JPS62132147A - Temperature correction for decision on deterioration of wire covering - Google Patents

Temperature correction for decision on deterioration of wire covering

Info

Publication number
JPS62132147A
JPS62132147A JP27383385A JP27383385A JPS62132147A JP S62132147 A JPS62132147 A JP S62132147A JP 27383385 A JP27383385 A JP 27383385A JP 27383385 A JP27383385 A JP 27383385A JP S62132147 A JPS62132147 A JP S62132147A
Authority
JP
Japan
Prior art keywords
temperature
hardness
wire
sensor
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27383385A
Other languages
Japanese (ja)
Inventor
Masami Yotsuya
四ツ谷 雅實
Koichi Suzuki
光一 鈴木
Koichi Iwata
岩田 考一
Hideki Yoshizawa
吉沢 英輝
Hiroshi Oshima
宏 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Cable Industries Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Cable Industries Ltd
Priority to JP27383385A priority Critical patent/JPS62132147A/en
Publication of JPS62132147A publication Critical patent/JPS62132147A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To always judge the degree of deterioration of wire covering accurately detecting the hardness at a reference state, by pressurizing a decision unit with pressure needle and providing a temperature sensor. CONSTITUTION:A decision unit body 1 is equipped with a pressure needle 4, a temperature sensor 8 and the like. Then, a receptacle 5 is retracted to allow a covered wire W into a broader clearance 14 between the receptacle and the pressure needle 4. Under such a condition, when an operator holds a grip section of a lever 13, the receptacle 5 advances together with a lever 13 to grasp the wire W securely between the receptacle and a mobile guide 10. The pressure needle 4 presses the wire W by a pressure force with a pressure spring 6 and the displacement thereof along the length of the pressure needle 4 is varies with the hardness of a cover body of the wire W. The current displacement is detected with a displacement sensor 7 to measure the hardness thereof. The sensor 8 also gets in contact with a cover body to measure the temperature thereof. In addition, a circuit section 2 calculates the hardness of the cover boy at a reference temperature by a computation processing from the hardness detected with a sensor 7, the temperature detected with the sensor 8 and the like and the results of the decision are displayed 3.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、たとえば軟質塩化ビニル被覆電線の引き込み
電話線のように、主として屋外で使用される被覆電線の
被覆体部分の劣化を判定する劣化判定器において、温度
補正を行なう温度補正方法 ′に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention is a deterioration test for determining the deterioration of the covering portion of a covered wire that is mainly used outdoors, such as a lead-in telephone line made of soft vinyl chloride coated wire. The present invention relates to a temperature correction method for performing temperature correction in a determination device.

〈従来の技術〉 塩化ビニル被覆電線等の被覆電線は、屋外において長期
に使用されると、被覆材料が劣化を起こしてひび割れを
生じ、絶縁障害を起こすに至る。
<Prior Art> When coated wires such as vinyl chloride coated wires are used outdoors for a long time, the coating material deteriorates and cracks occur, leading to insulation failure.

そのため、使用中の被覆電線の劣化度をその使用現場に
おいて判定する判定器が既に提案されている。
Therefore, a determination device has already been proposed that determines the degree of deterioration of a covered wire in use at the site of use.

該判定器は、一定加圧力が加わる加圧針とこれに対向す
る受台との間に測定すべき被覆電線を挟持し、前記加圧
針の変位量から該電線の被覆体の硬度を検出してその劣
化度を判定するようにしたものであって、全体が携帯可
能な小型に構成されている。
The determination device holds a covered wire to be measured between a pressure needle to which a constant pressure is applied and a pedestal facing the same, and detects the hardness of the covering of the wire from the amount of displacement of the pressure needle. The device is designed to determine the degree of deterioration, and the entire device is small and portable.

