JPS62132940A - Formation of plasma polymerization thin film on high polymer base material - Google Patents

Formation of plasma polymerization thin film on high polymer base material

Info

Publication number
JPS62132940A
JPS62132940A JP27389585A JP27389585A JPS62132940A JP S62132940 A JPS62132940 A JP S62132940A JP 27389585 A JP27389585 A JP 27389585A JP 27389585 A JP27389585 A JP 27389585A JP S62132940 A JPS62132940 A JP S62132940A
Authority
JP
Japan
Prior art keywords
plasma
treatment
thin film
gas
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27389585A
Other languages
Japanese (ja)
Inventor
Shigeru Asako
茂 浅古
Koichi Okita
晃一 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP27389585A priority Critical patent/JPS62132940A/en
Publication of JPS62132940A publication Critical patent/JPS62132940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To form a plasma polymerization thin film having improved durability on the surface of a high polymer base material, by initially carrying out the first plasma treatment by a nonpolymerizable gas on the surface of the high polymer base material, plasma polymerization treatment under reduced pressure and then the second plasma treatment. CONSTITUTION:The surface of a high polymer base material is subjected to the first plasma treatment by glow discharge in an atmosphere of a nonpolymerizable gas, e.g. rare gas, H2, CO, N2, O2, etc., or a mixed gas thereof, etc., under reduced pressure, e.g. 0.05-5Torr, at 5-500W discharge output for 30sec-20min treatment time and then plasma polymerization treatment by glow discharge while feeding a monomer under sustained reduced pressure and subsequently to the second plasma treatment by glow discharge while feeding a nonpolymerizable gas, preferably rare gas of H2 under sustained reduced pressure to form a plasma polymerization thin film having improved durability thereon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラズマ励起反応を利用した高分子基材表面
への重合薄膜形成方法に関し、更に詳しくは、プラズマ
処理とプラズマ重合処理を組み合わせる、ことで、耐久
性の優れたプラズマ重合薄膜を形成する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of forming a polymeric thin film on the surface of a polymer substrate using a plasma excitation reaction, and more specifically, a method of forming a thin polymer film on the surface of a polymer substrate using a plasma excitation reaction. This invention relates to a method for forming a plasma-polymerized thin film with excellent durability.

〔従来の技術と問題点〕[Conventional technology and problems]

近年プラズマ励起反応を用いた重合体薄膜の形成あるい
は表面改質の研究が盛んである。減圧下のグロー放電に
よって行なわれるプラズマ重合反応は、基材の表面層で
のみ起り、バルクの特質を変えることなく、その表面層
を改質し、多種多様の機能性を付与することができる。
In recent years, research on the formation of polymer thin films or surface modification using plasma-induced reactions has been active. The plasma polymerization reaction carried out by glow discharge under reduced pressure occurs only in the surface layer of the substrate, and can modify the surface layer and impart a wide variety of functionalities without changing the bulk properties.

例えばポリオレフィン樹脂または弗素樹脂からなる成形
体の表面に有機ケイ素化合物または有機スズ化合物によ
るプラズマ重合処理を行うことで接着性を上げている。
For example, adhesiveness is improved by subjecting the surface of a molded article made of polyolefin resin or fluororesin to plasma polymerization treatment with an organosilicon compound or an organotin compound.

(特開昭57−147527 )また弗素樹脂あるいは
塩化ビニル樹脂の成形品に有機ケイ素化合物のプラズマ
重合処理を行う−ことで、帯電防止性をもたせている。
(Japanese Patent Application Laid-Open No. 57-147527) Furthermore, antistatic properties are imparted to molded articles of fluororesin or vinyl chloride resin by subjecting them to plasma polymerization treatment of organosilicon compounds.

