WO2016104471A1 - Resin member production method - Google Patents
Resin member production method Download PDFInfo
- Publication number
- WO2016104471A1 WO2016104471A1 PCT/JP2015/085767 JP2015085767W WO2016104471A1 WO 2016104471 A1 WO2016104471 A1 WO 2016104471A1 JP 2015085767 W JP2015085767 W JP 2015085767W WO 2016104471 A1 WO2016104471 A1 WO 2016104471A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molded product
- resin
- resin molded
- plasma
- resin member
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/04—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
- F16C19/06—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
- F16C33/44—Selection of substances
Definitions
- One aspect of the present invention relates to a method for manufacturing a resin member.
- Patent Document 1 a metal cored bar, a resin part having gear teeth formed integrally on the outer peripheral surface of the cored bar, and formed on the surface of the gear teeth by a plasma CVD method, a plasma ion implantation method, or the like.
- a worm wheel comprising a hard carbon coating formed thereon.
- Patent Document 2 includes a stationary ring and a rotating ring having sliding surfaces facing each other, and a mechanical surface in a water pump in which a hydrophilic surface portion is formed on each sliding surface via plasma irradiation, laser light, ultraviolet light, or the like. A seal is disclosed.
- the surface treatment method for resin members is mainly classified into physical treatment and chemical treatment, and the treatment methods disclosed in Patent Documents 1 and 2 are included in the former physical treatment.
- the physical treatment changes the physical properties of the surface by processing the surface of the member or forming a film.
- the environmental load is small because the treatment has excellent sustainability (durability) and can be treated by a dry process.
- physical processing for complicated shapes other than planar shapes has not been sufficiently established.
- chemical treatment is a method of adding functional groups (—OH groups, —CH groups, etc.) to the surface of a resin member (polymer surface) with a solvent or gas, so it is sufficient even for complex shapes. It is valid.
- the adsorptive power of the functional group to the polymer surface is weak, it is easily affected by external force and atmosphere, and is often inferior in durability compared to physical treatment.
- the environmental burden is large if the solvent is not handled properly.
- an object of one aspect of the present invention is to provide liquid resin wettability that lasts for a long period of time regardless of the shape of the resin molded product, and has a low environmental impact. It is providing the manufacturing method of a resin-made member.
- a first step of molding a resin molded product (2) having a predetermined shape and the surface (3,4, 5, 6) of the resin molded product are treated with plasma in a vacuum.
- a second step of roughening the surface of the resin molded product is maintained.
- the surface of the resin molded product is brought into a high energy state by charged particles ionized by plasma excitation in vacuum.
- the surface crystallinity can be improved and the surface density can be increased.
- the surface roughness of the resin molded product can be increased by weak ion sputtering energy, the surface area of contact with the liquid or droplet can be increased.
- the plasma treatment is performed in a vacuum, the charged resin particles can be spread throughout the resin molded product without escaping.
- each surface of the member can be processed uniformly. Furthermore, since it is a dry process using plasma (physical treatment), the burden on the environment can be reduced.
- FIG. 1 is a flowchart of a resin member manufacturing process according to an embodiment of the present invention.
- FIG. 2 is a schematic perspective view of a resin molded product for the resin member.
- FIG. 3 is a schematic view of an apparatus used for plasma treatment of the resin molded product.
- FIG. 4 is a graph showing the relationship between the degree of vacuum and the discharge start voltage for each raw material gas.
- FIG. 5 is a diagram showing a timing chart of the pulse voltage.
- FIG. 6 is a cross-sectional view showing a rolling bearing according to an embodiment of the present invention.
- FIG. 7 is a flowchart (modification) of the manufacturing process of the resin member according to the embodiment of the present invention.
- FIG. 8 is a diagram for explaining a method of measuring the hardness of the soft layer.
- FIG. 9 is a diagram showing a state of solid contact when a soft layer is formed.
- FIG. 10 is a graph for explaining the effect of reducing the friction coefficient according to the embodiment of the present invention.
- FIG. 11 is a diagram for explaining the effect of improving the wettability according to the embodiment of the present invention.
- FIG. 12 is a diagram showing the hardness distribution and the amount of change at each depth from the surface of the resin member.
- FIG. 13 is a diagram for explaining a friction test method.
- FIG. 14 is a diagram for explaining the persistence of the friction coefficient.
- FIG. 15 is a diagram for explaining the effect of reducing the friction coefficient.
- FIG. 1 is a flowchart of a manufacturing process of a resin member 1 according to an embodiment of the present invention.
- a resin molded product that becomes a main body of the resin member 1 by forming a resin material into a predetermined shape by a known molding method such as injection molding, extrusion molding, compression molding, or the like. 2 is formed (step S1).
- thermoplastic resins examples include crystalline thermoplastic resins and thermosetting resins.
- the crystalline thermoplastic resin examples include polyamide (PA), polyacetal (POM), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), and liquid crystal polymer. (LCP), polytetrafluoroethylene (PTFE) and the like.
- thermosetting resin examples include epoxy resin, phenol resin, unsaturated polyester resin, urea resin, melamine resin, diallyl phthalate resin, silicon resin, vinyl ester resin, polyimide resin, polyurethane resin, and the like.
- the crystalline thermoplastic resin and the thermosetting resin are not limited to those exemplified, and various types can be used so as to conform to the specifications of the resin member 1.
- FIG. 2 is a schematic perspective view of a resin molded product 2 used for the resin member 1.
- the resin molded product 2 forms the main body of the resin member 1 used for various applications, and is molded into a shape according to the specifications of the resin member 1. That is, the shape of the resin molded product 2 shown in FIG. 2 is only an example for explaining the embodiment of the present invention.
- Applications of the resin member 1 include, for example, vehicle sliding members such as rolling bearings and slide bearings, resin gears, various objects to be coated with water-based paints and oil-based paints, and various coating agents ( Examples include, but are not limited to, substrates that are coated with a moisture-proof coating, an antifouling coating, a water-repellent coating, and the like.
- the resin molded product 2 includes a cylindrical member (cylindrical member in this embodiment) having a predetermined thickness, and has, for example, an outer peripheral surface 3, an inner peripheral surface 4, and end surfaces 5 and 5 at both axial ends. . At one end in the axial direction, a notch 6 is formed by selectively removing a part of the thick portion of the resin molded product 2 from the end surface 5.
- the length L of the resin molded product 2 may be, for example, 10 mm to 30 mm.
- the inner diameter D of the resin molded product 2 may be, for example, 5 mm ( ⁇ 5) to 20 mm ( ⁇ 20).
- the heat resistant temperature of the resin molded product 2 may be, for example, 80 ° C. to 150 ° C.
- FIG. 3 is a schematic diagram of the vacuum chamber device 7 used for the plasma treatment of the resin molded product 2.
- a susceptor 9 is disposed below the chamber 8 of the vacuum chamber device 7.
- the susceptor 9 incorporates a heater 10.
- an exhaust line 12 provided with a vacuum pump 11 in the middle is connected to the lower portion of the chamber 8.
- the vacuum pressure region used in this embodiment is, for example, 1 ⁇ 10 ⁇ 1 Pa to 1 ⁇ 10 ⁇ 2 Pa.
- a source gas supply line 13 for supplying source gas into the chamber 8 is connected to the top of the chamber 8.
- a plurality of source gas supply lines 13 may be provided when a plurality of source gas is supplied.
- wiring is connected to the top 14 of the chamber 8, and the top 14 facing the susceptor 9 also serves as an electrode.
- a DC bias is applied between the top 14 and the susceptor 9.
- the distance (distance between electrodes) between the top portion 14 and the susceptor 9 is, for example, 80 mm to 400 mm.
- the source gas is supplied from the source gas supply line 13 while exhausting the gas in the chamber 8 from the exhaust line 12 by driving the vacuum pump 11.
- the pressure in the chamber 8 is maintained at a medium vacuum of 40 Pa to 90 Pa, and an inert gas is supplied as a source gas.
- discharge ignition plasma excitation
- the inert gas is turned into plasma.
- the applied voltage at the time of discharge ignition is, for example, 300 V to 600 V, and preferably 400 V to 500 V.
- the temperature of the heater 10 is, for example, 30 ° C. to 150 ° C.
- the inert gas is supplied as the source gas in the initial stage of plasma treatment (during discharge ignition)
- the discharge start voltage of air is 500 V to 600 V
- the discharge start voltage of the inert gas (He, Ar) is 400 V. It is about 450V.
- the pressure in the chamber 8 becomes about several Pa. Under such a low vacuum, gas may be released from the resin molded product 2 at the time of discharge ignition, and the resin molded product 2 may be deteriorated.
- an inert gas as a raw material gas for discharge ignition, discharge ignition can be favorably performed under a medium vacuum.
- the inert gas N 2 (nitrogen) can be used in addition to a rare gas such as He or Ar.
- the discharge ignition is completed, it is a transition from the initial stage to the steady stage.
- the plasma excitation state is maintained while the vacuum degree of the chamber 8 is maintained at medium vacuum, and the source gas is replaced with air from the inert gas (step S4).
- a pulse voltage is applied between the top 14 of the chamber 8 and the susceptor 9 by ON / OFF control of a voltage lower than the discharge start voltage.
- air is turned into plasma (non-equilibrium plasma), and the resin molded product 2 is subjected to plasma treatment with the charged particles ionized at that time (step S5).
- the plasma is continuously generated in the chamber 8 due to the transition from the initial stage, so that air can be turned into plasma at a relatively low voltage even under a medium vacuum. .
- the duration of the steady stage is, for example, 10 minutes to 15 minutes. If the plasma treatment time is less than 10 minutes, it is difficult to obtain a sufficient treatment effect. On the other hand, when the plasma treatment time exceeds 15 minutes, the temperature and surface roughness of the resin molded product 2 may be excessively increased.
- the pulse width of the pulse voltage is, for example, 0.2 ms to 1 ms, and preferably 0.2 ms to 0.25 ms.
- the pulse frequency is, for example, 0.1 kHz to 0.5 kHz, preferably 0.4 kHz to 0.5 kHz. If the pulse frequency is less than 0.1 kHz, it is difficult to obtain a sufficient processing effect. On the other hand, when the pulse frequency exceeds 0.5 kHz, the temperature of the resin molded product 2 may be excessively increased. Further, the temperature of the heater 10 in the steady stage is, for example, 60 ° C. to 120 ° C.