〈発明が解決しようとする問題点〉 ところで、屋外に架設されている被覆電線は、直射日光
により高温になり、また寒気により低温となるものであ
って、該電線の被覆体は劣化状態が同一である場合でも
、架設現場の環境温度に応じて異なる硬度を示す。その
ため、このような被覆電線は、その架設現場で単に被覆
体の硬度を測定しただけでは、被覆体の実際の劣化度を
判定することができない。
<Problems to be solved by the invention> By the way, covered electric wires installed outdoors become hot due to direct sunlight and cooled due to cold air, and the deterioration state of the coated wires is the same. Even in the case of steel, it exhibits different hardness depending on the environmental temperature at the construction site. Therefore, it is not possible to determine the actual degree of deterioration of such a covered wire by simply measuring the hardness of the covering at the installation site.

本発明は、上述の問題点に鑑みてなされたものであって
、架設現場、測定現場での環境条件にかかわらず、常に
基準状態での硬度を検出し、正確に劣化度を判定しうる
ようにすることを目的とする。
The present invention has been made in view of the above-mentioned problems, and is designed to always detect hardness in a reference state and accurately determine the degree of deterioration, regardless of the environmental conditions at the construction site or measurement site. The purpose is to

〈問題点を解決するための手段〉 本発明は、上記の目的を達成するために、判定器本体に
は予め加圧針による加圧とほぼ同時に被覆体に接触する
温度センサを設けておき、該温度センサが被覆体に接触
して一定短時間後の計測温度から計算により被覆体温度
を算出するか、あるいは所要時間の接触により被覆体温
度を実測し、該被覆体温度とその時の被覆体硬度とから
雨音に対応しかつ一定の一次係数を有する硬度/温度の
一次式を検索し、該硬度/温度の一次式から基準温度に
おける該被覆体の硬度を算出するようにして、電線被覆
劣化判定器の温度補正方法を構成したものである。
<Means for Solving the Problems> In order to achieve the above-mentioned object, the present invention is provided with a temperature sensor that comes into contact with the covering almost simultaneously with the application of pressure by the pressure needle in advance on the main body of the determination device, and The temperature of the sheath is calculated from the temperature measured after a certain period of time after the temperature sensor contacts the sheath, or the temperature of the sheath is actually measured by contact for the required time, and the temperature of the sheath and the hardness of the sheath at that time are calculated. A linear equation of hardness/temperature that corresponds to the rain sound and has a constant linear coefficient is searched for from This is a configuration of the temperature correction method for the determiner.

〈実施例〉 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。第1図は本発明方法の実施に供する電線被覆劣化
判定器の構成図であって、該判定器は、判定器本体Iと
、回路部2と、表示部3とを備える。
<Example> Hereinafter, the present invention will be described in detail based on an example shown in the drawings. FIG. 1 is a block diagram of a wire coating deterioration determiner used to implement the method of the present invention, and the determiner includes a determiner main body I, a circuit section 2, and a display section 3.

第1図では判定器本体Iの概略平面形状を示しており、
同図に示すように、判定器本体1は、加圧針4と、これ
に対向する受台5と、前記加圧針4に一定の加圧力を付
勢する加圧ばね6と、加圧針4の変位を検出するポテン
ショメータのような変位センサ7等を備えており、前記
加圧針4と隣り合う位置にサーミスタのような温度セン
サ8が並設されている。同図において、符号9は判定器
本体lのフレーム、IOは可動ガイド、IIは前記可動
ガイドIOを後退自在に支持するばね、I2は温度セン
サ8を後退自在に支持するばね、13は受台5を支持す
るレバーである。
FIG. 1 shows the approximate planar shape of the determiner main body I.
As shown in the figure, the determiner main body 1 includes a pressure needle 4, a pedestal 5 facing the pressure needle 4, a pressure spring 6 that applies a constant pressure force to the pressure needle 4, and a pressure spring 6 for applying a constant pressure force to the pressure needle 4. It is equipped with a displacement sensor 7 such as a potentiometer for detecting displacement, and a temperature sensor 8 such as a thermistor is arranged in parallel at a position adjacent to the pressure needle 4. In the figure, reference numeral 9 denotes a frame of the main body L of the determination device, IO a movable guide, II a spring that supports the movable guide IO in a retractable manner, I2 a spring that supports the temperature sensor 8 in a retractable manner, and 13 a pedestal. This is a lever that supports 5.

