member, Figure 2 is an explanatory diagram of the manufacturing process of the sliding member, Figure 3 is a graph showing the relationship between time and temperature in the sintering process, and Figure 4 is a graph showing the relationship between time and temperature in the sintered copper alloy. It is a graph showing the relationship between graphite content and compressive strength. S...Raw material sheet as a compact, 3...Sintered copper alloy patent applicant Honda Motor Co., Ltd. Figure 2 (a) (b) (f) No. (d)
Claims (1)
潤滑性粉末としてモリブデン粉末および黒鉛粉末を添加
してなる原料粉末と合成樹脂バインダとの混合物より成
形体を得る工程と;前記成形体を550℃以上650℃
以下の樹脂分解温度域に保持し、前記合成樹脂バインダ
を熱分解して前記原料粉末からなる粉末成形体を残置す
る工程と;前記粉末成形体を800℃以上900℃未満
の固相線温度域に保持して均熱化する工程と;前記粉末
成形体を900℃以上1050℃以下の半液相温度域に
保持して該粉末成形体より焼結銅合金を得る工程と;を
用いることを特徴とする自己潤滑性焼結銅合金の製造方
法。Copper alloy powder containing nickel, tin and phosphorus,
A step of obtaining a molded body from a mixture of a raw material powder obtained by adding molybdenum powder and graphite powder as lubricating powder and a synthetic resin binder;
A step of thermally decomposing the synthetic resin binder and leaving a powder molded body made of the raw material powder while maintaining the resin decomposition temperature in the following resin decomposition temperature range; holding the powder compact in a semi-liquid temperature range of 900°C or more and 1050°C or less to obtain a sintered copper alloy from the powder compact; A method for producing a self-lubricating sintered copper alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60274212A JPH066721B2 (en) | 1985-12-05 | 1985-12-05 | Method for producing self-lubricating sintered copper alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60274212A JPH066721B2 (en) | 1985-12-05 | 1985-12-05 | Method for producing self-lubricating sintered copper alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62133028A true JPS62133028A (en) | 1987-06-16 |
JPH066721B2 JPH066721B2 (en) | 1994-01-26 |
Family
ID=17538594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60274212A Expired - Lifetime JPH066721B2 (en) | 1985-12-05 | 1985-12-05 | Method for producing self-lubricating sintered copper alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH066721B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01108304A (en) * | 1987-10-19 | 1989-04-25 | Oiles Ind Co Ltd | Production of sintered sliding member consisting of double layers |
US8303184B1 (en) * | 2008-06-11 | 2012-11-06 | AquaMotion, Inc. | Motor pump bearing |
US9328736B2 (en) | 2008-06-11 | 2016-05-03 | AquaMotion, Inc. | Motor pump bearing |
CN116140618A (en) * | 2023-02-28 | 2023-05-23 | 长沙百通新材料科技有限公司 | Preparation method of continuous sintering bead |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5182871A (en) * | 1975-01-18 | 1976-07-20 | Nippon Kokuen Kogyo Kk | |
JPS57101603A (en) * | 1980-12-16 | 1982-06-24 | Oiles Ind Co Ltd | Sintered sliding component comprising plural layers and preparation thereof |
JPS60221506A (en) * | 1984-04-17 | 1985-11-06 | Honda Motor Co Ltd | Formation of sliding surface in machine tool |
-
1985
- 1985-12-05 JP JP60274212A patent/JPH066721B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5182871A (en) * | 1975-01-18 | 1976-07-20 | Nippon Kokuen Kogyo Kk | |
JPS57101603A (en) * | 1980-12-16 | 1982-06-24 | Oiles Ind Co Ltd | Sintered sliding component comprising plural layers and preparation thereof |
JPS60221506A (en) * | 1984-04-17 | 1985-11-06 | Honda Motor Co Ltd | Formation of sliding surface in machine tool |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01108304A (en) * | 1987-10-19 | 1989-04-25 | Oiles Ind Co Ltd | Production of sintered sliding member consisting of double layers |
US8303184B1 (en) * | 2008-06-11 | 2012-11-06 | AquaMotion, Inc. | Motor pump bearing |
US9328736B2 (en) | 2008-06-11 | 2016-05-03 | AquaMotion, Inc. | Motor pump bearing |
CN116140618A (en) * | 2023-02-28 | 2023-05-23 | 长沙百通新材料科技有限公司 | Preparation method of continuous sintering bead |
Also Published As
Publication number | Publication date |
---|---|
JPH066721B2 (en) | 1994-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2172029C (en) | A metal sintered body composite material and a method for producing the same | |
JP4215285B2 (en) | Self-lubricating sintered sliding material and manufacturing method thereof | |
EP1440751B1 (en) | Production method of a sintered body | |
JPS62133027A (en) | Manufacture of sintered copper alloy having self lubricating property, material sheet and powder for sintered copper alloy | |
CN1018657B (en) | Heat-resistant antifriction self-lubricating material and its manufacturing method | |
US3983615A (en) | Sliding seal member for an internal combustion engine | |
JPS62133028A (en) | Manufacture of self lubricative sintered copper alloy | |
US3791800A (en) | Powder metallurgy aluminum parts | |
JPH07300656A (en) | Sintered bearing alloy for high temperature use and its production | |
US5553767A (en) | Soldering iron tip made from a copper/iron alloy composite | |
JPH07166278A (en) | Coppery sliding material and production thereof | |
JPH0639605B2 (en) | Multi-layer sintered sliding member with cast iron backing | |
JPS62146995A (en) | Production of single and composite sliding materials | |
JPS62146228A (en) | Manufacture of self lubricating sintered copper alloy | |
JPS62133007A (en) | Production of self-lubricative sliding member | |
JP3835103B2 (en) | Sintered alloy and method of hardening the same | |
JPH07151172A (en) | Composite friction material | |
JP3397332B2 (en) | Sintered sliding member and manufacturing method thereof | |
JP3332393B2 (en) | Sintered sliding member and manufacturing method thereof | |
JP3578409B2 (en) | Manufacturing method of sintered sliding member | |
JPH0662979B2 (en) | Method for manufacturing sliding member | |
JPH0689361B2 (en) | High-strength iron-based powder with excellent machinability and method for producing the same | |
JPH0243579B2 (en) | ||
KR0183227B1 (en) | A metal sintered body composite material and method for producing the same | |
JP3397333B2 (en) | Sintered sliding member and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |