JP2009013310A - Method for modifying surface of fluororesin molding - Google Patents

Method for modifying surface of fluororesin molding Download PDF

Info

Publication number
JP2009013310A
JP2009013310A JP2007177603A JP2007177603A JP2009013310A JP 2009013310 A JP2009013310 A JP 2009013310A JP 2007177603 A JP2007177603 A JP 2007177603A JP 2007177603 A JP2007177603 A JP 2007177603A JP 2009013310 A JP2009013310 A JP 2009013310A
Authority
JP
Japan
Prior art keywords
molded product
fluororesin
monomer
homopolymer
plasma irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007177603A
Other languages
Japanese (ja)
Inventor
Yasushi Yuya
康 油谷
Mitsuru Tawara
充 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Valqua Industries Ltd
Osaka Prefecture
Nihon Valqua Kogyo KK
Original Assignee
Nippon Valqua Industries Ltd
Osaka Prefecture
Nihon Valqua Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Valqua Industries Ltd, Osaka Prefecture, Nihon Valqua Kogyo KK filed Critical Nippon Valqua Industries Ltd
Priority to JP2007177603A priority Critical patent/JP2009013310A/en
Publication of JP2009013310A publication Critical patent/JP2009013310A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for modifying a surface of a fluororesin molding that has little hazard of processing and little environmental load, enables introducing an active site and forming a hydrophilic membrane in a same apparatus, does not cause a problem such as complexity of processing, can impart fully easy adhesive quality, and enables exerting the easy adhesive quality stably even with time. <P>SOLUTION: This method for modifying the surface of the fluororesin molding comprises a step (1) of introducing the active site on the surface of the molding by irradiating plasma to the surface of the fluororesin molding, a step (2) of graft polymerizing a monomer to an active site of the surface of the molding by irradiating plasma in an atomspheric gas containing a water soluble monomer with an unsaturated bond as an essential component, and a step (3) of removing a homopolymer, derived from the monomer, deposited on the surface of the molding after the graft polymerization. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、不活性なフッ素樹脂系成形物の表面を改質し、他の素材などとの易接着性を付与するための表面改質方法に関する。   The present invention relates to a surface modification method for modifying the surface of an inert fluororesin-based molded article and imparting easy adhesion to other materials.

ポリテトラフルオロエチレン(PTFE)などを主成分とするフッ素樹脂系成形物は、耐熱性、耐薬品性、耐候性、電気絶縁性などの優れた性質を有するため、種々の分野での応用が検討されている一方で、表面が不活性であり、接着剤、塗料、インクなどが付着し難く、他の素材との複合物を得ることが難しいという問題があった。
上記問題を解消するべく、従来、フッ素樹脂系成形物の表面を改質して、易接着性を付与する試みが行われてきた。
そのような技術の1つとして金属ナトリウムをアンモニア水に溶解した溶液中に、フッ素樹脂系成形物を浸漬して、その表面に親水基を導入することによって活性化する方法が知られている。しかし、この方法では、金属ナトリウムを使用することによって火災を誘発する危険性、表面活性化処理後の廃液による環境への悪影響の問題があった。
Fluororesin moldings mainly composed of polytetrafluoroethylene (PTFE) have excellent properties such as heat resistance, chemical resistance, weather resistance, and electrical insulation. On the other hand, there is a problem that the surface is inactive, adhesives, paints, inks and the like are difficult to adhere, and it is difficult to obtain a composite with other materials.
In order to solve the above problems, attempts have been made to improve the surface of a fluororesin-based molded article to impart easy adhesion.
As one of such techniques, a method of activating by immersing a fluororesin-based molded article in a solution of metallic sodium dissolved in aqueous ammonia and introducing a hydrophilic group on the surface thereof is known. However, this method has a problem of causing a fire by using metallic sodium, and adverse effects on the environment due to the waste liquid after the surface activation treatment.

金属ナトリウム処理に代えて、フッ素樹脂成形物に1.5〜25Paの圧力下でのプラズマ照射処理を施すことにより、表面改質する技術が知られている(特許文献1参照)。この技術では、表面改質を行う際に金属ナトリウムを用いることがないため、安全面、環境面における問題を生じさせることなく、優れた易接着性を付与することができる。しかし、このプラズマ照射処理方法では、活性化された部位が経時的に失活してしまい、次第に易接着性が低下してしまうという問題があった。
フッ素樹脂系成形品に、紫外線を照射してラジカルを生成させたのち、モノマーガス雰囲気下で放電重合することにより、二重結合を有するラジカル重合性モノマー残基のグラフト層を有するフッ素樹脂複合体を得る技術も知られている(特許文献2参照)。この技術では、前記モノマー残基のグラフト層からなる親水膜が成形物表面に形成されるため、単にプラズマ照射によって表面改質を行う上記方法と比較すると、経時的な失活の起きることがない。しかし、この技術では、紫外線照射とモノマーガス雰囲気下での放電重合とで異なる装置を用いる必要がある点で、処理が煩雑であるという問題があった。
特開2003−261698号公報 特開平10−226728号公報
A technique for surface modification by performing plasma irradiation treatment under a pressure of 1.5 to 25 Pa on a fluororesin molding instead of metal sodium treatment is known (see Patent Document 1). In this technique, since metallic sodium is not used when performing surface modification, excellent easy adhesion can be imparted without causing problems in terms of safety and environment. However, this plasma irradiation treatment method has a problem that the activated site is deactivated with time, and the easy adhesion is gradually lowered.
A fluororesin composite having a graft layer of radically polymerizable monomer residues having a double bond by generating a radical by irradiating ultraviolet rays on a fluororesin-based molded article and then performing discharge polymerization in a monomer gas atmosphere There is also known a technique for obtaining (see Patent Document 2). In this technique, since a hydrophilic film composed of the graft layer of the monomer residue is formed on the surface of the molded product, inactivation with time does not occur as compared with the above method in which surface modification is simply performed by plasma irradiation. . However, this technique has a problem that the treatment is complicated in that it is necessary to use different apparatuses for ultraviolet irradiation and discharge polymerization in a monomer gas atmosphere.
JP 2003-261698 A Japanese Patent Laid-Open No. 10-226728

そこで、本発明が解決しようとする課題は、安全面、環境面における上記問題が生じることなく、活性点の導入、親水膜の形成を全て同一装置で行って、処理の煩雑性という問題を解消するとともに、十分な易接着性を付与することができ、かつ、この易接着性を経時的にも安定して発揮させることのできる、フッ素樹脂系成形物の表面改質方法を提供することにある。   Therefore, the problem to be solved by the present invention is to solve the problem of complicated processing by introducing the active sites and forming the hydrophilic film all in the same apparatus without causing the above-mentioned problems in safety and environment. And providing a method for modifying the surface of a fluororesin-based molded product, which can impart sufficient easy-adhesiveness and can stably exhibit this easy-adhesive property over time. is there.

本発明者らは、前記課題を解決するため、鋭意検討を行った。その結果、活性点の導入、親水膜の形成を同一装置で行って処理の煩雑性を解消するために、活性点の導入、親水膜の形成をプラズマ照射により行うことを考えた。しかし、この場合、成形物表面に充分な易接着性を付与することができなかった。そこで、さらなる検討を行った結果、プラズマ照射による活性点導入、親水膜形成を行っても、未だ充分な易接着性が発現しないのは、成形物表面に堆積したホモポリマーが原因となっていることが分かった。かかる知見から、成形物表面に堆積したホモポリマーを除去するようにすれば、充分な易接着性を発現し、該易接着性の経時安定性にも優れた成形物を得ることができることを見出し、それを確認して、本発明を完成した。   In order to solve the above problems, the present inventors have conducted intensive studies. As a result, in order to eliminate the complexity of processing by introducing active sites and forming a hydrophilic film with the same apparatus, it was considered to introduce active sites and form a hydrophilic film by plasma irradiation. However, in this case, sufficient easy adhesion could not be imparted to the surface of the molded product. Therefore, as a result of further studies, even when active sites were introduced by plasma irradiation and hydrophilic film formation was performed, the reason why sufficient adhesion was not yet exhibited was due to the homopolymer deposited on the surface of the molded product. I understood that. From this knowledge, it has been found that if the homopolymer deposited on the surface of the molded product is removed, a molded product exhibiting sufficient easy adhesion and excellent in stability over time of the easy adhesion can be obtained. As a result, the present invention was completed.

すなわち、本発明にかかるフッ素樹脂系成形物の表面改質方法は、フッ素樹脂系成形物表面にプラズマ照射することにより、成形物表面に活性点を導入する工程(1)と、不飽和結合を有する水溶性モノマーを必須とする雰囲気ガス中でプラズマ照射することにより、前記成形物表面の活性点で前記モノマーをグラフト重合させる工程(2)と、グラフト重合後の成形物表面に堆積した、前記モノマー由来のホモポリマーを除去する工程(3)と、を含む、ことを特徴とする。
前記工程(1)のプラズマ照射は、ヘリウム、アルゴン、窒素、二酸化炭素、アンモニア、酸素および水素から選ばれる少なくとも1種の雰囲気ガス中で行う、ことが好ましい。
That is, the method for modifying the surface of a fluororesin-based molded product according to the present invention includes the step (1) of introducing active sites on the surface of the molded product by irradiating the surface of the fluororesin-based molded product with an unsaturated bond. A step (2) of graft-polymerizing the monomer at an active point on the surface of the molded article by plasma irradiation in an atmospheric gas having the water-soluble monomer as an essential component, and deposited on the surface of the molded article after the graft polymerization, And (3) removing the monomer-derived homopolymer.
The plasma irradiation in the step (1) is preferably performed in at least one atmospheric gas selected from helium, argon, nitrogen, carbon dioxide, ammonia, oxygen and hydrogen.

不飽和結合を有する水溶性モノマーが、カルボキシル基、アミノ基、スルホン基、水酸基およびアミド基から選ばれる少なくとも1種の官能基を有するものである、ことが好ましい。
ホモポリマーの除去は、グラフト重合後の成形物表面を溶媒で洗浄することにより行う、ことが好ましい。
The water-soluble monomer having an unsaturated bond is preferably one having at least one functional group selected from a carboxyl group, an amino group, a sulfone group, a hydroxyl group and an amide group.
The removal of the homopolymer is preferably performed by washing the surface of the molded product after the graft polymerization with a solvent.

本発明にかかるフッ素樹脂系成形物の表面改質方法によれば、処理の危険性、環境負荷が小さく、活性点の導入、親水膜の形成を、同一装置で行うことができるため、処理の煩雑性という問題がないという利点を有するとともに、十分な易接着性を付与することができ、かつ、この易接着性を経時的にも安定して発揮させることができる。
工程(1)のプラズマ照射は、ヘリウム、アルゴン、窒素、二酸化炭素、アンモニア、酸素および水素から選ばれる少なくとも1種の雰囲気ガス中で行うようにすれば、優れたエッチング効率が発揮される。
不飽和結合を有する水溶性モノマーが、カルボキシル基、アミノ基、スルホン基、水酸基およびアミド基から選ばれる少なくとも1種の官能基を有するものであれば、フッ素樹脂系成形物表面に高い親水性が付与され、易接着性がさらに向上するため好ましい。
According to the surface modification method for a fluororesin-based molded product according to the present invention, the risk of processing and the environmental load are small, the introduction of active sites and the formation of a hydrophilic film can be performed in the same apparatus. In addition to the advantage that there is no problem of complexity, sufficient easy adhesion can be imparted, and this easy adhesion can be stably exhibited over time.
If the plasma irradiation in the step (1) is performed in at least one kind of atmospheric gas selected from helium, argon, nitrogen, carbon dioxide, ammonia, oxygen and hydrogen, excellent etching efficiency is exhibited.
If the water-soluble monomer having an unsaturated bond has at least one functional group selected from a carboxyl group, an amino group, a sulfone group, a hydroxyl group and an amide group, the surface of the fluororesin-based molded article has high hydrophilicity. It is preferable because it is imparted and the easy adhesion is further improved.

ホモポリマーの除去を、グラフト重合後の成形物表面を溶媒で洗浄することにより行うようにすれば、簡易に、安全に、かつ、低コストにホモポリマーの除去を行うことができる。   If the removal of the homopolymer is carried out by washing the surface of the molded product after the graft polymerization with a solvent, the removal of the homopolymer can be carried out simply, safely and at low cost.

以下、本発明にかかるフッ素樹脂系成形物の表面改質方法について詳しく説明するが、本発明の範囲はこれらに拘束されることなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更実施し得る。
本発明が対象とするフッ素樹脂系成形物は、フッ素樹脂を主たる成分とする成形物であり、前記フッ素樹脂としては、特に限定されず、フッ素を含有するモノマーの単独重合体や、他のモノマーとの共重合体を用いれば良い。具体的には、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオライド系(THV)、ポリビニリデンフルオライド系(PVDF)、ポリクロロトリフルオロエチレン系(PCTFE)、クロロトリフルオロエチレン−エチレン系(ECTFE)、テトラフルオロエチレン−エチレン系(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン系(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル系(PFA)などが挙げられる。
Hereinafter, the method for modifying the surface of a fluororesin-based molded product according to the present invention will be described in detail, but the scope of the present invention is not limited thereto, and the scope of the present invention is not impaired except for the following examples. And can be changed as appropriate.
The fluororesin-based molded product targeted by the present invention is a molded product containing a fluororesin as a main component, and the fluororesin is not particularly limited and may be a homopolymer of a monomer containing fluorine or other monomer. And a copolymer thereof may be used. Specifically, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride (THV), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), Examples thereof include chlorotrifluoroethylene-ethylene (ECTFE), tetrafluoroethylene-ethylene (ETFE), tetrafluoroethylene-hexafluoropropylene (FEP), and tetrafluoroethylene-perfluoroalkyl vinyl ether (PFA).

前記フッ素樹脂系成形物の成形形態としては、特に限定されず、例えば、シート状、フィルム状、板状などの成形物が挙げられる。
本発明にかかるフッ素樹脂系成形物の表面改質方法は、上記したようなフッ素樹脂系成形物の表面を改質する方法であって、活性点導入工程(工程(1))と、グラフト重合工程(工程(2))と、ホモポリマー除去工程(工程(3))を含む。それぞれの工程について、具体的に以下に説明する。
〔工程(1):活性点導入工程〕
工程(1)は、フッ素樹脂系成形物表面に活性点を導入する工程であって、これを達成するための具体的手段としてプラズマ照射(以下、工程(2)におけるプラズマ照射と区別するため、「第1のプラズマ照射」と称することとする)を採用する。この第1のプラズマ照射による活性点導入の際に、エッチングが行われ、表面に凹凸形成(粗面化)がなされるようにすれば、フッ素樹脂系成形物の機械的接着力が増すため、より好ましい。
It does not specifically limit as a shaping | molding form of the said fluororesin type molded object, For example, molded objects, such as a sheet form, a film form, and plate shape, are mentioned.
The surface modification method for a fluororesin-based molded product according to the present invention is a method for modifying the surface of a fluororesin-based molded product as described above, and includes an active site introduction step (step (1)), graft polymerization, and the like. A process (process (2)) and a homopolymer removal process (process (3)) are included. Each step will be specifically described below.
[Step (1): Active site introduction step]
Step (1) is a step of introducing active sites on the surface of the fluororesin-based molded product, and as a specific means for achieving this, plasma irradiation (hereinafter, in order to distinguish from plasma irradiation in step (2), (Hereinafter referred to as “first plasma irradiation”). When active sites are introduced by the first plasma irradiation, if etching is performed and unevenness is formed on the surface (roughening), the mechanical adhesive force of the fluororesin-based molded product increases. More preferred.

第1のプラズマ照射に用いる雰囲気ガスとしては、特に限定されないが、例えば、ヘリウム、アルゴン、窒素、二酸化炭素、アンモニア、酸素、水素、空気、水蒸気、四フッ化炭素などが挙げられる。エッチング効率の点から、ヘリウム、アルゴン、窒素、二酸化炭素、アンモニア、酸素および水素から選ばれる少なくとも1種の雰囲気ガスが好ましい。
第1のプラズマ照射時の圧力としては、特に限定するわけではないが、例えば、1〜100Paとすることが好ましい。1Pa未満では、減圧と大気開放の繰り返しに時間を要して、生産効率が悪くなるおそれがあり、100Paを超えると、活性点導入の観点から処理効率が低下するおそれがある。より好ましくは5〜70Pa、さらに好ましくは10〜50Paである。
The atmospheric gas used for the first plasma irradiation is not particularly limited, and examples thereof include helium, argon, nitrogen, carbon dioxide, ammonia, oxygen, hydrogen, air, water vapor, and carbon tetrafluoride. From the viewpoint of etching efficiency, at least one atmospheric gas selected from helium, argon, nitrogen, carbon dioxide, ammonia, oxygen and hydrogen is preferable.
Although it does not necessarily limit as a pressure at the time of 1st plasma irradiation, For example, it is preferable to set it as 1-100 Pa. If it is less than 1 Pa, it takes time to repeat the decompression and release to the atmosphere, and the production efficiency may be deteriorated. If it exceeds 100 Pa, the treatment efficiency may be lowered from the viewpoint of introducing active sites. More preferably, it is 5-70 Pa, More preferably, it is 10-50 Pa.