前記受台5はレバーI3とともに第1図左方に後退可能
であって、使用に当たっては、受台5が後退することに
より広がった加圧針4との間の間隙■4に測定すべき被
覆電線Wを挿入する。その状態でオペレータがレバー1
3の握り部(図示せず)を握ると、受台5がレバー13
とともに実線で図示した位置まで前進し、可動ガイド1
0との間で被覆電線Wを挟圧固定する。この固定された
被覆電線Wに対して加圧針4が加圧ばね6による一定の
加圧力で圧接し、被覆電線Wの被覆体の硬度に応じて加
圧針4の長手方向に沿った変位量が変化する。その時の
変位量が変位センサ7により検出されるから、結局この
変位センサ7により被覆体の硬度が測定されることとな
る。また、加圧針4が被覆体に圧接すると同時に、温度
センサ8が被覆体に接触し、その接触により被覆体の温
度が検出される。
The pedestal 5 can be moved back to the left in FIG. 1 together with the lever I3, and when in use, the coated wire to be measured is placed in the gap 4 between the pedestal 5 and the pressure needle 4, which is widened by the retreat of the pedestal 5. Insert W. In this state, the operator presses lever 1.
When the grip part (not shown) of 3 is grasped, the pedestal 5 moves to the lever 13.
move forward to the position shown by the solid line, and move the movable guide 1
The covered wire W is clamped and fixed between the wire and the wire. The pressure needle 4 is brought into pressure contact with the fixed covered wire W by a constant pressing force from the pressure spring 6, and the amount of displacement along the longitudinal direction of the pressure needle 4 is adjusted according to the hardness of the covering of the covered wire W. Change. Since the amount of displacement at that time is detected by the displacement sensor 7, the hardness of the covering body is ultimately measured by the displacement sensor 7. Further, at the same time that the pressure needle 4 comes into pressure contact with the covering, the temperature sensor 8 comes into contact with the covering, and the temperature of the covering is detected by the contact.

前記回路部2は、演算手段や記憶手段、電源等を内蔵し
たものであって、変位センサ7により検出された硬度と
、温度センサ8より検出された温度等から所定の演算処
理を行なって、該被覆体の基準温度での硬度を算出する
。また、前記表示部3は、回路部2において算出された
基準温度での一硬度値を表示するか、あるいは、回路部
2において測定対象である被覆体の基準温度での硬度と
、判定基準値である硬度基準値とを比較する場合は、そ
の判定結果を表示する。
The circuit section 2 has built-in calculation means, storage means, power supply, etc., and performs predetermined calculation processing based on the hardness detected by the displacement sensor 7, the temperature detected by the temperature sensor 8, etc. The hardness of the coating at the reference temperature is calculated. In addition, the display section 3 displays one hardness value at the reference temperature calculated in the circuit section 2, or displays the hardness at the reference temperature of the covering that is the measurement target in the circuit section 2 and the judgment reference value. When comparing the hardness standard value, the determination result is displayed.

さて、本件発明者が被覆電線Wの被覆体の硬度と温度と
の関係について実験と計測とを繰り返したところ、硬度
と温度とは一次的な関係にあり、しかも劣化の進行具合
に無関係に、その関係における一次係数は一定している
という事実を見出した。
Now, when the inventor of the present invention repeatedly conducted experiments and measurements regarding the relationship between the hardness of the covering of the covered wire W and the temperature, it was found that the hardness and temperature have a primary relationship, and that regardless of the progress of deterioration, We found the fact that the linear coefficient in the relationship is constant.

すなわち、第2図の特性図に示すように、横軸に温度を
とり、縦軸に硬度をとって硬度と温度との関係をグラフ
表示すると、ある任意の劣化状態にある被覆体の各温度
毎の硬度値は、一定勾配の直線S。、S4.・・・上に
現われた。そしてこれら直線S。。
In other words, as shown in the characteristic diagram in Figure 2, if we graph the relationship between hardness and temperature with temperature on the horizontal axis and hardness on the vertical axis, each temperature of the coating in a given state of deterioration will be The hardness value for each is a straight line S with a constant slope. , S4. ...appeared above. And these straight lines S. .