- the resin member 1 is obtained by removing the resin molded product 2 from the chamber 8.
- the surface (the outer peripheral surface 3, the inner peripheral surface 4, the end surface 5 and the notch portion 6) of the resin molded product 2 is obtained by charged particles ionized from O 2 , CO 2 , H 2 O and the like constituting the air. ) Is in a high energy state. Thereby, the crystallinity of the surface of the resin molded product 2 can be improved and the surface density can be increased.
- the surface roughness of the resin molded product 2 can be increased by weak ion sputtering energy, the surface area of contact with the liquid or droplet can be increased.
- the contact angle of the surface of the resin molded product 2 with respect to the liquid can be made less than 70% compared to before the plasma treatment.
- the plasma treatment is performed in a vacuum, the charged resin particles can be spread over the entire resin molded product 2 without escaping. For this reason, it is possible to uniformly treat even a hollow portion such as the inner peripheral surface 4 or the cutout portion 6 of the resin molded product 2. Furthermore, since it is a dry process using plasma (physical treatment), the burden on the environment can be reduced.
- the resin molded product 2 made of a polymer material mainly composed of C (carbon atoms), H (hydrogen atoms), and O (oxygen atoms) is air (including O 2 , CO 2 , and H 2 O). It is processed with plasma using. Therefore, a lipophilic (—CH group) or hydrophilic (—OH group) functional group can be imparted to the surface of the resin molded product 2 during the plasma treatment.
- FIG. 6 is a cross-sectional view showing a rolling bearing 21 according to an embodiment of the present invention.
- the rolling bearing 21 includes a pair of race members, an inner ring 23 and an outer ring 24, which define an annular region 22 between them, and a plurality of rolling elements that are disposed in the region 22 and roll relative to the inner ring 23 and the outer ring 24.
- a cage 26 that holds each ball 25, grease G filled in the region 22, and a pair of annular seal members 27 that are fixed to the outer ring 24 and are in sliding contact with the inner ring 23. , 28.
- Each of the sealing members 27 and 28 includes annular core bars 29 and 29 and annular rubber bodies 30 and 30 baked on the core bars 29 and 29.
- Each of the seal members 27 and 28 is fitted and fixed to groove portions 31 and 31 formed on both end surfaces of the outer ring 24 at the outer peripheral portion, and groove portions 32 and 32 formed on both end surfaces of the inner ring 23 at the inner peripheral portion. It is fitted and fixed.
- the grease G is sealed so as to be substantially full in the region 22 defined by the pair of seal members 27 and 28 between the two wheels 23 and 24.
- the grease G can be spread over the sliding surface of the cage 26. Thereby, since the quantity of grease G can be reduced and the stirring resistance of grease G can be reduced, the bearing torque of the rolling bearing 21 can be reduced.
- the present invention is not limited to the above-described embodiment, and can be implemented in other embodiments.
- the source gas used in the initial stage and the steady stage is not limited to the inert gas and air described above, and other gases may be used as long as the effects of the present invention can be exhibited.
- thermal plasma can be used instead of non-equilibrium plasma, and it is not necessary to generate plasma by pulse discharge.
- plasma may be generated by RF (Radio Frequency) discharge.
- step S3 after performing discharge ignition with an inert gas (step S3), the raw material gas was immediately replaced with air from the inert gas (step S4).
- step S3 ′ of FIG. 7 the soft layer 15 is formed on the surface of the resin molded product 2 by pre-processing the resin molded product 2 with plasma of an inert gas prior to the replacement with the source gas. You may form (refer FIG. 8). More specifically, after performing discharge ignition with an inert gas, the plasma state of the inert gas is continued for a predetermined time.
- the ionized inert gas accelerates and collides with the target (not shown), and the substance is sputtered from the target and collides with the resin molded product 2.
- sputtering with an inert gas is performed, the polymer chain on the surface of the resin molded product 2 is broken (weak deterioration), and the soft layer 15 is formed at the broken portion.
- the inert gas used for discharge ignition may be used as it is, or the inert gas used for discharge ignition may be switched to another inert gas.
- the preprocessing time may be, for example, 300 seconds to 600 seconds. If it is less than 300 seconds, the polymer chain on the surface of the resin molded product 2 may not be sufficiently broken. On the other hand, in the long-time treatment exceeding 600 seconds, there is a possibility that excessive deterioration occurs on the surface of the resin molded product 2.
- the soft layer 15 thus formed is formed, for example, in a range of less than 50 ⁇ m (preferably 0 ⁇ m to 20 ⁇ m) from the surface (treated surface) of the resin molded product 2.
- the hardness of the soft layer 15 is reduced by, for example, 40% or more compared to the untreated portion (hard layer not subjected to the sputtering treatment) of the resin molded product 2.
- the hardness at the time of 400 nm to 600 nm indentation measured using a thin film hardness meter (indentation load: 1000 ⁇ N) may be 0.05 GPa to 0.13 GPa.
- the thin-film hardness meter is measured by cutting the processed resin molded product 2 and sequentially pushing the indenter of the thin-film hardness meter into the cross section in the depth direction from the processing surface. Just do it.
- the amount of lubricating oil between the resin member 1 (resin molded product 2) and the mating member 17 is temporarily reduced as shown in FIG. Even if solid contact occurs between the manufactured member 1 and the mating member 17, the impact caused by the contact of the mating member 17 can be mitigated by receiving the mating member 17 while sliding it with the soft layer 15. As a result, since the coefficient of friction between the resin member 1 and the mating member 17 can be kept low for a long period of time, the seizure resistance of the resin member 1 can be improved. That is, according to this modified example, as shown in FIG.
- the hardness of the surface layer of the resin member 1 is controlled. By doing so, the effect of reducing the friction coefficient ⁇ in the boundary lubrication region A can be enjoyed (two-dot chain line). Since the temperature reduction of the sliding portion of the resin member 1 can be suppressed by this low friction, an inexpensive material having a relatively low heat-resistant temperature can be applied as the material of the resin member 1.
- Example 1 a sample to be processed (molded product) was produced based on FIG. Sample preparation conditions are as follows.
- Resin material PA (polyamide) 66 Length L: 25mm Inner diameter D: ⁇ 15
- plasma processing was performed on the obtained sample to be processed following the above method.
- Ar was used in the initial stage and air was used in the steady stage.
- a network structure with an interval of 50 ⁇ m to 200 ⁇ m is given to the surface of the sample to be processed, and the network structure is constituted by a convex shape having a height of 0.1 ⁇ m to 3.0 ⁇ m from the surface.
- the interval between the mesh structures and the height of the protrusions were confirmed by photographing the surface of the sample after the plasma treatment with a scanning electron microscope (SEM) and based on the scale of the obtained image. Since the surface area of the sample is increased by the network structure, it has been found that the contact angle of the liquid can be reduced by the following equation (1) known as the Wenzel equation.
- Example 2 A resin plate made of PA (polyamide) 66 was prepared, and plasma treatment was performed in accordance with the above method.
- Ar was used in the initial stage and air was used in the steady stage.
- the surface of the resin plate was subjected to sputtering treatment (pretreatment) by continuing the Ar gas plasma state for 300 seconds.
- the hardness at each depth position of 0.3 ⁇ m, 1 ⁇ m, 50 ⁇ m, 200 ⁇ m, 1200 ⁇ m, 1500 ⁇ m and 2000 ⁇ m from the treated surface of the resin plate is measured with a thin film hardness meter (indentation load: 1000 ⁇ N).
- the results are shown in FIG. From FIG. 12, it was found that a soft layer having a reduced hardness was formed at depths of at least 0.3 ⁇ m and 1 ⁇ m compared to before the plasma treatment.
- the hardness was higher than before the plasma treatment. It is considered that this is because some energy (microvibration, thermal energy, etc.) is applied to the resin plate by sputtering or the like, and as a result, the resin is recrystallized (recondensed) immediately below the soft layer.
- FIG. 14 is a diagram for explaining the persistence of the friction coefficient.
- FIG. 15 is a diagram for explaining the effect of reducing the friction coefficient.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Abstract
The method comprises, in a first step, forming a resin molded product having a predetermined shape, followed by, in a second step, processing with plasma the surface of the resin molded product in vacuum to provide protrusions and recesses on the surface of the resin molded product. In the second step, discharge ignition is performed in an inert gas to generate plasma, and then, while the degree of vacuum at this time is maintained, a raw material gas is substituted for air.
Description
本発明の一つの態様は、樹脂製部材の製造方法に関する。
One aspect of the present invention relates to a method for manufacturing a resin member.
近年、樹脂素材の強度が高まっていることを受け、様々な分野で樹脂製品が使用されている。例えば、自動車分野においては、環境負荷軽減の要求に基づいて自動車用部品の軽量化が求められており、金属製部品から樹脂製部品への置き換えが進められている。
しかしながら、摺動部、歯車、軸受等、潤滑性が要求される箇所に樹脂製部材を導入した場合、油の濡れ性の問題を生じる。樹脂製部材は金属製部材に比べて潤滑油の濡れ性に劣るので、十分な潤滑性能を発揮できない場合がある。そこで、樹脂製部材の油や水に対する濡れ性を向上させるための加工が施された部材が、種々提案されている。 In recent years, resin products are used in various fields in response to the increasing strength of resin materials. For example, in the automobile field, the weight reduction of automobile parts is required based on the demand for reducing the environmental load, and replacement of metal parts with resin parts is being promoted.
However, when a resin member is introduced into a place where lubricity is required, such as a sliding part, a gear, a bearing, etc., a problem of oil wettability occurs. The resin member is inferior to the wettability of the lubricating oil as compared with the metal member, so that there are cases where sufficient lubrication performance cannot be exhibited. Accordingly, various members that have been processed to improve the wettability of resin members to oil and water have been proposed.
しかしながら、摺動部、歯車、軸受等、潤滑性が要求される箇所に樹脂製部材を導入した場合、油の濡れ性の問題を生じる。樹脂製部材は金属製部材に比べて潤滑油の濡れ性に劣るので、十分な潤滑性能を発揮できない場合がある。そこで、樹脂製部材の油や水に対する濡れ性を向上させるための加工が施された部材が、種々提案されている。 In recent years, resin products are used in various fields in response to the increasing strength of resin materials. For example, in the automobile field, the weight reduction of automobile parts is required based on the demand for reducing the environmental load, and replacement of metal parts with resin parts is being promoted.