(特開昭57−123232、同57−202323)
あるいは、繊維構造物の表面にテトラフルオロエチレン
やメチルメタクリレートモノマーによるプラズマ重合膜
を形成し、繊維の色の深みを改善している。(特開昭5
3−111192 )このようにプラズマ重合処理は、
適切なモノマーを採用することにより、基材表面の接着
性や濡れ性、光学的特性や絶縁性、あるいは物質透過性
などの性質を変えることができる。しかしながら基材表
面に形成されたプラズマ重合薄膜は、次のような2つの
主な理由から耐久性を;問題があった。1つは高分子基
材との接着性が基材の種類により必ずしも良くなく、熱
や摩擦により容易に基材からはがれる場合が多かった。
(Unexamined Japanese Patent Publication No. 57-123232, No. 57-202323)
Alternatively, a plasma polymerized film of tetrafluoroethylene or methyl methacrylate monomer is formed on the surface of the fiber structure to improve the depth of the color of the fiber. (Unexamined Japanese Patent Publication No. 5
3-111192) In this way, plasma polymerization treatment
By employing appropriate monomers, properties such as adhesiveness, wettability, optical properties, insulation properties, and substance permeability of the substrate surface can be changed. However, the plasma polymerized thin film formed on the surface of a substrate has problems with durability due to the following two main reasons. One is that the adhesion to the polymer base material is not necessarily good depending on the type of base material, and it often peels off easily from the base material due to heat or friction.

もう1つは、基材表面J/?:、形成されたプラズマ重
合薄膜の特性が経時変化して劣化するという問題があっ
た。この2つの理由からプラズマ重合薄膜の実用化は極
めて限定されていた。
The other is the base material surface J/? : There was a problem that the properties of the formed plasma-polymerized thin film changed over time and deteriorated. For these two reasons, the practical application of plasma polymerized thin films has been extremely limited.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、上記問題点の解決を鋭意検討した結果、高
分子基材表面に初め非重合性ガス雰囲気中のグロー放電
による第1のプラズマ処理を行い、次に減圧下のままモ
ノマーを供給してグロー放電によるプラズマ重合処理を
行い、更に続けて減産下のまま、非重合性ガスを供給し
てグロー放電による第2のプラズマ処理を行うことで、
耐久性に優れたプラズマ重合薄膜を基材表面に形成させ
られることを、見い出し本発明を完成させた。
As a result of intensive study to solve the above problems, the present inventor first performed a first plasma treatment on the surface of a polymeric substrate using glow discharge in a non-polymerizable gas atmosphere, and then supplied a monomer under reduced pressure. Then, by performing plasma polymerization treatment by glow discharge, and then continuing to supply a non-polymerizable gas and performing a second plasma treatment by glow discharge while reducing production,
The present invention was completed based on the discovery that a highly durable plasma polymerized thin film could be formed on the surface of a substrate.

〔作用〕[Effect]

本発明を第1のプラズマ処理から説明する。初めに基材
表面を減圧下、非重合性ガス雰囲気中のグロー放電)て
よりプラズマ処理する。このプラズマ処理により基材表
面は清浄化され、フリーラジカルによる活性サイトが生
成される。このような活性の高められた表面は、次に形
成されるプラズマ重合薄膜と基材の密着性を著しく高め
る。
The present invention will be explained starting from the first plasma treatment. First, the surface of the substrate is subjected to plasma treatment under reduced pressure using glow discharge in a non-polymerizable gas atmosphere. This plasma treatment cleans the substrate surface and generates active sites due to free radicals. Such a highly active surface significantly increases the adhesion between the subsequently formed plasma-polymerized thin film and the substrate.

これらは、プラズマ中のイオン、電子、ラジカル、励起
分子あるいは紫外線による物理的、化学的作用はよる。
These depend on the physical and chemical effects of ions, electrons, radicals, excited molecules, and ultraviolet rays in plasma.