S3.・・・の勾配は、いずれもr−0,36Jであっ
た。この場合、スチール線の硬度をrlooJとしてい
る。
S3. The slopes of ... were all r-0.36J. In this case, the hardness of the steel wire is rlooJ.

第2図において、実線で示した直線S。が基準状態での
被覆体の硬度/温度の関係を表示するものとすると、そ
の被覆体が劣化すると、その硬度はより高い値を示すこ
とになるが、その場合の硬度/温度の関係を示す直線S
lは、基準状態を示す直線S。より上位になるものの、
該直線S、も基準状態の直線S。と同勾配(同一の一次
係数)を有し、基準状態の直線S。と平行である。
In FIG. 2, the straight line S is shown as a solid line. indicates the hardness/temperature relationship of the coating in the reference state, and as the coating deteriorates, its hardness will show a higher value. straight line S
l is a straight line S indicating a reference state. Although it ranks higher,
The straight line S is also the straight line S in the reference state. The straight line S in the reference state has the same slope (same first-order coefficient) as . is parallel to

そこで、本発明は、上記の知見に基づいて、第3図のフ
ローチャートに示すような順序で、基準温度での硬度を
求める計算を行なう。まず、ステップNlで、温度セン
サ8の計測により被覆体の温度T1を求めるとともに、
ステップN2でその温度状態での硬度H、を変位センサ
7の計測により検出する。ここで、被覆体の温度T、が
計測により即時に求められない場合、後述するように、
まず接触の一定短時間t2後の計測温度’r 、(t2
)を検出してこの計測温度r2(tz)から所要の計算
により被覆体の温度T、を求めるようにすることもでき
る。
Therefore, in the present invention, based on the above knowledge, calculations for determining the hardness at the reference temperature are performed in the order shown in the flowchart of FIG. First, in step Nl, the temperature T1 of the covering is determined by measurement by the temperature sensor 8, and
In step N2, the hardness H in that temperature state is detected by measurement by the displacement sensor 7. Here, if the temperature T of the covering body cannot be immediately determined by measurement, as will be described later,
First, the measured temperature 'r, (t2
) may be detected and the temperature T of the covering body may be determined from this measured temperature r2(tz) by performing necessary calculations.

そしてステップN3において、温度T、と硬度H3との
両値を前記グラフに当てはめることによって、両者に対
応する一次式(直線S、)を得る。該−次式の直線は、
座標が(’r 、、H、)である点P、を通り、かつ勾
配がr−0,36Jである直線である。この−次式の直
線Slと基準温度(具体的には20℃)T。
Then, in step N3, by applying both values of temperature T and hardness H3 to the graph, a linear equation (straight line S) corresponding to both values is obtained. The straight line of the following equation is
This is a straight line that passes through point P whose coordinates are ('r,,H,) and whose slope is r-0,36J. The straight line Sl of this - following equation and the reference temperature (specifically 20°C) T.

の点を通る縦線との交点が、測定対象である被覆体の基
準温度T。における硬度Haである。そこでステップN
4で基準温度T。における硬度Haを比例計算によって
算出する。この基準温度T。での硬度Haは表示部3に
表示される。オペレータはこの硬度値Haを視認して当
該電線被覆の判定基準値H6と比較し、劣化の度合を判
定する。
The point of intersection with the vertical line passing through the point is the reference temperature T of the covering to be measured. The hardness is Ha. So step N
4 is the reference temperature T. The hardness Ha at is calculated by proportional calculation. This reference temperature T. The hardness Ha at is displayed on the display section 3. The operator visually checks this hardness value Ha and compares it with the determination reference value H6 of the wire coating to determine the degree of deterioration.

また、回路部2内の記憶手段が被覆電線の種類毎の判定
基準値H8を記憶している場合は、ステップN5におい
て回路部2内で既に算出された硬度Haと判定基準値H
6とを比較して劣化度を判定し、ステップN6で使用可
/不可の判定結果を表示部3に表示する。
Further, if the storage means in the circuit section 2 stores the judgment reference value H8 for each type of covered wire, the hardness Ha and the judgment reference value H already calculated in the circuit section 2 in step N5.
6 to determine the degree of deterioration, and in step N6, the determination result of usability/unusability is displayed on the display section 3.