However, when a resin member is introduced into a place where lubricity is required, such as a sliding part, a gear, a bearing, etc., a problem of oil wettability occurs. The resin member is inferior to the wettability of the lubricating oil as compared with the metal member, so that there are cases where sufficient lubrication performance cannot be exhibited. Accordingly, various members that have been processed to improve the wettability of resin members to oil and water have been proposed.
例えば、特許文献1は、金属製の芯金と、芯金の外周面に一体的に形成され、ギア歯を有する樹脂部と、プラズマCVD法、プラズマイオン注入法等によってギア歯の表面に形成された硬質炭素被膜とを含む、ウォームホイールを開示している。
例えば、特許文献2は、互いに対向する摺動面を有する固定環および回転環を含み、プラズマ照射、レーザ光、紫外線等を介して各摺動面に親水面部が形成された、ウォーターポンプにおけるメカニカルシールを開示している。 For example, inPatent Document 1, a metal cored bar, a resin part having gear teeth formed integrally on the outer peripheral surface of the cored bar, and formed on the surface of the gear teeth by a plasma CVD method, a plasma ion implantation method, or the like. A worm wheel comprising a hard carbon coating formed thereon.
For example,Patent Document 2 includes a stationary ring and a rotating ring having sliding surfaces facing each other, and a mechanical surface in a water pump in which a hydrophilic surface portion is formed on each sliding surface via plasma irradiation, laser light, ultraviolet light, or the like. A seal is disclosed.
例えば、特許文献2は、互いに対向する摺動面を有する固定環および回転環を含み、プラズマ照射、レーザ光、紫外線等を介して各摺動面に親水面部が形成された、ウォーターポンプにおけるメカニカルシールを開示している。 For example, in
For example,
樹脂製部材の表面処理方法は、主に物理的処理と化学的処理に分類されるところ、特許文献1および2が開示する処理方法は、前者の物理的処理に含まれる。物理的処理は、部材の表面を加工したり膜を形成したりして、表面の物性を変えるものである。処理による効果の持続性(耐久性)に優れ、また、ドライプロセスによる処理が可能であるため、溶剤処理等の化学的処理とは異なり環境負荷が少ない。しかしながら、現状は、平面形状以外の複雑な形状に対する物理的処理が十分に確立されていない。
The surface treatment method for resin members is mainly classified into physical treatment and chemical treatment, and the treatment methods disclosed in Patent Documents 1 and 2 are included in the former physical treatment. The physical treatment changes the physical properties of the surface by processing the surface of the member or forming a film. Unlike the chemical treatment such as the solvent treatment, the environmental load is small because the treatment has excellent sustainability (durability) and can be treated by a dry process. However, at present, physical processing for complicated shapes other than planar shapes has not been sufficiently established.
一方、化学的処理は、溶剤やガスによって樹脂製部材の表面(高分子表面)に官能基(-OH基、-CH基等)を付与する手法であるため、複雑な形状に対しても十分有効である。しかしながら、高分子表面に対する官能基の吸着力が弱いため、外力や雰囲気の影響を受けやすく、物理的処理に比べて耐久性に劣る場合が多い。また、溶剤を適切に扱わないと環境負荷が大きいことも懸念される。
On the other hand, chemical treatment is a method of adding functional groups (—OH groups, —CH groups, etc.) to the surface of a resin member (polymer surface) with a solvent or gas, so it is sufficient even for complex shapes. It is valid. However, since the adsorptive power of the functional group to the polymer surface is weak, it is easily affected by external force and atmosphere, and is often inferior in durability compared to physical treatment. Moreover, there is a concern that the environmental burden is large if the solvent is not handled properly.
そこで、本発明の一つの態様の目的は、樹脂成形品の形状に関係なく、長期に亘って持続する液体の濡れ性を樹脂成形品に付与することができ、かつ、環境への負荷も少ない樹脂製部材の製造方法を提供することである。
Accordingly, an object of one aspect of the present invention is to provide liquid resin wettability that lasts for a long period of time regardless of the shape of the resin molded product, and has a low environmental impact. It is providing the manufacturing method of a resin-made member.
本発明の一つの態様は、所定の形状の樹脂成形品(2)を成形する第1工程と、真空中で、前記樹脂成形品の表面(3,4,5,6)をプラズマで処理することによって、前記樹脂成形品の表面を凹凸加工する第2工程とを含み、前記第2工程では、不活性ガスに放電点火を行ってプラズマを発生させた後、そのときの真空度を維持したまま原料ガスを空気に置換する、樹脂製部材(1)の製造方法である。
In one embodiment of the present invention, a first step of molding a resin molded product (2) having a predetermined shape and the surface (3,4, 5, 6) of the resin molded product are treated with plasma in a vacuum. And a second step of roughening the surface of the resin molded product. In the second step, after generating plasma by performing discharge ignition on an inert gas, the degree of vacuum at that time is maintained. This is a method for producing a resin member (1), in which the raw material gas is replaced with air.
なお、上記において、括弧内の数字等は、後述する実施形態における対応構成要素の参照符号を表すものであるが、これらの参照符号によって特許請求の範囲を限定する趣旨ではない。
In the above description, numbers in parentheses represent reference numerals of corresponding components in the embodiments described later, but the scope of the claims is not limited by these reference numerals.
本発明の一つの態様によれば、真空中のプラズマ励起によって電離した荷電粒子によって、樹脂成形品の表面が高エネルギ状態となる。これにより、表面の結晶性を向上させ、表面密度を増加させることができる。同時に、微弱なイオンスパッタエネルギによって、樹脂成形品の表面粗さを増加させることができるので、液や液滴との接触表面積を増やすことができる。その結果、摩擦力等の外力に対する耐久性に優れる、濡れ性の向上効果を得ることができる。また、プラズマ処理が真空中で実施されるので、荷電粒子を逃がさずに樹脂成形品の全体に行き渡らせることができる。そのため、樹脂成形品の形状が、筒状部材の内周面のように入り組んだ面を有する複雑な形状であっても、部材の各面を均一に処理することができる。さらに、プラズマ(物理的処理)によるドライプロセスであるため、環境への負荷も軽減することができる。
According to one aspect of the present invention, the surface of the resin molded product is brought into a high energy state by charged particles ionized by plasma excitation in vacuum. Thereby, the surface crystallinity can be improved and the surface density can be increased. At the same time, since the surface roughness of the resin molded product can be increased by weak ion sputtering energy, the surface area of contact with the liquid or droplet can be increased. As a result, it is possible to obtain an effect of improving wettability, which is excellent in durability against external force such as frictional force. Moreover, since the plasma treatment is performed in a vacuum, the charged resin particles can be spread throughout the resin molded product without escaping. Therefore, even if the shape of the resin molded product is a complicated shape having a complicated surface such as the inner peripheral surface of the cylindrical member, each surface of the member can be processed uniformly. Furthermore, since it is a dry process using plasma (physical treatment), the burden on the environment can be reduced.
以下では、本発明の実施形態を、添付図面を参照して詳細に説明する。
図1は、本発明の一実施形態に係る樹脂製部材1の製造工程のフロー図である。
樹脂製部材1を製造するには、例えば、射出成形、押出成形、圧縮成形等の公知の成形方法で樹脂素材を所定の形状に成形することによって、樹脂製部材1の本体となる樹脂成形品2を形成する(ステップS1)。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a flowchart of a manufacturing process of aresin member 1 according to an embodiment of the present invention.
In order to manufacture theresin member 1, for example, a resin molded product that becomes a main body of the resin member 1 by forming a resin material into a predetermined shape by a known molding method such as injection molding, extrusion molding, compression molding, or the like. 2 is formed (step S1).
図1は、本発明の一実施形態に係る樹脂製部材1の製造工程のフロー図である。
樹脂製部材1を製造するには、例えば、射出成形、押出成形、圧縮成形等の公知の成形方法で樹脂素材を所定の形状に成形することによって、樹脂製部材1の本体となる樹脂成形品2を形成する(ステップS1)。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a flowchart of a manufacturing process of a
In order to manufacture the
使用される樹脂素材としては、例えば、結晶性の熱可塑性樹脂、熱硬化性樹脂が挙げられる。結晶性の熱可塑性樹脂としては、例えば、ポリアミド(PA)、ポリアセタール(POM)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、ポリテトラフルオロエチレン(PTFE)等が挙げられる。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ユリア樹脂、メラミン樹脂、ジアリルフタレート樹脂、ケイ素樹脂、ビニルエステル樹脂、ポリイミド樹脂、ポリウレタン樹脂等が挙げられる。結晶性の熱可塑性樹脂および熱硬化性樹脂は、例示したものに限らず、樹脂製部材1の仕様に適合するように種々のものを使用することができる。
Examples of the resin material used include crystalline thermoplastic resins and thermosetting resins. Examples of the crystalline thermoplastic resin include polyamide (PA), polyacetal (POM), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), and liquid crystal polymer. (LCP), polytetrafluoroethylene (PTFE) and the like. Examples of the thermosetting resin include epoxy resin, phenol resin, unsaturated polyester resin, urea resin, melamine resin, diallyl phthalate resin, silicon resin, vinyl ester resin, polyimide resin, polyurethane resin, and the like. The crystalline thermoplastic resin and the thermosetting resin are not limited to those exemplified, and various types can be used so as to conform to the specifications of the resin member 1.
図2は、樹脂製部材1に使用される樹脂成形品2の模式的な斜視図である。
樹脂成形品2は、種々の用途に用いられる樹脂製部材1の本体をなすものであり、樹脂製部材1の仕様に応じた形状に成形される。つまり、図2に示した樹脂成形品2の形状は、本発明の実施形態を説明するための、ほんの一例である。
樹脂製部材1の用途としては、例えば、転がり軸受、すべり軸受等の車両用摺動部材、樹脂製のギア、水性塗料や油性塗料で塗装されて使用される各種被塗物、各種コーティング剤(防湿コーティング、防汚コーティング、撥水コーティング等)でコーティングされて使用される基板等が挙げられるが、これらに限らない。 FIG. 2 is a schematic perspective view of a resin moldedproduct 2 used for the resin member 1.