この第1のプラズマ処理で用いられるガスは、Ar、 
He等の希ガス、Hl、、C01CO,、歯、O2、N
Hs、HgOが挙げられる。希ガス、H2は非反応性ガ
スで、スパッタリング現象や表面層の励起分解により、
基材表面の清浄化をなす。一方、他のガスは反応性ガス
で一部は、カルボニル基やカルボキシル基、アミノ基や
OH基となって高分子基材の表面にとりこまれ、活性に
富んだ表面層を形成する、プラズマ処理の操作条件は、
用いる発振電源や装置形状によって異なるが、一般に圧
力は、0.05To r rから5To r rの範囲
、放電出力は5Wから500W、処理時間は30秒から
30分の間となる。
The gas used in this first plasma treatment is Ar,
Noble gases such as He, Hl, CO1CO, Teeth, O2, N
Examples include Hs and HgO. Rare gas, H2, is a non-reactive gas, and due to sputtering phenomenon and excited decomposition of the surface layer,
Cleans the surface of the base material. On the other hand, other gases are reactive gases, and some of them become carbonyl groups, carboxyl groups, amino groups, and OH groups and are incorporated into the surface of the polymer base material, forming a highly active surface layer. The operating conditions are:
Although it varies depending on the oscillation power source and device shape used, the pressure is generally in the range of 0.05 Torr to 5 Torr, the discharge output is 5 W to 500 W, and the processing time is between 30 seconds and 30 minutes.

出力を高く、また圧力を低くすると、スパッタリング現
象による物理的効果が強くなる。この第1のプラズマ処
理の後、減圧雰囲気を保ったまま、続いてプラズマ重合
処理を行う。これは、−置火気圧に戻すとフリーラジカ
ルが大気成分と反応して消滅し、活性表面の効果が損わ
れるためである。
The higher the power and the lower the pressure, the stronger the physical effects of the sputtering phenomenon. After this first plasma treatment, plasma polymerization treatment is subsequently performed while maintaining the reduced pressure atmosphere. This is because free radicals react with atmospheric components and disappear when the pressure is returned to -, and the effectiveness of the active surface is impaired.

プラズマ重合処理は、モノマーを供給し、グロー放電下
で重合反応を行い、基材表面に重合薄膜を形成するもの
である。プラズマ重合処理は、基材表面に多様な機能性
を付与することができる。例えば親水性を付与したい場
合は、アリルアミンやビニルピリジンあるいは、プロパ
ルギルアルコールやメチルメタクリレートなどの窒素原
子や酸素原子を含む七ツマ−を用いらればよいし、逆に
疎水性を付与したいとすれば、テトラフロロエチレンや
有機ケイ素化合物を用いればよい。テトラフロロエチレ
ンや有機ケイ素化合物は、絶縁性、耐食性、物質透過性
の改変にもよく用いられる七ツマ−である。プラズマ重
合処理は、放電出力、ガス流量、ガス圧力、重合時間を
変えて、膜質、膜厚ヲコントロールする。プラズマ重合
処理は減圧下で行なわれるため、重合膜にピンホールは
なく、薄いコーティングで、様々な機能を付与すること
ができる。本発明では、このプラズマ重合薄膜形成後、
減圧雰囲気を保ったまま、ひき続いて第2のプラズマ処
理を行う。第2のプラズマ処理は、プラズマ重合薄膜の
機能の持続性を高める。プラズマ重合薄膜は経時変化を
受けやすい。その原因は、いくつかの理由が指摘されて
いる。1つは、官能基の分子内回転である。例えばプラ
ズマ重合により親木基を付与しても、空気中におくと、
親木基は表面下に潜り込み、親水性が退行する。もう1
つの指摘は、低分子量重合体の混在である。
In plasma polymerization treatment, a monomer is supplied and a polymerization reaction is performed under glow discharge to form a polymerized thin film on the surface of a substrate. Plasma polymerization treatment can impart various functionalities to the surface of the substrate. For example, if you want to impart hydrophilicity, you can use allylamine, vinyl pyridine, or a heptamine containing nitrogen or oxygen atoms such as propargyl alcohol or methyl methacrylate; conversely, if you want to impart hydrophobicity, use: Tetrafluoroethylene or an organosilicon compound may be used. Tetrafluoroethylene and organosilicon compounds are commonly used to modify insulation, corrosion resistance, and material permeability. In plasma polymerization treatment, film quality and thickness are controlled by changing discharge output, gas flow rate, gas pressure, and polymerization time. Since plasma polymerization treatment is performed under reduced pressure, there are no pinholes in the polymerized film, and a variety of functions can be imparted with a thin coating. In the present invention, after forming this plasma polymerized thin film,
A second plasma treatment is then performed while maintaining the reduced pressure atmosphere. The second plasma treatment enhances the durability of the plasma polymerized film. Plasma polymerized thin films are susceptible to changes over time. Several reasons have been pointed out as the cause. One is intramolecular rotation of functional groups. For example, even if parent wood groups are added by plasma polymerization, if left in the air,
The parent wood group sinks below the surface and the hydrophilicity regresses. One more
One point to note is the presence of low molecular weight polymers.