第1のプラズマ照射時の電源出力としては、特に限定するわけではないが、例えば、10〜1000Wとすることが好ましい。10W未満では、処理時間が長くなるおそれがあり、1000Wを超えると、処理基材表面の材料強度が劣化するおそれがある。より好ましくは10〜600Wであり、さらに好ましくは20〜400Wである。
第1のプラズマ照射の電源のプラズマ励起電界周波数は、特に限定されず、直流、交流、ラジオ波、マイクロ波などを利用することができる。中でも、13.56MHzのRF電源が好ましく利用できる。
第1のプラズマ照射の時間は、圧力、雰囲気ガス、温度によって様々であるが、上述した範囲の圧力、雰囲気ガス、温度を採用した場合、通常、5秒〜60分である。好ましくは10秒〜20分である。5秒未満では活性点導入を充分に達成できないおそれがあり、60分を超えると処理基材表面の材料強度が劣化するおそれがある。
Although it does not necessarily limit as a power supply output at the time of 1st plasma irradiation, For example, it is preferable to set it as 10-1000W. If it is less than 10 W, the treatment time may be prolonged, and if it exceeds 1000 W, the material strength of the treated substrate surface may be deteriorated. More preferably, it is 10-600W, More preferably, it is 20-400W.
The plasma excitation electric field frequency of the power source for the first plasma irradiation is not particularly limited, and direct current, alternating current, radio wave, microwave, or the like can be used. Among these, a 13.56 MHz RF power source can be preferably used.
The time of the first plasma irradiation varies depending on the pressure, the atmospheric gas, and the temperature. When the pressure, the atmospheric gas, and the temperature in the above-described ranges are employed, the time is usually 5 seconds to 60 minutes. Preferably, it is 10 seconds to 20 minutes. If it is less than 5 seconds, the introduction of active sites may not be sufficiently achieved, and if it exceeds 60 minutes, the material strength of the treated substrate surface may be deteriorated.

このような第1のプラズマ照射により、フッ素樹脂系成形物表面に活性点が形成される。前記活性点とは、不活性なフッ素樹脂系成形物表面に形成され、後述する工程(2)で使用する水溶性モノマーと反応性を示す部位である。
〔工程(2):グラフト重合工程〕
工程(2)は、前記工程(1)でフッ素樹脂系成形物表面に導入された活性点に、水溶性モノマーを必須とするモノマーをグラフト重合させる工程であって、これを達成するための具体的手段として、不飽和結合を有する水溶性モノマーを必須とする雰囲気ガス中でのプラズマ照射(以下、工程(1)におけるプラズマ照射と区別するため、「第2のプラズマ照射」と称することとする)を採用する。
By such first plasma irradiation, active sites are formed on the surface of the fluororesin-based molded product. The said active point is a site | part which is formed in the surface of an inactive fluororesin molding, and shows the reactivity with the water-soluble monomer used at the process (2) mentioned later.
[Step (2): Graft polymerization step]
Step (2) is a step of graft-polymerizing a monomer having a water-soluble monomer as essential to the active site introduced onto the surface of the fluororesin-based molded product in the step (1), and a specific method for achieving this. As a specific means, plasma irradiation in an atmospheric gas that requires a water-soluble monomer having an unsaturated bond (hereinafter referred to as “second plasma irradiation” in order to distinguish it from plasma irradiation in step (1)). ).

第2のプラズマ照射に用いる雰囲気ガスは、不飽和結合を有する水溶性モノマーを必須とする。このモノマーがフッ素樹脂系成形物表面の活性点と化学結合するとともに重合することにより、前記成形物表面で前記モノマーがグラフト重合する。これにより、前記グラフト重合物からなる親水膜が成形物表面に形成され、フッ素樹脂系成形物表面が親水化されて、易接着性が発現する。グラフト重合の速度・効率を向上させるために、アルゴンやヘリウムなどの希ガスを雰囲気ガスとして混合しても良い。また、水蒸気などを雰囲気ガスとして混在させれば、親水性をより向上させることができるため、好ましい。
前記水溶性モノマーとしては、易接着性の発現のため、親水性の官能基を有しているものであれば、特に限定されないが、例えば、カルボキシル基、アミノ基、スルホン基、水酸基およびアミド基から選ばれる少なくとも1種の官能基を有するものであることが好ましい。具体的には、2−プロピン−1−オール、2−プロペン−1−オール、2−メチル−3−ブチン−2−オール、アクリル酸、メタクリル酸、アリルアルコール、メチルメタクリレート、アリルアミン、アクリルアミドなどを例示することができる。また、モノマー中の不飽和結合は、二重結合であるよりも三重結合である方が、比較的緩和な条件で重合し、架橋構造の構築も行えることから好ましい。三重結合を有するモノマーとしては、特に限定されないが、例えば、2−プロピン−1−オールなどを例示することができる。モノマーはこれらの1種または2種以上を組み合わせて使用することができる。
The atmospheric gas used for the second plasma irradiation requires a water-soluble monomer having an unsaturated bond. When this monomer chemically bonds with the active sites on the surface of the fluororesin-based molded product and polymerizes, the monomer is graft-polymerized on the surface of the molded product. As a result, a hydrophilic film made of the graft polymer is formed on the surface of the molded product, the surface of the fluororesin-based molded product is hydrophilized, and easy adhesion is exhibited. In order to improve the speed and efficiency of graft polymerization, a rare gas such as argon or helium may be mixed as an atmospheric gas. In addition, it is preferable to mix water vapor or the like as the atmospheric gas because the hydrophilicity can be further improved.
The water-soluble monomer is not particularly limited as long as it has a hydrophilic functional group for easy adhesion, and examples thereof include a carboxyl group, an amino group, a sulfone group, a hydroxyl group, and an amide group. It is preferable to have at least one functional group selected from Specifically, 2-propyn-1-ol, 2-propen-1-ol, 2-methyl-3-butyn-2-ol, acrylic acid, methacrylic acid, allyl alcohol, methyl methacrylate, allylamine, acrylamide, etc. It can be illustrated. In addition, the unsaturated bond in the monomer is preferably a triple bond rather than a double bond because it can be polymerized under relatively relaxed conditions and a crosslinked structure can be constructed. Although it does not specifically limit as a monomer which has a triple bond, For example, 2-propyn-1-ol etc. can be illustrated. A monomer can be used combining these 1 type (s) or 2 or more types.