ところで、本件発明者の実験によれば、電線被覆の温度
T、は、温度センサ8の接触後直ちに検出されるもので
はない。真夏の日中であれば、被覆電線Wはかなりの高
温に熱せられており、一方判定器本体!での温度センサ
8自体の温度は、外気温程度であり、このように電線被
覆Wと温度センサ8との間に温度差があると、温度セン
サ8が被覆体の真の温度T1を検出するまでにかなりの
時間を要する。
By the way, according to the inventor's experiments, the temperature T of the wire sheathing is not detected immediately after the temperature sensor 8 contacts it. During the middle of the day in midsummer, the covered wire W is heated to a fairly high temperature, and on the other hand, the tester itself! The temperature of the temperature sensor 8 itself is about the outside temperature, and if there is a temperature difference between the wire sheathing W and the temperature sensor 8, the temperature sensor 8 detects the true temperature T1 of the sheathing. It takes a considerable amount of time.

第4図は、本件発明者の計測により得られた被覆体の温
度T詠温度センサ8の計測温度T2との時間変化を示す
特性図であって、該特性図に基づいて、温度センサ8が
被覆体に接触した場合の温度センサ8の計測温度T、と
被覆体の温度T、との変化状態を説明する。
FIG. 4 is a characteristic diagram showing the change over time between the temperature T of the covering body and the measured temperature T2 of the temperature sensor 8, which was obtained by measurement by the inventor of the present invention, and based on the characteristic diagram, the temperature sensor 8 is The state of change between the temperature T measured by the temperature sensor 8 and the temperature T of the covering when it comes into contact with the covering will be explained.

今、被覆電線Wが高温であって、温度センサ8がこれに
比べて低温T2(0)であるとする。加圧針4の圧接と
ほぼ同時(時刻t。)に、温度センサ8が被覆体に接触
すると、被覆体の接触部が温度センサ8により冷却され
ることとなってその温度T1は一時的に低下する。温度
センサ8の計測温度T、は、1&覆体の熱を吸収するこ
とによって逐次上昇していく。ある短時間が経過すると
、被覆体の接触部の冷却は止んで、その温度TIは温度
センサ8の計測温度T、とともに平行して上昇し、接触
後充分に長い時間(5〜6秒)か経過すると、接触部の
温度は接触前の温度に戻り、温度センサ8は被覆体の真
の温度T、を検出することになる。
Suppose now that the covered wire W is at a high temperature, and the temperature sensor 8 is at a lower temperature T2(0) than this. When the temperature sensor 8 comes into contact with the covering at almost the same time as the pressure needle 4 presses (time t), the contact portion of the covering is cooled by the temperature sensor 8, and its temperature T1 temporarily decreases. do. The temperature T measured by the temperature sensor 8 gradually increases by absorbing the heat of the temperature sensor 1 and the cover. After a certain short period of time has elapsed, the cooling of the contact part of the covering body stops, and its temperature TI rises in parallel with the temperature T measured by the temperature sensor 8, and after a sufficiently long time (5 to 6 seconds) after contact, As time passes, the temperature of the contact portion returns to the temperature before contact, and the temperature sensor 8 detects the true temperature T of the covering.

このように温度センサ8を被覆体に充分長い時間接触さ
せていれば、温度センサ8と被覆体との間に大きな温度
差があっても、被覆体の真の温度T、を検出することが
できるが、測定現場において加圧針4の加圧と温度セン
サ8の接触とを充分長い時間継続することは、作業を能
率よく進める上で好ましくない。特に、判定器本体lが
第1図に示したように、オペレータの握持操作により測
定が行なわれるタイプでは、握持を所要時間持続さける
必要が出てくるので、オペレータに大きな負担をかける
ことになり、採用しがたい。握持により測定を行なう場
合は、握持後1〜3秒で計測結果が得られることが望ま
しい。
If the temperature sensor 8 is kept in contact with the covering for a sufficiently long time in this way, the true temperature T of the covering can be detected even if there is a large temperature difference between the temperature sensor 8 and the covering. However, it is not preferable to continue pressurizing the pressure needle 4 and contacting the temperature sensor 8 for a sufficiently long time at the measurement site in order to proceed with the work efficiently. In particular, in the case of a type in which the main body of the analyzer is measured by the operator's grasping operation, as shown in Figure 1, it becomes necessary to avoid holding the instrument for the required period of time, which places a heavy burden on the operator. This makes it difficult to hire. When measuring by gripping, it is desirable that the measurement result be obtained within 1 to 3 seconds after gripping.