プラズマ重合薄膜は、一般に網目構造をとるが、均質で
はなく、低分子量部分も存在する。これら部分の劣化が
使用中問題となる。第2のプラズマ処理は、低分子量部
分を揮発あるいは橋かけし、重合薄膜全体を高度に架橋
し、リジットな構造にする効果がある。このため第2の
プラズマ処理を施すことに;よりプラズマ重合薄膜の機
能性は、経時変化を受けにくくなる。第2のプラズマ処
理は、プラズマ重合薄膜本来の機能を損わないようにす
るために、希ガスやH2で行うことが望ましい。
Plasma-polymerized thin films generally have a network structure, but are not homogeneous and also contain low molecular weight portions. Deterioration of these parts becomes a problem during use. The second plasma treatment has the effect of volatilizing or crosslinking the low molecular weight portions, highly crosslinking the entire polymerized thin film, and making it a rigid structure. Therefore, by performing a second plasma treatment, the functionality of the plasma-polymerized thin film becomes less susceptible to changes over time. The second plasma treatment is desirably performed using a rare gas or H2 in order not to impair the original function of the plasma polymerized thin film.

操作条件は、第1のプラズマ処理と類似なものになる。The operating conditions will be similar to the first plasma treatment.

以上のごとく第1.のプラズマ処理、プラズマ重合処理
、第2のプラズマ処理の一連の操作を行うことに;より
、高分子基材に耐久性の優れたプラズマ重合薄膜を形成
することができる。以下本発明を実施例によって説明す
る。
As mentioned above, 1st. By performing a series of operations including the plasma treatment, the plasma polymerization treatment, and the second plasma treatment, a plasma polymerized thin film with excellent durability can be formed on the polymer substrate. The present invention will be explained below with reference to Examples.

実施例 四弗化エチレン樹脂製シートを、プラズマ装置内に置き
、1O−3Torrまで減圧後、N2を導入、系内をQ
、1Torr  に維持した後、13.56MH2の高
周波電源により100Wで5分間の放電処理を行なった
Example A tetrafluoroethylene resin sheet was placed in a plasma device, and after the pressure was reduced to 1O-3 Torr, N2 was introduced and the system was made Q.
After maintaining the pressure at 1 Torr, a discharge treatment was performed at 100 W for 5 minutes using a 13.56 MH2 high frequency power source.

処理後系内を一旦10 ’Torr  まで減圧した後
、4−ビニルピリジンを導入、系内を0.2To r 
r  に維持した後、80wで10分間放電を行い、基
材上にプラズマ重合薄膜を形成した。続いて再び系内を
1O−3Torrまで減圧した後、Arを導入、0.I
To r rの雰囲気で100w、5分間の放電処理を
行なった。
After the treatment, the pressure in the system was reduced to 10 Torr, 4-vinylpyridine was introduced, and the pressure in the system was reduced to 0.2 Torr.
After maintaining the temperature at r 2 , discharge was performed at 80 W for 10 minutes to form a plasma polymerized thin film on the substrate. Subsequently, after reducing the pressure in the system to 10-3 Torr again, Ar was introduced and the pressure was reduced to 0. I
Discharge treatment was performed at 100 W for 5 minutes in a Torr atmosphere.