第2のプラズマ照射時の圧力としては、特に限定するわけではないが、例えば、1〜100Paとすることが好ましい。1Pa未満では、親水膜形成に時間が掛かり過ぎるおそれがあり、100Paを超えると、親水膜の形成効率が低くなり過ぎるおそれがある。より好ましくは10〜75Pa、さらに好ましくは25〜75Pa、特に好ましくは35〜50Paである。35〜50Paでは、後述するホモポリマー除去工程によって、接着強度の顕著な向上が期待できる。
第2のプラズマ照射時の重合モノマー温度としては、特に限定するわけではないが、例えば、0〜100℃とすることが好ましい。0℃未満であっても100℃を超えてもモノマーが液体であるために、気化速度が安定せず、一定の器内圧力となるまでに時間を要するおそれがある。より好ましくは20〜40℃である。20〜40℃であれば、安定したガス流量を得ることができる。
Although it does not necessarily limit as a pressure at the time of 2nd plasma irradiation, For example, it is preferable to set it as 1-100 Pa. If it is less than 1 Pa, it may take too much time to form the hydrophilic film, and if it exceeds 100 Pa, the formation efficiency of the hydrophilic film may be too low. More preferably, it is 10-75 Pa, More preferably, it is 25-75 Pa, Most preferably, it is 35-50 Pa. In 35-50 Pa, the remarkable improvement of adhesive strength can be anticipated by the homopolymer removal process mentioned later.
Although it does not necessarily limit as a polymerization monomer temperature at the time of 2nd plasma irradiation, For example, it is preferable to set it as 0-100 degreeC. Since the monomer is liquid even when the temperature is lower than 0 ° C. or higher than 100 ° C., the vaporization rate is not stable, and it may take time to reach a constant internal pressure. More preferably, it is 20-40 degreeC. If it is 20-40 degreeC, the stable gas flow rate can be obtained.

第2のプラズマ照射時の電源出力としては、特に限定するわけではないが、例えば、10〜300Wとすることが好ましい。10W未満では安定したプラズマが発生しないおそれがあり、300Wを超えると生産コストが高くなり好ましくない。より好ましくは15〜200Wであり、さらに好ましくは15〜100Wである。
第2のプラズマ照射の電源のプラズマ励起電界周波数は、特に限定されず、直流、交流、ラジオ波、マイクロ波などを利用することができる。中でも、13.56MHzのRF電源が好ましく利用できる。
第2のプラズマ照射の時間は、圧力、雰囲気ガス、温度によって様々であるが、上述した範囲の圧力、雰囲気ガス、温度を採用した場合、通常、10秒〜20分である。好ましくは1〜20分である。10秒未満では成形物表面に充分な量のグラフト重合物を形成させることができないおそれがあり、20分を超えると後述する工程(3)におけるホモポリマーの除去において時間を要し、生産効率が悪くなるおそれがある。
Although it does not necessarily limit as a power supply output at the time of 2nd plasma irradiation, For example, it is preferable to set it as 10-300W. If it is less than 10 W, stable plasma may not be generated. If it exceeds 300 W, the production cost increases, which is not preferable. More preferably, it is 15-200W, More preferably, it is 15-100W.
The plasma excitation electric field frequency of the power source for the second plasma irradiation is not particularly limited, and direct current, alternating current, radio wave, microwave, or the like can be used. Among these, a 13.56 MHz RF power source can be preferably used.
The time of the second plasma irradiation varies depending on the pressure, the atmospheric gas, and the temperature. When the pressure, the atmospheric gas, and the temperature in the above-described ranges are employed, the time is usually 10 seconds to 20 minutes. Preferably it is 1 to 20 minutes. If it is less than 10 seconds, a sufficient amount of graft polymer may not be formed on the surface of the molded product. If it exceeds 20 minutes, it takes time to remove the homopolymer in the step (3) described later, and the production efficiency is increased. May be worse.

なお、この工程(2)で使用されるモノマーガスは、例えば、ガス排気の際、処理容器とガス排気ポンプの間にトラップを組み込んだり、より簡便には、メタノールとドライアイスを利用するなどしてガスを冷却して液化させたりすることにより、大気中に放出されることを防止することができる。
〔工程(3):ホモポリマー除去工程〕
工程(3)は、グラフト重合後の成形物表面に堆積した、前記モノマー由来のホモポリマーを除去する工程である。すなわち、工程(2)で使用したモノマーは、フッ素樹脂系成形物の活性点と化学結合し、かつ、重合されるのであるが、このようなグラフト重合以外に、自己重合してホモポリマーを生成するものも存在する。このホモポリマーは、グラフト重合後の成形物表面に堆積するが、成形物の表面活性化、すなわち易接着性に寄与しないばかりか、却って、表面活性化を妨げる。
The monomer gas used in this step (2) is, for example, a trap is inserted between the processing vessel and the gas exhaust pump during gas exhaust, or more simply, methanol and dry ice are used. By cooling the gas and liquefying it, it is possible to prevent it from being released into the atmosphere.
[Step (3): Homopolymer removal step]
Step (3) is a step of removing the monomer-derived homopolymer deposited on the surface of the molded product after the graft polymerization. That is, the monomer used in step (2) is chemically bonded to the active site of the fluororesin-based molded product and polymerized. In addition to such graft polymerization, self-polymerization produces a homopolymer. There is something to do. This homopolymer is deposited on the surface of the molded product after the graft polymerization, but not only contributes to the surface activation of the molded product, that is, easy adhesion, but prevents the surface activation.

この工程(3)では、ホモポリマーを除去するが、成形物表面に堆積したホモポリマー全てを完全することは必要でなく、ホモポリマーによる表面活性化の低下を抑制する目的に適した程度の除去で良い。具体的には、下記に示すような条件でホモポリマー除去を行えば良い。
ホモポリマーを除去するための方法としては、特に限定されないが、グラフト重合後の成形物表面を溶媒で洗浄することにより行うことが、簡易かつ高効率であるため好ましい。
溶媒で洗浄する方法の場合において、特に限定するわけではないが、例えば、溶媒中にグラフト重合後の成形物を浸漬する、という簡易な方法が採用できる。さらに、加温、超音波処理などを施せば、洗浄効率が向上する。特に限定するわけではないが、例えば、洗浄温度25〜100℃、洗浄時間1分以上の条件であれば、効率良く洗浄することができる。
In this step (3), the homopolymer is removed, but it is not necessary to completely remove all the homopolymer deposited on the surface of the molded article, and the removal is suitable for the purpose of suppressing the decrease in surface activation due to the homopolymer. Good. Specifically, the homopolymer removal may be performed under the following conditions.
Although it does not specifically limit as a method for removing a homopolymer, It is preferable because it is simple and highly efficient to wash | clean the surface of the molded object after graft polymerization with a solvent.
In the case of the method of washing with a solvent, the method is not particularly limited. For example, a simple method of immersing a molded product after graft polymerization in a solvent can be employed. Furthermore, if heating, ultrasonic treatment, etc. are performed, the cleaning efficiency is improved. Although not particularly limited, for example, the cleaning can be efficiently performed if the cleaning temperature is 25 to 100 ° C. and the cleaning time is 1 minute or more.