The resin moldedproduct 2 forms the main body of the resin member 1 used for various applications, and is molded into a shape according to the specifications of the resin member 1. That is, the shape of the resin molded product 2 shown in FIG. 2 is only an example for explaining the embodiment of the present invention.
Applications of theresin member 1 include, for example, vehicle sliding members such as rolling bearings and slide bearings, resin gears, various objects to be coated with water-based paints and oil-based paints, and various coating agents ( Examples include, but are not limited to, substrates that are coated with a moisture-proof coating, an antifouling coating, a water-repellent coating, and the like.
樹脂成形品2は、種々の用途に用いられる樹脂製部材1の本体をなすものであり、樹脂製部材1の仕様に応じた形状に成形される。つまり、図2に示した樹脂成形品2の形状は、本発明の実施形態を説明するための、ほんの一例である。
樹脂製部材1の用途としては、例えば、転がり軸受、すべり軸受等の車両用摺動部材、樹脂製のギア、水性塗料や油性塗料で塗装されて使用される各種被塗物、各種コーティング剤(防湿コーティング、防汚コーティング、撥水コーティング等)でコーティングされて使用される基板等が挙げられるが、これらに限らない。 FIG. 2 is a schematic perspective view of a resin molded
The resin molded
Applications of the
樹脂成形品2は、所定肉厚の筒状部材(この実施形態では、円筒部材)を含み、例えば、外周面3、内周面4および軸方向両端部の端面5,5を有している。軸方向一方の端部には、端面5から樹脂成形品2の肉厚部分の一部を選択的に除去した切欠部6が形成されている。樹脂成形品2の長さLは、例えば、10mm~30mmであってもよい。また、樹脂成形品2の内径Dは、例えば、5mm(φ5)~20mm(φ20)であってもよい。また、樹脂成形品2の耐熱温度は、例えば、80℃~150℃であってもよい。
The resin molded product 2 includes a cylindrical member (cylindrical member in this embodiment) having a predetermined thickness, and has, for example, an outer peripheral surface 3, an inner peripheral surface 4, and end surfaces 5 and 5 at both axial ends. . At one end in the axial direction, a notch 6 is formed by selectively removing a part of the thick portion of the resin molded product 2 from the end surface 5. The length L of the resin molded product 2 may be, for example, 10 mm to 30 mm. Further, the inner diameter D of the resin molded product 2 may be, for example, 5 mm (φ5) to 20 mm (φ20). Further, the heat resistant temperature of the resin molded product 2 may be, for example, 80 ° C. to 150 ° C.
次に、樹脂成形品2を、真空チャンバ装置7にセットする(ステップS2)。
図3は、樹脂成形品2のプラズマ処理に使用される真空チャンバ装置7の模式図である。
真空チャンバ装置7のチャンバ8の下部には、サセプタ9が配置されている。サセプタ9にはヒータ10が内蔵されている。樹脂成形品2をサセプタ9で保持しておくことによって、樹脂成形品2をヒータ10で所定温度に加熱することができる。また、チャンバ8の下部には、途中に真空ポンプ11が設けられた排気ライン12が接続されている。真空ポンプ11を駆動させることによって、チャンバ8内を所定の真空度に保つことができる。この実施形態で使用される真空の圧力領域は、例えば、1×10-1Pa~1×10-2Paである。 Next, the resin moldedproduct 2 is set in the vacuum chamber device 7 (step S2).
FIG. 3 is a schematic diagram of thevacuum chamber device 7 used for the plasma treatment of the resin molded product 2.
Asusceptor 9 is disposed below the chamber 8 of the vacuum chamber device 7. The susceptor 9 incorporates a heater 10. By holding the resin molded product 2 with the susceptor 9, the resin molded product 2 can be heated to a predetermined temperature by the heater 10. Further, an exhaust line 12 provided with a vacuum pump 11 in the middle is connected to the lower portion of the chamber 8. By driving the vacuum pump 11, the inside of the chamber 8 can be maintained at a predetermined degree of vacuum. The vacuum pressure region used in this embodiment is, for example, 1 × 10 −1 Pa to 1 × 10 −2 Pa.
図3は、樹脂成形品2のプラズマ処理に使用される真空チャンバ装置7の模式図である。
真空チャンバ装置7のチャンバ8の下部には、サセプタ9が配置されている。サセプタ9にはヒータ10が内蔵されている。樹脂成形品2をサセプタ9で保持しておくことによって、樹脂成形品2をヒータ10で所定温度に加熱することができる。また、チャンバ8の下部には、途中に真空ポンプ11が設けられた排気ライン12が接続されている。真空ポンプ11を駆動させることによって、チャンバ8内を所定の真空度に保つことができる。この実施形態で使用される真空の圧力領域は、例えば、1×10-1Pa~1×10-2Paである。 Next, the resin molded
FIG. 3 is a schematic diagram of the
A
一方、チャンバ8の頂部には、チャンバ8内に原料ガスを供給するための原料ガス供給ライン13が接続されている。図3では原料ガス供給ライン13を一本のみ示しているが、供給される原料ガスが複数種である場合には、原料ガス供給ライン13は複数設けられていてもよい。また、チャンバ8の頂部14には配線が接続されており、サセプタ9に対向する当該頂部14が電極を兼ねている。この頂部14とサセプタ9との間には、直流バイアスが印加されるようになっている。頂部14とサセプタ9との間の距離(電極間距離)は、例えば、80mm~400mmである。
On the other hand, a source gas supply line 13 for supplying source gas into the chamber 8 is connected to the top of the chamber 8. Although only one source gas supply line 13 is shown in FIG. 3, a plurality of source gas supply lines 13 may be provided when a plurality of source gas is supplied. In addition, wiring is connected to the top 14 of the chamber 8, and the top 14 facing the susceptor 9 also serves as an electrode. A DC bias is applied between the top 14 and the susceptor 9. The distance (distance between electrodes) between the top portion 14 and the susceptor 9 is, for example, 80 mm to 400 mm.
樹脂成形品2をサセプタ9にセットした後、真空チャンバ装置7においてプラズマ処理が開始する。
まず、真空ポンプ11を駆動させることによってチャンバ8内の気体を排気ライン12から排出しつつ、原料ガス供給ライン13から原料ガスを供給する。
この初期段階では、チャンバ8内の圧力を40Pa~90Paの中真空で保持すると共に、原料ガスとして、不活性ガスを供給する。そして、チャンバ8の頂部14(電極)-サセプタ9間に電圧を印加することによって、不活性ガスに放電点火(プラズマ励起)を行う(ステップS3)。これにより、不活性ガスがプラズマ化する。放電点火時の印加電圧は、例えば、300V~600Vであり、好ましくは、400V~500Vである。当該印加電圧が300V未満では、プラズマ励起が困難になる。一方、当該印加電圧が600Vを超えると、サセプタ9上の樹脂成形品2の温度上昇、および点火時のスパークによる樹脂成形品2の被処理面(外周面3、内周面4、端面5および切欠部6)の破損が懸念される。また、ヒータ10の温度は、例えば、30℃~150℃である。 After the resin moldedproduct 2 is set on the susceptor 9, plasma processing is started in the vacuum chamber device 7.
First, the source gas is supplied from the sourcegas supply line 13 while exhausting the gas in the chamber 8 from the exhaust line 12 by driving the vacuum pump 11.
In this initial stage, the pressure in thechamber 8 is maintained at a medium vacuum of 40 Pa to 90 Pa, and an inert gas is supplied as a source gas. Then, by applying a voltage between the top 14 (electrode) of the chamber 8 and the susceptor 9, discharge ignition (plasma excitation) is performed on the inert gas (step S3). Thereby, the inert gas is turned into plasma. The applied voltage at the time of discharge ignition is, for example, 300 V to 600 V, and preferably 400 V to 500 V. When the applied voltage is less than 300 V, plasma excitation becomes difficult. On the other hand, when the applied voltage exceeds 600 V, the temperature of the resin molded product 2 on the susceptor 9 rises, and the surface to be processed (the outer peripheral surface 3, the inner peripheral surface 4, the end surface 5 and the surface of the resin molded product 2 due to spark at ignition). There is concern about breakage of the notch 6). The temperature of the heater 10 is, for example, 30 ° C. to 150 ° C.
まず、真空ポンプ11を駆動させることによってチャンバ8内の気体を排気ライン12から排出しつつ、原料ガス供給ライン13から原料ガスを供給する。
この初期段階では、チャンバ8内の圧力を40Pa~90Paの中真空で保持すると共に、原料ガスとして、不活性ガスを供給する。そして、チャンバ8の頂部14(電極)-サセプタ9間に電圧を印加することによって、不活性ガスに放電点火(プラズマ励起)を行う(ステップS3)。これにより、不活性ガスがプラズマ化する。放電点火時の印加電圧は、例えば、300V~600Vであり、好ましくは、400V~500Vである。当該印加電圧が300V未満では、プラズマ励起が困難になる。一方、当該印加電圧が600Vを超えると、サセプタ9上の樹脂成形品2の温度上昇、および点火時のスパークによる樹脂成形品2の被処理面(外周面3、内周面4、端面5および切欠部6)の破損が懸念される。また、ヒータ10の温度は、例えば、30℃~150℃である。 After the resin molded
First, the source gas is supplied from the source
In this initial stage, the pressure in the
プラズマ処理の初期段階(放電点火時)において原料ガスとして不活性ガスを供給する理由は、図4を参照して説明できる。図4に示すように、40Pa~90Paの中真空の圧力領域では、空気の放電開始電圧が500V~600数Vであるのに対し、不活性ガス(He、Ar)の放電開始電圧は、400V~450V程度となっている。そのため、空気の放電開始電圧を上記の好ましい範囲(400V~500V)に収めようとすると、チャンバ8内の圧力が数Pa程度になってしまう。このような低真空の下では、放電点火時に樹脂成形品2からガスが放出されて、樹脂成形品2が劣化するおそれがある。しかしながら、不活性ガスを放電点火用の原料ガスとして用いることで、中真空の下で良好に放電点火を行うことができる。なお、不活性ガスとしては、He、Ar等の希ガスの他、N2(窒素)を使用することもできる。
The reason why the inert gas is supplied as the source gas in the initial stage of plasma treatment (during discharge ignition) can be described with reference to FIG. As shown in FIG. 4, in the medium vacuum pressure region of 40 Pa to 90 Pa, the discharge start voltage of air is 500 V to 600 V, whereas the discharge start voltage of the inert gas (He, Ar) is 400 V. It is about 450V. For this reason, if the discharge start voltage of air is to be within the above-mentioned preferable range (400 V to 500 V), the pressure in the chamber 8 becomes about several Pa. Under such a low vacuum, gas may be released from the resin molded product 2 at the time of discharge ignition, and the resin molded product 2 may be deteriorated. However, by using an inert gas as a raw material gas for discharge ignition, discharge ignition can be favorably performed under a medium vacuum. As the inert gas, N 2 (nitrogen) can be used in addition to a rare gas such as He or Ar.