そこで本件発明者は、接触の一定短時間後(t、)にお
ける温度センサ8の計測温度rt(tt)から被覆体の
真の温度TIを推定する手法を検討した。
Therefore, the inventor of the present invention studied a method of estimating the true temperature TI of the covering from the temperature rt(tt) measured by the temperature sensor 8 after a certain short time (t,) of contact.

第4図に示すように、今、温度センサ8の接触前におけ
る被覆体の温度がT、であり、温度センサ8の計測温度
(温度センサ8自体の温度でもある)が’rt(o)、
接触の一定短時間後、後の計測温度を’r t(tt)
であるとして、被覆体と温度センサ8との温度差をΔT
11温度センサ8の接触時の温度変化分を八T、とする
と、 ΔT、=TI−72(0)         ・・・・
・・(イ)ΔT 2−T t(tt)−’r t(0)
      ・・・・・・(ロ)となり、 T、−ΔT、十Δ’r 2(o )       ・・
・・・・(ハ)となる。ここで、温度差ΔT、=α×Δ
T、と仮定すると、 T、=α×Δrt+’rt(o)      ・・・・
・・(ニ)である。
As shown in FIG. 4, the temperature of the coating before the temperature sensor 8 comes into contact with it is T, and the temperature measured by the temperature sensor 8 (which is also the temperature of the temperature sensor 8 itself) is 'rt(o),
After a certain short time of contact, the later measured temperature is 'r t(tt)
Assuming that, the temperature difference between the covering body and the temperature sensor 8 is ΔT
11 If the temperature change at the time of contact with temperature sensor 8 is 8T, then ΔT,=TI-72(0)...
...(a)ΔT 2-T t(tt)-'r t(0)
......(b), T, -ΔT, 1Δ'r 2(o)...
...(c). Here, temperature difference ΔT, = α × Δ
Assuming T, T,=α×Δrt+'rt(o)...
...(d).

上記αを一定の温度係数として、この温度係数αに具体
的に数値を代入してTIを算出することができれば、接
触の一定短時間後t、の計測温度T1(11)から被覆
体の真の温度T1を推定することができるわけである。
If it is possible to calculate TI by substituting a specific value for the temperature coefficient α, assuming that α is a constant temperature coefficient, then the true value of the covering body can be calculated from the measured temperature T1 (11) at t after a certain short time of contact. Therefore, it is possible to estimate the temperature T1 of .

そこで本件発明者は、接触後の時間t2と、前記温度係
数αと、接触後の温度センサ8の温度変化分ΔT、との
関係を調べた。その結果が第5図の特性図である。
Therefore, the inventor investigated the relationship between the time t2 after contact, the temperature coefficient α, and the temperature change ΔT of the temperature sensor 8 after contact. The result is the characteristic diagram shown in FIG.

同図を見れば明らかなように、被覆体と温度センサ8と
の温度差ΔT、の大小にかかわらず、接触後の時間t、
が1.5秒を過ぎる辺りから、温度係数αの変化幅が狭
くなり、その後、接触後の時間t、が長くなるほど、温
度係数αは一定値に収れんしている。
As is clear from the figure, regardless of the magnitude of the temperature difference ΔT between the covering and the temperature sensor 8, the time t after contact,
After 1.5 seconds, the range of change in the temperature coefficient α becomes narrower, and thereafter, as the time t after contact becomes longer, the temperature coefficient α converges to a constant value.