前記溶媒としては、特に限定されないが、例えば、水やアルコール類などの極性溶媒が好ましく使用できる。後に溶媒を除去することを考慮すれば、乾燥によって容易に除去できる低沸点溶媒が好ましい。
上記のような工程(1)、(2)、(3)を経たフッ素樹脂系成形物は、表面が活性化され、易接着性が付与されている。そのため、接着剤、塗料、インクなどと容易に接着し、特に接着剤を介して種々の素材との複合物を得ることができる。
前記接着剤としては、特に限定されず、被着体に適当なものを適宜選択すれば良い。例えば、耐熱性を重視する場合には、エポキシ系やポリイミド系のものが好ましい。
Although it does not specifically limit as said solvent, For example, polar solvents, such as water and alcohol, can be used preferably. In consideration of removing the solvent later, a low boiling point solvent that can be easily removed by drying is preferred.
The surface of the fluororesin-based molded product that has undergone the steps (1), (2), and (3) as described above is activated and easy adhesion is imparted. Therefore, it can be easily bonded to adhesives, paints, inks, and the like, and in particular, composites with various materials can be obtained through the adhesives.
It does not specifically limit as said adhesive agent, What is necessary is just to select a thing suitable for a to-be-adhered body suitably. For example, when importance is attached to heat resistance, an epoxy type or polyimide type is preferable.

以下、実施例および比較例を挙げて、本発明をさらに具体的に説明する。
実施例における測定方法を以下に示す。
<接着強度>
表面処理されたフッ素樹脂系成形物について、他の素材との接着強度を以下のようにして測定した。
表面改質後のフッ素樹脂系成形物の表面に、エポキシ系接着剤(商品名「ボンドEセット」、コニシ社製)を塗付し、SUS304と貼り合わせ、100℃で30分間処理することにより接着剤を加熱硬化させた。これを、25℃の温度で90度剥離強さ試験に供し、接着強度を測定した。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
The measuring method in an Example is shown below.
<Adhesive strength>
With respect to the surface-treated fluororesin-based molded product, the adhesive strength with other materials was measured as follows.
By applying an epoxy adhesive (trade name “Bond E Set”, manufactured by Konishi Co., Ltd.) to the surface of the surface-modified fluororesin-based molded product, bonding with SUS304, and treating at 100 ° C. for 30 minutes The adhesive was heat cured. This was subjected to a 90-degree peel strength test at a temperature of 25 ° C., and the adhesive strength was measured.

〔実施例1〕
フッ素樹脂系成形物として、縦25mm×横60mm×厚み1mmのシート状に成形したポリテトラフルオロエチレン(PTFE)を準備した。この成形物表面に、下記条件で、図1に示す構成によって、第1および第2のプラズマ照射を行った。
<第1のプラズマ照射条件>
圧力:27Pa、雰囲気ガス:酸素、プラズマ発生用RF電源:ノダRFテクノロジーズ社製、電源出力:300W、照射時間:10分
<第2のプラズマ照射条件>
圧力:40Pa、雰囲気ガス:2−プロピン−1−オール、プラズマ発生用RF電源:サムコ社製、電源出力:20W、照射時間:10秒
次に、第2のプラズマ照射によるグラフト重合後の成形物を、25℃の水に20分間浸漬することにより洗浄し、成形物表面に堆積したホモポリマーを除去した。
[Example 1]
As a fluororesin-based molded product, polytetrafluoroethylene (PTFE) molded into a sheet shape of 25 mm long × 60 mm wide × 1 mm thick was prepared. The first and second plasma irradiations were performed on the surface of the molded product under the following conditions with the configuration shown in FIG.
<First plasma irradiation conditions>
Pressure: 27 Pa, atmospheric gas: oxygen, RF power source for plasma generation: Noda RF Technologies, power output: 300 W, irradiation time: 10 minutes <Second plasma irradiation conditions>
Pressure: 40 Pa, atmosphere gas: 2-propyn-1-ol, RF power source for plasma generation: manufactured by Samco, power output: 20 W, irradiation time: 10 seconds Next, a molded product after graft polymerization by second plasma irradiation Was washed by immersion in water at 25 ° C. for 20 minutes to remove the homopolymer deposited on the surface of the molded product.

水洗後20分風乾し、本発明の表面改質方法が適用されたフッ素樹脂系成形物を得た。
〔実施例2〕
第2のプラズマ照射条件のうち、照射時間を1分に変更したこと以外は実施例1と同様にして、本発明の表面改質方法が適用されたフッ素樹脂系成形物を得た。
〔実施例3〕
第2のプラズマ照射条件のうち、照射時間を10分に変更したこと以外は実施例1と同様にして、本発明の表面改質方法が適用されたフッ素樹脂系成形物を得た。
〔実施例4〕
第2のプラズマ照射条件のうち、照射時間を20分に変更したこと以外は実施例1と同様にして、本発明の表面改質方法が適用されたフッ素樹脂系成形物を得た。
After washing with water and air-drying for 20 minutes, a fluororesin-based molded product to which the surface modification method of the present invention was applied was obtained.
[Example 2]
Among the second plasma irradiation conditions, a fluororesin-based molded product to which the surface modification method of the present invention was applied was obtained in the same manner as in Example 1 except that the irradiation time was changed to 1 minute.
Example 3
Of the second plasma irradiation conditions, a fluororesin-based molded product to which the surface modification method of the present invention was applied was obtained in the same manner as in Example 1 except that the irradiation time was changed to 10 minutes.
Example 4
Among the second plasma irradiation conditions, a fluororesin-based molded product to which the surface modification method of the present invention was applied was obtained in the same manner as in Example 1 except that the irradiation time was changed to 20 minutes.