放電点火が完了すれば、初期段階から定常段階への移行である。チャンバ8の真空度を中真空に保持したままプラズマ励起状態を維持し、原料ガスを不活性ガスから空気に置換する(ステップS4)。この後は、図5に示すように、放電開始電圧よりも低い電圧をオン/オフ制御することによって、チャンバ8の頂部14-サセプタ9間にパルス電圧を印加する。これにより、空気をプラズマ化させ(非平衡プラズマ)、そのときに電離した荷電粒子によって樹脂成形品2をプラズマ処理する(ステップS5)。なお、定常段階では、チャンバ8内が、初期段階からの移行によってプラズマが継続的に発生している状態であるため、中真空の下でも、比較的低い電圧で空気をプラズマ化させることができる。
If the discharge ignition is completed, it is a transition from the initial stage to the steady stage. The plasma excitation state is maintained while the vacuum degree of the chamber 8 is maintained at medium vacuum, and the source gas is replaced with air from the inert gas (step S4). Thereafter, as shown in FIG. 5, a pulse voltage is applied between the top 14 of the chamber 8 and the susceptor 9 by ON / OFF control of a voltage lower than the discharge start voltage. Thereby, air is turned into plasma (non-equilibrium plasma), and the resin molded product 2 is subjected to plasma treatment with the charged particles ionized at that time (step S5). In the steady stage, the plasma is continuously generated in the chamber 8 due to the transition from the initial stage, so that air can be turned into plasma at a relatively low voltage even under a medium vacuum. .
定常段階の継続時間(プラズマ処理時間)は、例えば、10分~15分である。プラズマ処理時間が10分未満では、十分な処理効果を得ることが難しい。一方、プラズマ処理時間が15分を超えると、樹脂成形品2の温度や面粗度が過度に上昇するおそれがある。上記範囲のプラズマ処理時間において、パルス電圧のパルス幅は、例えば、0.2ミリ秒~1ミリ秒であり、好ましくは、0.2ミリ秒~0.25ミリ秒である。また、パルス周波数は、例えば、0.1kHz~0.5kHzであり、好ましくは、0.4kHz~0.5kHzである。パルス周波数が0.1kHz未満では、十分な処理効果を得ることが難しい。一方、パルス周波数が0.5kHzを超えると、樹脂成形品2の温度が過度に上昇するおそれがある。また、定常段階でのヒータ10の温度は、例えば、60℃~120℃である。
The duration of the steady stage (plasma treatment time) is, for example, 10 minutes to 15 minutes. If the plasma treatment time is less than 10 minutes, it is difficult to obtain a sufficient treatment effect. On the other hand, when the plasma treatment time exceeds 15 minutes, the temperature and surface roughness of the resin molded product 2 may be excessively increased. In the plasma treatment time in the above range, the pulse width of the pulse voltage is, for example, 0.2 ms to 1 ms, and preferably 0.2 ms to 0.25 ms. The pulse frequency is, for example, 0.1 kHz to 0.5 kHz, preferably 0.4 kHz to 0.5 kHz. If the pulse frequency is less than 0.1 kHz, it is difficult to obtain a sufficient processing effect. On the other hand, when the pulse frequency exceeds 0.5 kHz, the temperature of the resin molded product 2 may be excessively increased. Further, the temperature of the heater 10 in the steady stage is, for example, 60 ° C. to 120 ° C.
プラズマ処理後、樹脂成形品2をチャンバ8から取り出すことによって、樹脂製部材1が得られる。
以上の方法によれば、空気を構成するO2、CO2、H2O等から電離した荷電粒子によって、樹脂成形品2の表面(外周面3、内周面4、端面5および切欠部6)が高エネルギ状態となる。これにより、樹脂成形品2の表面の結晶性を向上させ、表面密度を増加させることができる。同時に、微弱なイオンスパッタエネルギによって、樹脂成形品2の表面粗さを増加させることができるので、液や液滴との接触表面積を増やすことができる。その結果、摩擦力等の外力に対する耐久性に優れる、濡れ性の向上効果を得ることができる。例えば、プラズマ処理前に比べて、液体に対する樹脂成形品2の表面の接触角を70%未満にすることができる。 After the plasma processing, theresin member 1 is obtained by removing the resin molded product 2 from the chamber 8.
According to the above method, the surface (the outerperipheral surface 3, the inner peripheral surface 4, the end surface 5 and the notch portion 6) of the resin molded product 2 is obtained by charged particles ionized from O 2 , CO 2 , H 2 O and the like constituting the air. ) Is in a high energy state. Thereby, the crystallinity of the surface of the resin molded product 2 can be improved and the surface density can be increased. At the same time, since the surface roughness of the resin molded product 2 can be increased by weak ion sputtering energy, the surface area of contact with the liquid or droplet can be increased. As a result, it is possible to obtain an effect of improving wettability, which is excellent in durability against external force such as frictional force. For example, the contact angle of the surface of the resin molded product 2 with respect to the liquid can be made less than 70% compared to before the plasma treatment.
以上の方法によれば、空気を構成するO2、CO2、H2O等から電離した荷電粒子によって、樹脂成形品2の表面(外周面3、内周面4、端面5および切欠部6)が高エネルギ状態となる。これにより、樹脂成形品2の表面の結晶性を向上させ、表面密度を増加させることができる。同時に、微弱なイオンスパッタエネルギによって、樹脂成形品2の表面粗さを増加させることができるので、液や液滴との接触表面積を増やすことができる。その結果、摩擦力等の外力に対する耐久性に優れる、濡れ性の向上効果を得ることができる。例えば、プラズマ処理前に比べて、液体に対する樹脂成形品2の表面の接触角を70%未満にすることができる。 After the plasma processing, the
According to the above method, the surface (the outer
また、プラズマ処理が真空中で実施されるので、荷電粒子を逃がさずに樹脂成形品2の全体に行き渡らせることができる。そのため、樹脂成形品2の内周面4や切欠部6のように入り組んだ中空部分に対しても均一に処理することができる。さらに、プラズマ(物理的処理)によるドライプロセスであるため、環境への負荷も軽減することができる。
また、主にC(炭素原子)、H(水素原子)およびO(酸素原子)によって構成される高分子材料からなる樹脂成形品2が、空気(O2、CO2、H2Oを含む)を用いたプラズマで処理される。そのため、プラズマ処理の際に、樹脂成形品2の表面に親油性(-CH基)や親水性(-OH基)の官能基を付与することもできる。 Further, since the plasma treatment is performed in a vacuum, the charged resin particles can be spread over the entire resin moldedproduct 2 without escaping. For this reason, it is possible to uniformly treat even a hollow portion such as the inner peripheral surface 4 or the cutout portion 6 of the resin molded product 2. Furthermore, since it is a dry process using plasma (physical treatment), the burden on the environment can be reduced.
In addition, the resin moldedproduct 2 made of a polymer material mainly composed of C (carbon atoms), H (hydrogen atoms), and O (oxygen atoms) is air (including O 2 , CO 2 , and H 2 O). It is processed with plasma using. Therefore, a lipophilic (—CH group) or hydrophilic (—OH group) functional group can be imparted to the surface of the resin molded product 2 during the plasma treatment.
また、主にC(炭素原子)、H(水素原子)およびO(酸素原子)によって構成される高分子材料からなる樹脂成形品2が、空気(O2、CO2、H2Oを含む)を用いたプラズマで処理される。そのため、プラズマ処理の際に、樹脂成形品2の表面に親油性(-CH基)や親水性(-OH基)の官能基を付与することもできる。 Further, since the plasma treatment is performed in a vacuum, the charged resin particles can be spread over the entire resin molded
In addition, the resin molded
さらに、チャンバ8の頂部14-サセプタ9間に連続して電圧を印加するのではなく、パルス電圧を印加すると共に、チャンバ8内には非平衡プラズマ(低温プラズマ)を発生させるので、プラズマ雰囲気の温度上昇を抑えることができる。そのため、耐熱性が高くない樹脂成形品2に対しても良好に適用することができる。
以上より、樹脂製部材1を摺動部材として使用する場合には、油潤滑下の摺動において、潤滑油の接触角を低減することができるので、少量の潤滑油を樹脂製部材1の摺動面に濡れ広げることができる。これにより、潤滑油の量を低減でき、潤滑油の攪拌抵抗を低減できるので、例えば、軸受トルクの低減が可能となる。 Furthermore, instead of continuously applying a voltage between the top 14 of thechamber 8 and the susceptor 9, a pulse voltage is applied and non-equilibrium plasma (low temperature plasma) is generated in the chamber 8. Temperature rise can be suppressed. Therefore, it can be satisfactorily applied also to the resin molded product 2 that does not have high heat resistance.
From the above, when theresin member 1 is used as a sliding member, the sliding angle of the lubricating oil can be reduced during sliding under oil lubrication, so that a small amount of lubricating oil is slid on the resin member 1. Can spread on the moving surface. Thereby, since the quantity of lubricating oil can be reduced and the stirring resistance of lubricating oil can be reduced, for example, bearing torque can be reduced.