前記したように、判定器本体lが、オペレータの握持操
作により測定が行なわれるタイプでは、接触後の時間を
長くとることができない。接触後の時間t、を1.8秒
に設定すれば、温度係数αは「4」から「7」の間の数
値をとる。温度差ΔT1が小さい領域では、温度係数α
の値の違いにより被覆体温度差T、に生じる誤差は小さ
いから、温度係数αを温度差ΔT+が大きい領域に合わ
せた方が全体として誤差が少なくなる。そのため、ここ
では温度差ΔT1が大きい領域に合わせて、温度係数α
を「4」に設定する。
As described above, if the determination device body 1 is of the type in which measurement is performed by an operator's gripping operation, it is not possible to take a long time after contact. If the time t after contact is set to 1.8 seconds, the temperature coefficient α takes a value between "4" and "7". In the region where the temperature difference ΔT1 is small, the temperature coefficient α
Since the error caused in the coating temperature difference T due to the difference in the value of is small, the error will be reduced overall if the temperature coefficient α is adjusted to a region where the temperature difference ΔT+ is large. Therefore, here, the temperature coefficient α is set according to the region where the temperature difference ΔT1 is large.
is set to "4".

このように設定のもとで、前記の第3図のフローチャー
トに点線で示すように、まず、ステップM+で温度セン
サ8の接触後一定短時間b(4,g秒)の時点で温度セ
ンサ8の計測温度’rp(tt)を検出する。この時点
まで得られる値は、1.8秒後の計測温度’r、(tz
)と、接触前の温度’r 、(o )である。
Under these settings, as shown by the dotted line in the flowchart of FIG. 3, first, in step M+, the temperature sensor 8 The measured temperature 'rp(tt) of is detected. The values obtained up to this point are the measured temperature 'r, (tz
) and the temperature before contact 'r, (o).

両温測値から温度変化分ΔT、が得られる。この温度変
化分ΔT、に温度係数α(=4)を乗じ、その積に接触
前の温度’r 、(o )を加えた和(減算する場合も
あり、その場合は差)が被覆体温度T、であって、これ
らの演算により、ステップM2で被覆体の温度T1を求
める。
The temperature change ΔT is obtained from both temperature measurements. This temperature change ΔT is multiplied by the temperature coefficient α (=4), and the sum (sometimes subtracted, in which case the difference) of the product plus the temperature 'r, (o) before contact is the coating temperature. T, and by these calculations, the temperature T1 of the covering body is determined in step M2.

このように温度係数αを設定することにより、温度セン
サ8の接触後一定短時間(b=1.8秒)後の計測温度
の変化分ΔT、から被覆体の真の温度T1を計算により
算出することができる。
By setting the temperature coefficient α in this way, the true temperature T1 of the covering can be calculated from the change ΔT in the measured temperature after a certain short time (b = 1.8 seconds) after contact with the temperature sensor 8. can do.

この被覆体温度T、とその時の硬度HIとから、第3図
のフローチャートでのステップN3以下のステップを踏
んで、両者に対応する一次式が得られ、この式から、計
算によって基準温度T。における硬度Haが得られる。
From this coating temperature T and the hardness HI at that time, a linear equation corresponding to both is obtained by following the steps from step N3 in the flowchart of FIG. 3, and from this equation, the reference temperature T is calculated. A hardness Ha is obtained.

上記の例では温度係数αを一定の値に固定して、該温度
係数αを用いて被覆体温度T1を算出するようしたので
あるが、厳密に見ると、第5図の特性図からも分かるよ
うに、温度係数αは被覆体と温度、センサ8との温度差
ΔT、に応じて増減するものである。
In the above example, the temperature coefficient α was fixed at a constant value and the coating temperature T1 was calculated using the temperature coefficient α, but if we look at it strictly, it can also be seen from the characteristic diagram in Figure 5. As such, the temperature coefficient α increases or decreases depending on the temperature difference ΔT between the covering body, the temperature, and the sensor 8.