〔比較例1〜4〕
グラフト重合後の成形物を、25℃の水に20分間浸漬することにより洗浄し、成形物表面に堆積したホモポリマーを除去する工程を行わなかった点以外は、実施例1〜4と同様の表面改質を行い、比較例1〜4のフッ素樹脂系成形物を得た。
〔比較例5〕
フッ素樹脂系成形物表面に、実施例1と同様の条件で第1のプラズマ照射のみを行ったものを比較例5とした。
〔比較例6〕
フッ素樹脂系成形物表面に、実施例4と同様の条件で第2のプラズマ照射のみを行ったものを比較例6とした。
[Comparative Examples 1-4]
The molded product after graft polymerization was washed by immersing it in water at 25 ° C. for 20 minutes, and the same process as in Examples 1 to 4 was performed except that the step of removing the homopolymer deposited on the surface of the molded product was not performed. Surface modification was performed to obtain fluororesin-based molded products of Comparative Examples 1 to 4.
[Comparative Example 5]
Comparative Example 5 was obtained by performing only the first plasma irradiation on the surface of the fluororesin-based molded product under the same conditions as in Example 1.
[Comparative Example 6]
Comparative Example 6 was obtained by performing only the second plasma irradiation on the surface of the fluororesin-based molded product under the same conditions as in Example 4.

〔評価〕
実施例1〜4および比較例1〜6にかかるフッ素樹脂系成形物の接着強度を上述した方法で測定し、その結果を、第1のプラズマ照射の有無、第2のプラズマ照射の照射時間、ホモポリマー除去工程の有無とともに表1に示した。
[Evaluation]
The adhesive strengths of the fluororesin-based molded products according to Examples 1 to 4 and Comparative Examples 1 to 6 were measured by the method described above, and the results were determined based on the presence or absence of the first plasma irradiation, the irradiation time of the second plasma irradiation, Table 1 shows the presence or absence of the homopolymer removal step.

Figure 2009013310
Figure 2009013310

表1に示す結果から以下のことが分かる。
(1)実施例1〜4と比較例1〜4を比較すれば明らかなように、ホモポリマーの除去を行うか否かにより、接着強度に差がある。特に第2のプラズマ照射の照射時間が1分〜20分の場合、すなわち、実施例2〜4と比較例2〜4との比較では、その差が顕著である。また、活性点の導入のみを行った比較例5、二重結合を有する水溶性モノマーガス中でのフッ素樹脂系成形物表面へのプラズマ照射のみを行った比較例6は、実施例1〜4と比べて接着強度が小さく、実用性に欠けるものである。
(2)上記の結果を総合すれば、本発明にかかるフッ素樹脂系成形物の表面改質方法のように、プラズマ照射を利用した活性点の導入およびグラフト重合と、ホモポリマーの除去という一連の工程を全て経たフッ素樹脂系成形物だけが優れた接着強度を示すということが分かり、各工程を組み合わせたことによる顕著な相乗効果が認められる。
From the results shown in Table 1, the following can be understood.
(1) As apparent from a comparison between Examples 1 to 4 and Comparative Examples 1 to 4, there is a difference in adhesive strength depending on whether or not the homopolymer is removed. In particular, when the irradiation time of the second plasma irradiation is 1 minute to 20 minutes, that is, in the comparison between Examples 2 to 4 and Comparative Examples 2 to 4, the difference is significant. Further, Comparative Example 5 in which only the introduction of active sites was performed, and Comparative Example 6 in which only the plasma irradiation was performed on the surface of the fluororesin-based molded article in a water-soluble monomer gas having a double bond were Examples 1-4. Compared with, the adhesive strength is small and lacks practicality.
(2) Summarizing the above results, as in the surface modification method of the fluororesin-based molded product according to the present invention, a series of introduction of active sites and graft polymerization using plasma irradiation, and removal of homopolymers. It turns out that only the fluororesin-type molded product which passed through the process shows the outstanding adhesive strength, and the remarkable synergistic effect by combining each process is recognized.

本発明にかかるフッ素樹脂系成形物の表面改質方法は、例えば、接着剤、塗料、インクなどと接着し難いフッ素樹脂系成形物の表面を改質し、易接着性を付与することにより、他素材との複合化も容易なフッ素樹脂系成形物を得るための方法として好適に利用できる。   The method for modifying the surface of a fluororesin-based molded product according to the present invention is, for example, by modifying the surface of a fluororesin-based molded product that is difficult to adhere to an adhesive, paint, ink, etc., and imparting easy adhesion, It can be suitably used as a method for obtaining a fluororesin-based molded product that can be easily combined with other materials.

実施例におけるプラズマ照射を行うための構成を示した図である。It is the figure which showed the structure for performing the plasma irradiation in an Example.

Claims (4)