この一連の処理を行なった試料について水の接触角の測
定、および接着強度の測定を行なった。この測定は、■
処理後1時間以内に実施 ■処理後30日経過後に実施
 ■処理後、空気中200°C雰囲気に1時間放置後実
施 の3条件で行い、耐久性を調べた。
The water contact angle and adhesive strength of the sample subjected to this series of treatments were measured. This measurement is
Durability was investigated under three conditions: (1) carried out within 1 hour after treatment; (2) carried out 30 days after treatment; and (2) carried out after being left in the air at 200°C for 1 hour after treatment.

結果を表−1に示す。The results are shown in Table-1.

表−1 なお接着強度の測定は、試料を巾25岨長さ75mmに
2枚裁断し、うち1枚の先端部長さ25飾の範囲にアラ
ルダイト(チバガイギー社製)を塗布し、他の1枚を密
着させ、5σCで7日間放置後、試験片をはく離速度2
0輌V分ではく離させ、求めた。
Table 1 To measure the adhesive strength, cut the sample into two sheets with a width of 25 mm and a length of 75 mm, apply Araldite (manufactured by Ciba Geigy) to the area of 25 mm in the tip end of one sheet, and After adhering to the test piece and leaving it at 5σC for 7 days, the test piece was peeled off at
It was determined by peeling off at 0 V minutes.

比較例 実施例で用いたと同じシートを、プラズマ装置内に置き
、10−’Torr  まで減圧後、プラズマ処理を行
うことなく、即ちK 4−ビニルピリジンを導入、実施
例と同一条件でプラズマ重合薄膜を形成し、その後大気
雰囲気にとり出し実施例と同一の測定を行なった。
Comparative Example The same sheet used in the example was placed in a plasma apparatus, and after the pressure was reduced to 10-' Torr, a plasma polymerized thin film was formed under the same conditions as in the example without plasma treatment, that is, by introducing K4-vinylpyridine. was formed, and then taken out into the air and subjected to the same measurements as in the example.

結果を表−2に示す。The results are shown in Table-2.

表−2 〔本発明の効果〕 本発明による高分子基材表面へのプラズマ重合薄膜形成
方法は、非重合性ガスによる第1のプラズマ処理で、基
材表面の清浄化、活性化を行い、次に減圧下のまま、゛
モノマーを供給してプラズマ重合薄膜を形成して、基材
表面に機能性を付与し、次に続けて減圧下のまま、非重
合性ガスによる第2のプラズマ処理を行い、形成したプ
ラズマ重合薄膜の低分子量部分を除去し、架橋密度を高
めるという一連の処理を行うことで、高分子基材表面に
耐久性の優れたプラズマ重合薄膜を与えることになる。
Table 2 [Effects of the present invention] The method of forming a plasma polymerized thin film on the surface of a polymer substrate according to the present invention cleans and activates the surface of the substrate in the first plasma treatment with a non-polymerizable gas, Next, while under reduced pressure, a monomer is supplied to form a plasma polymerized thin film to impart functionality to the surface of the substrate, followed by a second plasma treatment with a non-polymerizable gas while remaining under reduced pressure. By performing a series of treatments to remove the low molecular weight portion of the formed plasma-polymerized thin film and increase the crosslinking density, a highly durable plasma-polymerized thin film can be provided on the surface of the polymer substrate.