以上より、樹脂製部材1を摺動部材として使用する場合には、油潤滑下の摺動において、潤滑油の接触角を低減することができるので、少量の潤滑油を樹脂製部材1の摺動面に濡れ広げることができる。これにより、潤滑油の量を低減でき、潤滑油の攪拌抵抗を低減できるので、例えば、軸受トルクの低減が可能となる。 Furthermore, instead of continuously applying a voltage between the top 14 of the
From the above, when the
また、樹脂製部材1を被塗物や基板として使用する場合には、それぞれ、塗料、コーティング剤の接触角を低減することができ、密着力を向上させることができる。
次に、上記のようにプラズマ処理された樹脂製部材1を転がり軸受の保持器に使用した場合の態様を、図6を参照して説明する。
図6は、本発明の一実施形態に係る転がり軸受21を示す断面図である。 Moreover, when using theresin member 1 as a to-be-coated object or a board | substrate, the contact angle of a coating material and a coating agent can be reduced, respectively, and adhesive force can be improved.
Next, an embodiment in which the resin-mademember 1 subjected to the plasma treatment as described above is used for a rolling bearing cage will be described with reference to FIG.
FIG. 6 is a cross-sectional view showing a rollingbearing 21 according to an embodiment of the present invention.
次に、上記のようにプラズマ処理された樹脂製部材1を転がり軸受の保持器に使用した場合の態様を、図6を参照して説明する。
図6は、本発明の一実施形態に係る転がり軸受21を示す断面図である。 Moreover, when using the
Next, an embodiment in which the resin-made
FIG. 6 is a cross-sectional view showing a rolling
転がり軸受21は、互いの間に環状の領域22を区画する一対の軌道部材としての内輪23および外輪24と、領域22に配置され内輪23および外輪24に対して転動する複数の転動体としてのボール25と、領域22に配置され、各ボール25を保持する保持器26と、領域22に充填されたグリースGと、外輪24に固定されて内輪23と摺接する一対の環状のシール部材27,28とを備えている。
The rolling bearing 21 includes a pair of race members, an inner ring 23 and an outer ring 24, which define an annular region 22 between them, and a plurality of rolling elements that are disposed in the region 22 and roll relative to the inner ring 23 and the outer ring 24. , A cage 26 that holds each ball 25, grease G filled in the region 22, and a pair of annular seal members 27 that are fixed to the outer ring 24 and are in sliding contact with the inner ring 23. , 28.
各シール部材27,28は、環状の芯金29,29と、この芯金29,29に焼き付けられた環状のゴム体30,30とを有している。各シール部材27,28は、その外周部が外輪24の両端面に形成した溝部31,31に嵌められて固定されており、内周部が内輪23の両端面に形成した溝部32,32に嵌められて固定されている。
グリースGは、両輪23,24間に一対のシール部材27,28で区画された領域22内に略一杯となるように封入されている。 Each of the sealing members 27 and 28 includes annular core bars 29 and 29 and annular rubber bodies 30 and 30 baked on the core bars 29 and 29. Each of the seal members 27 and 28 is fitted and fixed to groove portions 31 and 31 formed on both end surfaces of the outer ring 24 at the outer peripheral portion, and groove portions 32 and 32 formed on both end surfaces of the inner ring 23 at the inner peripheral portion. It is fitted and fixed.
The grease G is sealed so as to be substantially full in theregion 22 defined by the pair of seal members 27 and 28 between the two wheels 23 and 24.
グリースGは、両輪23,24間に一対のシール部材27,28で区画された領域22内に略一杯となるように封入されている。 Each of the sealing
The grease G is sealed so as to be substantially full in the
この構成によれば、グリースGを保持器26の摺動面に濡れ広げることができる。これにより、グリースGの量を低減でき、グリースGの攪拌抵抗を低減できるので、転がり軸受21の軸受トルクの低減が可能となる。
本発明は、上記の実施形態に限定されることなく、他の実施形態で実施することもできる。 According to this configuration, the grease G can be spread over the sliding surface of thecage 26. Thereby, since the quantity of grease G can be reduced and the stirring resistance of grease G can be reduced, the bearing torque of the rolling bearing 21 can be reduced.
The present invention is not limited to the above-described embodiment, and can be implemented in other embodiments.
本発明は、上記の実施形態に限定されることなく、他の実施形態で実施することもできる。 According to this configuration, the grease G can be spread over the sliding surface of the
The present invention is not limited to the above-described embodiment, and can be implemented in other embodiments.
例えば、初期段階および定常段階で使用した原料ガスは、それぞれ、上記で示した不活性ガスおよび空気に限らず、本発明の効果を発現できるのであれば、他のガスを使用することもできる。
また、高い耐熱性を有する樹脂成形品2に対してプラズマ処理を施す場合は、非平衡プラズマに代えて熱プラズマを使用でき、また、パルス放電によってプラズマを発生させる必要もない。例えば、RF(Radio Frequency:高周波)放電によってプラズマを発生させてもよい。 For example, the source gas used in the initial stage and the steady stage is not limited to the inert gas and air described above, and other gases may be used as long as the effects of the present invention can be exhibited.
Further, when plasma treatment is performed on the resin moldedproduct 2 having high heat resistance, thermal plasma can be used instead of non-equilibrium plasma, and it is not necessary to generate plasma by pulse discharge. For example, plasma may be generated by RF (Radio Frequency) discharge.
また、高い耐熱性を有する樹脂成形品2に対してプラズマ処理を施す場合は、非平衡プラズマに代えて熱プラズマを使用でき、また、パルス放電によってプラズマを発生させる必要もない。例えば、RF(Radio Frequency:高周波)放電によってプラズマを発生させてもよい。 For example, the source gas used in the initial stage and the steady stage is not limited to the inert gas and air described above, and other gases may be used as long as the effects of the present invention can be exhibited.
Further, when plasma treatment is performed on the resin molded
また、前述の実施形態では、図1に示すように、不活性ガスにより放電点火を行った後(ステップS3)、速やかに、原料ガスを不活性ガスから空気に置換した(ステップS4)。しかしながら、図7のステップS3′に示すように、原料ガスへの置換に先立って、不活性ガスのプラズマで樹脂成形品2を前処理することによって、樹脂成形品2の表面に軟質層15を形成してもよい(図8参照)。より具体的には、不活性ガスにより放電点火を行った後、所定の時間、不活性ガスのプラズマ状態を継続する。これにより、イオン化した不活性ガスがターゲット(不図示)に向かって加速、衝突し、ターゲットから物質がスパッタされて樹脂成形品2に衝突する。こうして不活性ガスによるスパッタリングが行われ、樹脂成形品2の表面の高分子鎖が断裂(微弱な劣化)して、当該断裂箇所に軟質層15が形成される。
In the above-described embodiment, as shown in FIG. 1, after performing discharge ignition with an inert gas (step S3), the raw material gas was immediately replaced with air from the inert gas (step S4). However, as shown in step S3 ′ of FIG. 7, the soft layer 15 is formed on the surface of the resin molded product 2 by pre-processing the resin molded product 2 with plasma of an inert gas prior to the replacement with the source gas. You may form (refer FIG. 8). More specifically, after performing discharge ignition with an inert gas, the plasma state of the inert gas is continued for a predetermined time. Thereby, the ionized inert gas accelerates and collides with the target (not shown), and the substance is sputtered from the target and collides with the resin molded product 2. In this way, sputtering with an inert gas is performed, the polymer chain on the surface of the resin molded product 2 is broken (weak deterioration), and the soft layer 15 is formed at the broken portion.
使用する不活性ガスは、放電点火に使用した不活性ガスをそのまま使用してもよいし、放電点火に使用した不活性ガスから別の不活性ガスに切り替えて使用してもよい。
前処理の時間は、例えば、300秒~600秒であってよい。300秒未満であると、樹脂成形品2の表面の高分子鎖が十分に断裂しない場合がある。一方、600秒を超える長時間処理では、樹脂成形品2の表面に過剰な劣化が生じるおそれがある。 As the inert gas to be used, the inert gas used for discharge ignition may be used as it is, or the inert gas used for discharge ignition may be switched to another inert gas.
The preprocessing time may be, for example, 300 seconds to 600 seconds. If it is less than 300 seconds, the polymer chain on the surface of the resin moldedproduct 2 may not be sufficiently broken. On the other hand, in the long-time treatment exceeding 600 seconds, there is a possibility that excessive deterioration occurs on the surface of the resin molded product 2.
前処理の時間は、例えば、300秒~600秒であってよい。300秒未満であると、樹脂成形品2の表面の高分子鎖が十分に断裂しない場合がある。一方、600秒を超える長時間処理では、樹脂成形品2の表面に過剰な劣化が生じるおそれがある。 As the inert gas to be used, the inert gas used for discharge ignition may be used as it is, or the inert gas used for discharge ignition may be switched to another inert gas.
The preprocessing time may be, for example, 300 seconds to 600 seconds. If it is less than 300 seconds, the polymer chain on the surface of the resin molded
このようにして形成された軟質層15は、例えば、樹脂成形品2の表面(処理表面)から50μm未満(好ましくは、0μm~20μm)の範囲に形成される。軟質層15の硬度は、例えば、樹脂成形品2の未処理部分(スパッタリング処理がされていない硬質層)に比べて40%以上低減されている。具体的な硬度としては、例えば、薄膜硬度計(押し込み荷重:1000μN)を用いて測定した400nm~600nm押し込み時の硬度が0.05GPa~0.13GPaであってもよい。薄膜硬度計による測定は、例えば、図8に示すように、処理後の樹脂成形品2を切断し、その断面に対して薄膜硬度計の圧子を処理表面から深さ方向に順々に押し込むことで行えばよい。
The soft layer 15 thus formed is formed, for example, in a range of less than 50 μm (preferably 0 μm to 20 μm) from the surface (treated surface) of the resin molded product 2. The hardness of the soft layer 15 is reduced by, for example, 40% or more compared to the untreated portion (hard layer not subjected to the sputtering treatment) of the resin molded product 2. As a specific hardness, for example, the hardness at the time of 400 nm to 600 nm indentation measured using a thin film hardness meter (indentation load: 1000 μN) may be 0.05 GPa to 0.13 GPa. For example, as shown in FIG. 8, the thin-film hardness meter is measured by cutting the processed resin molded product 2 and sequentially pushing the indenter of the thin-film hardness meter into the cross section in the depth direction from the processing surface. Just do it.