フッ素樹脂系成形物表面にプラズマ照射することにより、成形物表面に活性点を導入する工程(1)と、不飽和結合を有する水溶性モノマーを必須とする雰囲気ガス中でプラズマ照射することにより、前記成形物表面の活性点で前記モノマーをグラフト重合させる工程(2)と、グラフト重合後の成形物表面に堆積した、前記モノマー由来のホモポリマーを除去する工程(3)と、を含む、フッ素樹脂系成形物の表面改質方法。   By irradiating the surface of the fluororesin-based molded product with plasma, the step (1) of introducing active sites on the surface of the molded product, and by irradiating with plasma in an atmospheric gas that requires a water-soluble monomer having an unsaturated bond, A step (2) of graft-polymerizing the monomer at an active point on the surface of the molded product, and a step (3) of removing a homopolymer derived from the monomer deposited on the surface of the molded product after the graft polymerization. Surface modification method for resin-based molded products. 工程(1)のプラズマ照射は、ヘリウム、アルゴン、窒素、二酸化炭素、アンモニア、酸素および水素から選ばれる少なくとも1種の雰囲気ガス中で行う、請求項1に記載のフッ素樹脂系成形物の表面改質方法。   The surface irradiation of the fluororesin-based molded product according to claim 1, wherein the plasma irradiation in the step (1) is performed in at least one atmosphere gas selected from helium, argon, nitrogen, carbon dioxide, ammonia, oxygen and hydrogen. Quality method. 不飽和結合を有する水溶性モノマーが、カルボキシル基、アミノ基、スルホン基、水酸基およびアミド基から選ばれる少なくとも1種の官能基を有するものである、請求項1または2に記載のフッ素樹脂系成形物の表面改質方法。   The fluororesin-based molding according to claim 1 or 2, wherein the water-soluble monomer having an unsaturated bond has at least one functional group selected from a carboxyl group, an amino group, a sulfone group, a hydroxyl group and an amide group. Method for surface modification of objects. ホモポリマーの除去は、グラフト重合後の成形物表面を溶媒で洗浄することにより行う、請求項1から3までのいずれかに記載のフッ素樹脂系成形物の表面改質方法。
The method for modifying the surface of a fluororesin-based molded product according to any one of claims 1 to 3, wherein the removal of the homopolymer is performed by washing the surface of the molded product after the graft polymerization with a solvent.
JP2007177603A 2007-07-05 2007-07-05 Method for modifying surface of fluororesin molding Pending JP2009013310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177603A JP2009013310A (en) 2007-07-05 2007-07-05 Method for modifying surface of fluororesin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177603A JP2009013310A (en) 2007-07-05 2007-07-05 Method for modifying surface of fluororesin molding

Publications (1)

Publication Number Publication Date
JP2009013310A true JP2009013310A (en) 2009-01-22

Family

ID=40354610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177603A Pending JP2009013310A (en) 2007-07-05 2007-07-05 Method for modifying surface of fluororesin molding

Country Status (1)

Country Link
JP (1) JP2009013310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030190A1 (en) * 2015-08-20 2017-02-23 旭硝子株式会社 Multilayer base and method for producing molded body of same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152913A (en) * 1983-02-21 1984-08-31 Yoshito Ikada Surface modification of polymeric material
JPS62132940A (en) * 1985-12-04 1987-06-16 Sumitomo Electric Ind Ltd Formation of plasma polymerization thin film on high polymer base material
JPH04370123A (en) * 1991-06-14 1992-12-22 Nitto Denko Corp Production of modified fluororesin
JPH06116433A (en) * 1992-10-07 1994-04-26 Terumo Corp Surface-modified polymer material
JP2000514848A (en) * 1996-06-28 2000-11-07 エヌケイティ リサーチ センター アクティーゼルスカブ Method of modifying solid polymer substrate surface and resulting product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152913A (en) * 1983-02-21 1984-08-31 Yoshito Ikada Surface modification of polymeric material
JPS62132940A (en) * 1985-12-04 1987-06-16 Sumitomo Electric Ind Ltd Formation of plasma polymerization thin film on high polymer base material
JPH04370123A (en) * 1991-06-14 1992-12-22 Nitto Denko Corp Production of modified fluororesin
JPH06116433A (en) * 1992-10-07 1994-04-26 Terumo Corp Surface-modified polymer material
JP2000514848A (en) * 1996-06-28 2000-11-07 エヌケイティ リサーチ センター アクティーゼルスカブ Method of modifying solid polymer substrate surface and resulting product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030190A1 (en) * 2015-08-20 2017-02-23 旭硝子株式会社 Multilayer base and method for producing molded body of same
JPWO2017030190A1 (en) * 2015-08-20 2018-05-31 旭硝子株式会社 LAMINATED SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME

Similar Documents

Publication Publication Date Title
CN106268370B (en) Polytetrafluoroethylene film low temperature plasma hydrophilic modifying and timeliness modification processing method
JP5649772B2 (en) Surface modification method for fluororesin-based molding
Wang et al. Studies on surface graft polymerization of acrylic acid onto PTFE film by remote argon plasma initiation
US8414980B2 (en) Method for hydrophobic and oleophobic modification of polymeric materials with atmospheric plasmas
WO2016035894A1 (en) Method for manufacturing surface-modified molded article, and method for manufacturing composite using surface-modified molded article
KR102461520B1 (en) Hydrophilic, multifunctional ultra-thin coating with excellent stability and durability
JP5360963B2 (en) Catalyst-free metallization method on dielectric substrate surface and dielectric substrate with metal film
JP2006193780A (en) Metallic film and method for forming the same
WO2006130122A1 (en) Method and device for local functionalization of polymer materials
JP6665109B2 (en) Surface metallization
JP2009013310A (en) Method for modifying surface of fluororesin molding
CN104910406A (en) Method for improving water vapor barrier property of polymer film by virtue of surface crosslinking
JP7060276B2 (en) Joined body and its manufacturing method
Guragain et al. Treatment of polypropylene by dielectric barrier discharge generated at 40 Torr
JPS62235339A (en) Modification of plastic surface
JP2012153791A (en) Surface modification method of fluorine-based resin material and laminate of the fluorine-based resin material and metal material
Hara et al. Relationship between peroxide radical species on plasma-treated PFA surface and adhesion strength of PFA/electroless copper-plating film
WO2010131372A1 (en) Process for surface modification of fluororesin moldings
Zhang et al. Thermal imidization of poly (amic acid) precursors on glycidyl methacrylate (GMA) graft-polymerized aluminium and copper surfaces
Chan-Park et al. Photografting of argon plasma-treated graphite/PEEK laminate to enhance its adhesion
Cho et al. The aging effects of repeated oxygen plasma treatment on the surface rearrangement and adhesion of LDPE to aluminum
JPH02127442A (en) Surface treatment of molded article of fluorinated olefin polymer
JP7439515B2 (en) Manufacturing method of resin bonded body
Ji et al. Emulsion Grafting of Glycidyl Methacrylate onto Plasma-treated Polypropylene Surface
JP4299586B2 (en) Surface modification and adhesion method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100702

A521 Written amendment

Effective date: 20100702

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A02 Decision of refusal

Effective date: 20130312

Free format text: JAPANESE INTERMEDIATE CODE: A02