Claims (3)

【特許請求の範囲】[Claims] (1)高分子基材にプラズマ重合薄膜を形成するさいに
、該高分子基材表面へ初めに非重合性ガス雰囲気中のグ
ロー放電による第1のプラズマ処理を行い、次に減圧下
のまま、モノマーを供給してグロー放電によるプラズマ
重合処理を行い、続けて減圧下のまま、非重合性ガスを
供給してグロー放電による第2のプラズマ処理を行うこ
とを特徴とする高分子基材へのプラズマ重合薄膜形成方
法。
(1) When forming a plasma-polymerized thin film on a polymer substrate, the surface of the polymer substrate is first subjected to a first plasma treatment using glow discharge in a non-polymerizable gas atmosphere, and then left under reduced pressure. , to a polymer base material characterized in that a monomer is supplied and plasma polymerization treatment is performed by glow discharge, and then a non-polymerizable gas is supplied under reduced pressure and a second plasma treatment is performed by glow discharge. plasma polymerized thin film formation method.
(2)第1のプラズマ処理において、非重合性ガスが、
希ガス、H_2、CO、CO_2、N_2、O_2、N
H_3、H_2Oの1種または、これらの混合ガスであ
ることを特徴とする特許請求の範囲第1項記載の高分子
基材へのプラズマ重合薄膜形成方法。
(2) In the first plasma treatment, the non-polymerizable gas
Noble gas, H_2, CO, CO_2, N_2, O_2, N
2. The method of forming a plasma polymerized thin film on a polymer substrate according to claim 1, wherein the gas is one of H_3, H_2O, or a mixture thereof.
(3)第2のプラズマ処理において、非重合性ガスが希
ガスまたはH_2であることを特徴とする特許請求の範
囲第1項記載の高分子基材へのプラズマ重合薄膜形成方
法。
(3) The method for forming a plasma-polymerized thin film on a polymer substrate according to claim 1, wherein in the second plasma treatment, the non-polymerizable gas is a rare gas or H_2.
JP27389585A 1985-12-04 1985-12-04 Formation of plasma polymerization thin film on high polymer base material Pending JPS62132940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27389585A JPS62132940A (en) 1985-12-04 1985-12-04 Formation of plasma polymerization thin film on high polymer base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27389585A JPS62132940A (en) 1985-12-04 1985-12-04 Formation of plasma polymerization thin film on high polymer base material

Publications (1)

Publication Number Publication Date
JPS62132940A true JPS62132940A (en) 1987-06-16

Family

ID=17534066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27389585A Pending JPS62132940A (en) 1985-12-04 1985-12-04 Formation of plasma polymerization thin film on high polymer base material

Country Status (1)