そして、軟質層15が形成されていれば、図9に示すように、樹脂製部材1(樹脂成形品2)と相手部材17との間の潤滑油量が一時的に低減するなどして樹脂製部材1と相手部材17との間に固体接触が生じても、相手部材17の接触による衝撃を、軟質層15で相手部材17を滑らせながら受け止めることで緩和することができる。その結果、樹脂製部材1-相手部材17間の摩擦係数を長期に亘って低く維持することができるので、樹脂製部材1の耐焼付性を向上させることができる。すなわち、この変形例によれば、図10に示すように、空気のプラズマ処理による混合潤滑領域Bにおける摩擦係数μの低減に加え(一点鎖線)、樹脂製部材1の表面層の硬さを制御することによって、境界潤滑領域Aにおける摩擦係数μを低減する効果を享受することができる(二点鎖線)。この低摩擦化によって、樹脂製部材1の摺動部の温度上昇を抑制できるので、樹脂製部材1の材料として、耐熱温度が比較的低い安価な材料を適用することができる。
If the soft layer 15 is formed, the amount of lubricating oil between the resin member 1 (resin molded product 2) and the mating member 17 is temporarily reduced as shown in FIG. Even if solid contact occurs between the manufactured member 1 and the mating member 17, the impact caused by the contact of the mating member 17 can be mitigated by receiving the mating member 17 while sliding it with the soft layer 15. As a result, since the coefficient of friction between the resin member 1 and the mating member 17 can be kept low for a long period of time, the seizure resistance of the resin member 1 can be improved. That is, according to this modified example, as shown in FIG. 10, in addition to the reduction of the friction coefficient μ in the mixed lubrication region B by the plasma treatment of air (dashed line), the hardness of the surface layer of the resin member 1 is controlled. By doing so, the effect of reducing the friction coefficient μ in the boundary lubrication region A can be enjoyed (two-dot chain line). Since the temperature reduction of the sliding portion of the resin member 1 can be suppressed by this low friction, an inexpensive material having a relatively low heat-resistant temperature can be applied as the material of the resin member 1.
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
Other various design changes can be made within the scope of the matters described in the claims.
次に、本発明を実施例に基づいて説明するが、本発明は下記の実施例によって限定されるものではない。
(実施例1)
まず、図2に基づいて処理対象サンプル(成形品)を作製した。サンプルの作製条件は、次の通りである。 EXAMPLES Next, although this invention is demonstrated based on an Example, this invention is not limited by the following Example.
(Example 1)
First, a sample to be processed (molded product) was produced based on FIG. Sample preparation conditions are as follows.
(実施例1)
まず、図2に基づいて処理対象サンプル(成形品)を作製した。サンプルの作製条件は、次の通りである。 EXAMPLES Next, although this invention is demonstrated based on an Example, this invention is not limited by the following Example.
(Example 1)
First, a sample to be processed (molded product) was produced based on FIG. Sample preparation conditions are as follows.
樹脂素材:PA(ポリアミド)66
長さL:25mm
内径D:φ15
次に、得られた処理対象サンプルに対して、上記の方法に倣ってプラズマ処理を行った。なお、原料ガスとしては、初期段階でArを使用し、定常段階で空気を使用した。 Resin material: PA (polyamide) 66
Length L: 25mm
Inner diameter D: φ15
Next, plasma processing was performed on the obtained sample to be processed following the above method. As the source gas, Ar was used in the initial stage and air was used in the steady stage.
長さL:25mm
内径D:φ15
次に、得られた処理対象サンプルに対して、上記の方法に倣ってプラズマ処理を行った。なお、原料ガスとしては、初期段階でArを使用し、定常段階で空気を使用した。 Resin material: PA (polyamide) 66
Length L: 25mm
Inner diameter D: φ15
Next, plasma processing was performed on the obtained sample to be processed following the above method. As the source gas, Ar was used in the initial stage and air was used in the steady stage.
処理の結果、処理対象サンプルの表面に50μm~200μm間隔の網目状構造が付与され、当該網目状構造は、表面から0.1μm~3.0μmの高さを有する凸状によって構成されていることが確認できた。なお、網目状構造の間隔や凸部の高さは、プラズマ処理後のサンプルの表面を走査型電子顕微鏡(SEM)で撮影し、得られた画像のスケールに基づいて確認した。網目状構造によってサンプルの表面積が増加するので、ウェンゼルの式として知られる下記式(1)によって、液体の接触角を低減できることがわかった。
As a result of the treatment, a network structure with an interval of 50 μm to 200 μm is given to the surface of the sample to be processed, and the network structure is constituted by a convex shape having a height of 0.1 μm to 3.0 μm from the surface. Was confirmed. The interval between the mesh structures and the height of the protrusions were confirmed by photographing the surface of the sample after the plasma treatment with a scanning electron microscope (SEM) and based on the scale of the obtained image. Since the surface area of the sample is increased by the network structure, it has been found that the contact angle of the liquid can be reduced by the following equation (1) known as the Wenzel equation.
cosθγ=γcosθ・・・(1)
(式(1)において、θγは粗化後の接触角を示し、θは平面上の接触角を示し、γは表面積倍増因子を示す。)
次に、プラズマ処理後のサンプルの表面に、無添加の鉱物油を滴下し、濡れ性の評価を行った。結果を、図11に示す。図11によれば、樹脂成形品2のどの箇所においても、鉱物油の接触角が、プラズマ処理前の70%未満にまで低減できていることがわかった。
(実施例2)
PA(ポリアミド)66からなる樹脂板を準備し、これに対して、上記の方法に倣ってプラズマ処理を行った。なお、原料ガスとしては、初期段階でArを使用し、定常段階で空気を使用した。さらに、初期段階では、300秒間、Arガスのプラズマ状態を継続することによって、樹脂板の表面をスパッタリング処理(前処理)した。 cos θ γ = γ cos θ (1)
(In Formula (1), θ γ represents a contact angle after roughening, θ represents a contact angle on a plane, and γ represents a surface area doubling factor.)
Next, additive-free mineral oil was dropped onto the surface of the sample after the plasma treatment, and wettability was evaluated. The results are shown in FIG. According to FIG. 11, it was found that the contact angle of the mineral oil could be reduced to less than 70% before the plasma treatment at any location of the resin moldedproduct 2.
(Example 2)
A resin plate made of PA (polyamide) 66 was prepared, and plasma treatment was performed in accordance with the above method. As the source gas, Ar was used in the initial stage and air was used in the steady stage. Furthermore, in the initial stage, the surface of the resin plate was subjected to sputtering treatment (pretreatment) by continuing the Ar gas plasma state for 300 seconds.
(式(1)において、θγは粗化後の接触角を示し、θは平面上の接触角を示し、γは表面積倍増因子を示す。)
次に、プラズマ処理後のサンプルの表面に、無添加の鉱物油を滴下し、濡れ性の評価を行った。結果を、図11に示す。図11によれば、樹脂成形品2のどの箇所においても、鉱物油の接触角が、プラズマ処理前の70%未満にまで低減できていることがわかった。
(実施例2)
PA(ポリアミド)66からなる樹脂板を準備し、これに対して、上記の方法に倣ってプラズマ処理を行った。なお、原料ガスとしては、初期段階でArを使用し、定常段階で空気を使用した。さらに、初期段階では、300秒間、Arガスのプラズマ状態を継続することによって、樹脂板の表面をスパッタリング処理(前処理)した。 cos θ γ = γ cos θ (1)
(In Formula (1), θ γ represents a contact angle after roughening, θ represents a contact angle on a plane, and γ represents a surface area doubling factor.)
Next, additive-free mineral oil was dropped onto the surface of the sample after the plasma treatment, and wettability was evaluated. The results are shown in FIG. According to FIG. 11, it was found that the contact angle of the mineral oil could be reduced to less than 70% before the plasma treatment at any location of the resin molded
(Example 2)
A resin plate made of PA (polyamide) 66 was prepared, and plasma treatment was performed in accordance with the above method. As the source gas, Ar was used in the initial stage and air was used in the steady stage. Furthermore, in the initial stage, the surface of the resin plate was subjected to sputtering treatment (pretreatment) by continuing the Ar gas plasma state for 300 seconds.
次に、図8に示した方法に倣って、樹脂板の処理表面から0.3μm、1μm、50μm、200μm、1200μm、1500μmおよび2000μmの各深さ位置の硬度を、薄膜硬度計(押し込み荷重:1000μN)を用いて測定した。結果を図12に示す。図12から、少なくとも0.3μmおよび1μmの深さ位置に、プラズマ処理前に比べて硬度が低減された軟質層が形成されていることが分かった。一方、少なくとも50μm~1500μmの深さ位置では、プラズマ処理前に比べて硬度が高くなっていた。これは、スパッタリング処理等によって何らかのエネルギ(微振動、熱エネルギ等)が樹脂板にかかり、これにより、軟質層の直下で樹脂が再結晶化(再縮合化)したものであると考えられる。
Next, following the method shown in FIG. 8, the hardness at each depth position of 0.3 μm, 1 μm, 50 μm, 200 μm, 1200 μm, 1500 μm and 2000 μm from the treated surface of the resin plate is measured with a thin film hardness meter (indentation load: 1000 μN). The results are shown in FIG. From FIG. 12, it was found that a soft layer having a reduced hardness was formed at depths of at least 0.3 μm and 1 μm compared to before the plasma treatment. On the other hand, at a depth of at least 50 μm to 1500 μm, the hardness was higher than before the plasma treatment. It is considered that this is because some energy (microvibration, thermal energy, etc.) is applied to the resin plate by sputtering or the like, and as a result, the resin is recrystallized (recondensed) immediately below the soft layer.
次に、プラズマ処理後の樹脂板に対して摩擦試験を実施した。摩擦試験は、図13に示すように、樹脂板に、潤滑油(無添加鉱油0.02ml)を介して相手部材としてスチールリングを接触させることによって行った。摩擦試験の条件は、荷重:50N(面圧:11.4MPa)、速度:5500mm/sとした。結果を図14および図15に示す。図14は、摩擦係数の持続性を説明するための図である。一方、図15は、摩擦係数の低減効果を説明するための図である。
Next, a friction test was performed on the resin plate after the plasma treatment. As shown in FIG. 13, the friction test was performed by bringing a steel ring into contact with the resin plate via a lubricating oil (no additive mineral oil 0.02 ml) as a mating member. The friction test conditions were as follows: load: 50 N (surface pressure: 11.4 MPa), speed: 5500 mm / s. The results are shown in FIG. 14 and FIG. FIG. 14 is a diagram for explaining the persistence of the friction coefficient. On the other hand, FIG. 15 is a diagram for explaining the effect of reducing the friction coefficient.
図14に示すように、実施例2のプラズマ処理を行った後では、摩擦係数の持続性が未処理の場合に比べて約6.2倍向上することが分かった。また、図15に示すように、摩擦係数の初期値が、未処理の場合に比べて約79%も低減できることが分かった。
As shown in FIG. 14, it was found that after the plasma treatment of Example 2, the durability of the friction coefficient was improved by about 6.2 times compared to the untreated case. Further, as shown in FIG. 15, it was found that the initial value of the friction coefficient can be reduced by about 79% compared to the case where the friction coefficient is not processed.
本出願は、2014年12月24日出願の日本特許出願(特願2014-260519)及び2015年10月16日出願の日本特許出願(特願2015-204837)に基づくものであり、その内容はここに参照として取り込まれる。
This application is based on a Japanese patent application filed on December 24, 2014 (Japanese Patent Application No. 2014-260519) and a Japanese patent application filed on October 16, 2015 (Japanese Patent Application No. 2015-204837). Incorporated herein by reference.
1…樹脂製部材、2…樹脂成形品、3…外周面、4…内周面、5…端面、15…軟質層、26…保持器
DESCRIPTION OF SYMBOLS 1 ... Resin member, 2 ... Resin molded product, 3 ... Outer peripheral surface, 4 ... Inner peripheral surface, 5 ... End surface, 15 ... Soft layer, 26 ... Cage
Claims (8)
- 所定の形状の樹脂成形品を成形する第1工程と、
真空中で、前記樹脂成形品の表面をプラズマで処理することによって、前記樹脂成形品の表面を凹凸加工する第2工程とを含み、
前記第2工程では、不活性ガスに放電点火を行ってプラズマを発生させた後、そのときの真空度を維持したまま原料ガスを空気に置換する、樹脂製部材の製造方法。 A first step of molding a resin molded product of a predetermined shape;
Including a second step of processing the surface of the resin molded product in a vacuum by processing the surface of the resin molded product with plasma,
In the second step, after the plasma is generated by performing discharge ignition on the inert gas, the raw material gas is replaced with air while maintaining the degree of vacuum at that time. - 前記第2工程では、非平衡プラズマによって前記樹脂成形品を処理する、請求項1に記載の樹脂製部材の製造方法。 The method for manufacturing a resin member according to claim 1, wherein in the second step, the resin molded product is processed by non-equilibrium plasma.
- 前記第2工程は、パルス放電によって前記非平衡プラズマを発生させる工程を含む、請求項2に記載の樹脂製部材の製造方法。 The method for producing a resin member according to claim 2, wherein the second step includes a step of generating the non-equilibrium plasma by pulse discharge.
- 前記第2工程では、空気を用いたプラズマによって前記樹脂成形品を処理する、請求項1~3のいずれか一項に記載の樹脂製部材の製造方法。 The method for manufacturing a resin member according to any one of claims 1 to 3, wherein, in the second step, the resin molded product is treated with plasma using air.
- 前記第2工程では、前記不活性ガスのプラズマで所定の時間、前記樹脂成形品を前処理することによって、前記樹脂成形品の表面に軟質層を形成する工程を含む、請求項1~4のいずれか一項に記載の樹脂製部材の製造方法。 The second step includes the step of forming a soft layer on the surface of the resin molded product by pre-processing the resin molded product with a plasma of the inert gas for a predetermined time. The manufacturing method of the resin-made members as described in any one.
- 前記不活性ガスのプラズマによる前処理は、300秒~600秒間行われる、請求項5に記載の樹脂製部材の製造方法。 The method for producing a resin member according to claim 5, wherein the pretreatment with the plasma of the inert gas is performed for 300 seconds to 600 seconds.
- 前記軟質層は、押し込み荷重が1000μNに設定された薄膜硬度計を用いて測定した400nm~600nm押し込み時の硬度が0.05GPa~0.13GPaである、請求項5または6に記載の樹脂製部材の製造方法。 The resin member according to claim 5 or 6, wherein the soft layer has a hardness at the time of indentation of 400 nm to 600 nm measured using a thin film hardness meter with an indentation load set to 1000 µN of 0.05 GPa to 0.13 GPa. Manufacturing method.
- 前記樹脂成形品は、摺動部材用の成形品を含む、請求項1~7のいずれか一項に記載の樹脂製部材の製造方法。 The method for manufacturing a resin member according to any one of claims 1 to 7, wherein the resin molded product includes a molded product for a sliding member.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112015005774.9T DE112015005774T5 (en) | 2014-12-24 | 2015-12-22 | Resin component production method |
CN201580070911.4A CN107108932A (en) | 2014-12-24 | 2015-12-22 | resin component production method |
US15/538,603 US20170348898A1 (en) | 2014-12-24 | 2015-12-22 | Resin member production method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-260519 | 2014-12-24 | ||
JP2014260519 | 2014-12-24 | ||
JP2015204837A JP6593635B2 (en) | 2014-12-24 | 2015-10-16 | Manufacturing method of resin member |
JP2015-204837 | 2015-10-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016104471A1 true WO2016104471A1 (en) | 2016-06-30 |
Family
ID=56150489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/085767 WO2016104471A1 (en) | 2014-12-24 | 2015-12-22 | Resin member production method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016104471A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018097146A1 (en) * | 2016-11-24 | 2018-05-31 | 日本ゼオン株式会社 | Adhesive sheet and laminated glass |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5614534A (en) * | 1979-07-16 | 1981-02-12 | Shin Etsu Chem Co Ltd | Surface treatment of plastic molded product |
JPS5778426A (en) * | 1980-10-31 | 1982-05-17 | Shin Etsu Chem Co Ltd | Treatment of vinyl chloride resin molding |
JPS5884827A (en) * | 1981-11-16 | 1983-05-21 | Agency Of Ind Science & Technol | Modified molded vinyl chloride resin article |
JPS62132940A (en) * | 1985-12-04 | 1987-06-16 | Sumitomo Electric Ind Ltd | Formation of plasma polymerization thin film on high polymer base material |
JPS63215737A (en) * | 1987-03-04 | 1988-09-08 | Asahi Chem Ind Co Ltd | Production of surface-modified molding |
JPH08118546A (en) * | 1994-10-27 | 1996-05-14 | Tokai Rubber Ind Ltd | Laminate and manufacture thereof |
JP2012077253A (en) * | 2010-10-05 | 2012-04-19 | Nsk Ltd | Surface modification method, resin member, sealing device, and rolling bearing device for supporting wheel |
-
2015
- 2015-12-22 WO PCT/JP2015/085767 patent/WO2016104471A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5614534A (en) * | 1979-07-16 | 1981-02-12 | Shin Etsu Chem Co Ltd | Surface treatment of plastic molded product |
JPS5778426A (en) * | 1980-10-31 | 1982-05-17 | Shin Etsu Chem Co Ltd | Treatment of vinyl chloride resin molding |
JPS5884827A (en) * | 1981-11-16 | 1983-05-21 | Agency Of Ind Science & Technol | Modified molded vinyl chloride resin article |
JPS62132940A (en) * | 1985-12-04 | 1987-06-16 | Sumitomo Electric Ind Ltd | Formation of plasma polymerization thin film on high polymer base material |
JPS63215737A (en) * | 1987-03-04 | 1988-09-08 | Asahi Chem Ind Co Ltd | Production of surface-modified molding |
JPH08118546A (en) * | 1994-10-27 | 1996-05-14 | Tokai Rubber Ind Ltd | Laminate and manufacture thereof |
JP2012077253A (en) * | 2010-10-05 | 2012-04-19 | Nsk Ltd | Surface modification method, resin member, sealing device, and rolling bearing device for supporting wheel |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018097146A1 (en) * | 2016-11-24 | 2018-05-31 | 日本ゼオン株式会社 | Adhesive sheet and laminated glass |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2543579T3 (en) | Bearing components and bearings isolated against current | |
EP3237648B1 (en) | Method for surface treatment of a steel component by nitriding or nitrocarburising, oxidising and then impregnating | |
JP6769775B2 (en) | Sliding members, rolling bearings and cages | |
US8479396B2 (en) | Method for hardening running surfaces of roller bearing components | |
EP2444520A1 (en) | Dlc film-forming method and dlc film | |
WO2016104471A1 (en) | Resin member production method | |
Rangel et al. | Treatment of PVC using an alternative low energy ion bombardment procedure | |
JP6593635B2 (en) | Manufacturing method of resin member | |
Kostov et al. | Treatment of polycarbonate by dielectric barrier discharge (DBD) at atmospheric pressure | |
Wu et al. | New in situ superlow-friction method for nitrogen-containing diamond-like carbon coatings using dielectric barrier discharge treatment in ambient air | |
JP4644236B2 (en) | Plasma nitriding method with low current and high density and plasma nitriding apparatus with low current and high density | |
JP2008266762A (en) | Method for manufacturing metal material including carburizing treatment process | |
Nakayama | The plasma generated and photons emitted in an oil-lubricated sliding contact | |
JP5160197B2 (en) | Sliding member and manufacturing method thereof | |
JP2020051444A (en) | Driving wheel bearing device | |
JP6044744B2 (en) | Ball screw device | |
KR20180131035A (en) | Plasma Nano Nitride Process and Cam Pump Members thereby | |
JP6517562B2 (en) | Main motor bearing | |
US20220128135A1 (en) | Ball screw, method for manufacturing ball screw, power steering device, and method for manufacturing power steering device | |
US20110076460A1 (en) | Plastic with nano-embossing pattern and method for preparing the same | |
WO2018062407A1 (en) | Rolling bearing retainer and rolling bearing | |
US10077484B2 (en) | Method for producing a planetary gear shaft having increased hardness | |
JP7428768B2 (en) | Mechanical parts and rolling bearings | |
RU2539137C1 (en) | Method of resistance increase of wear of threaded surface of parts from alloy steel | |
JP2011193621A (en) | Rotor, method for manufacturing the same, and magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15873039 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15538603 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112015005774 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15873039 Country of ref document: EP Kind code of ref document: A1 |