Country Link
JP (1) JPS62132940A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262208A (en) * 1992-04-06 1993-11-16 Plasma Plus Gas plasma treatment for archival preservation of manuscripts and the like
JPH10507705A (en) * 1996-04-04 1998-07-28 シグマ ラボラトリーズ オブ アリゾナ インコーポレーテッド Hybrid polymer film
DE3908418C2 (en) * 1989-03-15 1999-06-02 Buck Chem Tech Werke Process for the internal coating of plastic containers and device for coating
US6372304B1 (en) 1996-07-10 2002-04-16 Suzuki Motor Corporation Method and apparatus for forming SiC thin film on high polymer base material by plasma CVD
JP2009013310A (en) * 2007-07-05 2009-01-22 Nippon Valqua Ind Ltd Method for modifying surface of fluororesin molding
WO2014196312A1 (en) * 2013-06-03 2014-12-11 Nok株式会社 Resin-rubber composite
WO2016104471A1 (en) * 2014-12-24 2016-06-30 株式会社ジェイテクト Resin member production method
WO2017030190A1 (en) * 2015-08-20 2017-02-23 旭硝子株式会社 Multilayer base and method for producing molded body of same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3908418C2 (en) * 1989-03-15 1999-06-02 Buck Chem Tech Werke Process for the internal coating of plastic containers and device for coating
US5262208A (en) * 1992-04-06 1993-11-16 Plasma Plus Gas plasma treatment for archival preservation of manuscripts and the like
US6838183B2 (en) 1994-11-04 2005-01-04 Sigma Laboratories Of Arizona, Inc. Optical filters
US6594134B2 (en) 1994-11-04 2003-07-15 Sigma Laboratories Of Arizona, Inc. Polymer film capacitor
US6706412B2 (en) 1994-11-04 2004-03-16 Sigma Laboratories Of Arizona Barrier film for limiting transmission of oxygen and moisture therethrough
JPH10507705A (en) * 1996-04-04 1998-07-28 シグマ ラボラトリーズ オブ アリゾナ インコーポレーテッド Hybrid polymer film
US6372304B1 (en) 1996-07-10 2002-04-16 Suzuki Motor Corporation Method and apparatus for forming SiC thin film on high polymer base material by plasma CVD
JP2009013310A (en) * 2007-07-05 2009-01-22 Nippon Valqua Ind Ltd Method for modifying surface of fluororesin molding
WO2014196312A1 (en) * 2013-06-03 2014-12-11 Nok株式会社 Resin-rubber composite
JPWO2014196312A1 (en) * 2013-06-03 2017-02-23 Nok株式会社 Resin rubber compound
WO2016104471A1 (en) * 2014-12-24 2016-06-30 株式会社ジェイテクト Resin member production method
WO2017030190A1 (en) * 2015-08-20 2017-02-23 旭硝子株式会社 Multilayer base and method for producing molded body of same
JPWO2017030190A1 (en) * 2015-08-20 2018-05-31 旭硝子株式会社 LAMINATED SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME

Similar Documents

Publication Publication Date Title
Bhat et al. Plasma‐induced surface modification and adhesion enhancement of polypropylene surface
JP3155278B2 (en) Rapid plasma processing apparatus and method
EP0678593B1 (en) Plasma-enhanced chemical vapour deposition process
JP4494792B2 (en) Chemical vapor deposition by corona on support.
EP0285870B1 (en) A method for forming abrasion-resistant polycarbonate articles
US5126164A (en) Method of forming a thin polymeric film by plasma reaction under atmospheric pressure
US20020012756A1 (en) Method of surface treating or coating of materials
JPH07292139A (en) Polymer article with improved surface characteristics and its production
JP5318876B2 (en) Method for stable hydrophilic enhancement of substrates by atmospheric pressure plasma deposition
Bashir et al. Hydrophobic–hydrophilic character of hexamethyldisiloxane films polymerized by atmospheric pressure plasma jet
AU705485B2 (en) Barrier films having vapor coated EVOH surfaces
US20020018897A1 (en) Plasma-treated materials
JPS62132940A (en) Formation of plasma polymerization thin film on high polymer base material
Myung et al. Chemical structure and surface morphology of plasma polymerized-allylamine film
JPH05504991A (en) A method of depositing a thin layer of silicon oxide that is adhered to a support consisting of a polymeric material.
WO2006059697A1 (en) Ethylene-tetrafluoroethylene copolymer molding and process for producing the same
JPS6312316A (en) Gas permselective composite film manufactured by plasma polymerization coating technique
Thomas et al. Generation of stable coatings with carboxylic groups by copolymerization of MAA and VTMS using DBD at atmospheric pressure
EP3115098A1 (en) Organosiloxane films for gas separations
JPS612738A (en) Surface treatment of synthetic resin molded article
Chen et al. Fabrication and characterization of fluorine-containing films using plasma polymerization of octafluorotoluene
Bashir et al. Microplasma copolymerization of amine and Si containing precursors
Nitschke et al. Immobilization of PEO‐PPO‐PEO triblock copolymers on PTFE‐like fluorocarbon surfaces
JPH02127442A (en) Surface treatment of molded article of fluorinated olefin polymer
JPH08188658A (en) Process for treating surface of substrate