被覆体と温度センサ8との温度差ΔT+が大きければ、
接触後の温度センサ8の計測温度の変化分へT2も大き
いから、接触後の計測温度の変化分ΔT、の大小に応じ
て温度係数αを増減させるようにしてもよい。すなわち
、温度係数αを温度変化分ΔT2の関数と考えて、 α=F(ΔT2)           ・・・・・・
(ホ)としてもよい。
If the temperature difference ΔT+ between the covering and the temperature sensor 8 is large,
Since the change T2 in the temperature measured by the temperature sensor 8 after contact is also large, the temperature coefficient α may be increased or decreased depending on the magnitude of the change ΔT in the measured temperature after contact. In other words, considering the temperature coefficient α as a function of the temperature change ΔT2, α=F(ΔT2)...
(E) may also be used.

このように温度変化分ΔT、の大きさに応じて温度係数
αの値を変化させると、より正確な被覆体温度T1を求
めることができ、これにより温度補正を正確に行なうこ
とができる。
By changing the value of the temperature coefficient α according to the magnitude of the temperature change ΔT in this manner, a more accurate covering temperature T1 can be obtained, and thereby temperature correction can be performed accurately.

〈発明の効果〉 以上のように、本発明の方法は、被覆電線の温度と硬度
とは一定の係数を有する一次関係にあるという、本件発
明者が実験の結果得た知見を利用したものであって、該
知見に基づいた計算により、計測時の被覆体温度と硬度
とから基準温度における硬度を算出することができ、測
定現場の環境条件にかかわらず、被覆体の劣化度を正確
に判定することができる。
<Effects of the Invention> As described above, the method of the present invention utilizes the knowledge obtained through experiments by the inventor that the temperature and hardness of a covered wire have a linear relationship with a certain coefficient. Therefore, by calculation based on this knowledge, it is possible to calculate the hardness at the reference temperature from the temperature and hardness of the sheathing at the time of measurement, and the degree of deterioration of the sheathing can be accurately determined regardless of the environmental conditions at the measurement site. can do.

しかも、温度センサの接触後一定短時間後における計測
温度の変化分に、実験により求めた温度係数を乗じて被
覆体の温度を推定するようにすると、被覆体の温度計測
に時間がかからず、極めて短時間のうちに、判定結果が
得られ、オペレータに負担がかからず、能率よく作業を
遂行することかできる。
Furthermore, by estimating the temperature of the sheath by multiplying the change in temperature measured after a certain period of time after contact with the temperature sensor by the experimentally determined temperature coefficient, it does not take much time to measure the temperature of the sheath. Judgment results can be obtained in an extremely short period of time, and operations can be carried out efficiently without placing any burden on the operator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に供する電線被覆劣化判定器
の構成図、第2図は被覆電線の温度と硬度との関係を示
す特性図、第3図は本発明方法による判定動作を示すフ
ローチャート、第4図は被覆体温度と計測温度との時間
変化を示す特性図、第5図は各温度差領域での温度係数
の時間変化を示す特性図である。 l・・・判定器本体、2・・・回路部、3・・・表示部
、4・・・加圧針、5・・・受台、7・・・変位センサ
、8・・・温度センサ、T1・・・被覆体温度、’r 
2(0)、’r z(tt)・・・温度センサの計測温
度、ΔT、・・・被覆体と温度センサとの温度差、ΔT
、・・・計測温度の変化分。
Fig. 1 is a configuration diagram of a wire coating deterioration determination device used to carry out the method of the present invention, Fig. 2 is a characteristic diagram showing the relationship between the temperature and hardness of the covered wire, and Fig. 3 shows the determination operation according to the method of the present invention. The flowchart, FIG. 4 is a characteristic diagram showing the change over time between the covering body temperature and the measured temperature, and FIG. 5 is a characteristic diagram showing the change over time in the temperature coefficient in each temperature difference region. l... Judgment unit body, 2... Circuit section, 3... Display section, 4... Pressure needle, 5... pedestal, 7... Displacement sensor, 8... Temperature sensor, T1... Covering temperature, 'r
2(0),'r z(tt)...Measurement temperature of the temperature sensor, ΔT,...Temperature difference between the covering and the temperature sensor, ΔT
,...Change in measured temperature.

Claims (2)

【特許請求の範囲】[Claims] (1)一定加圧力が加わる加圧針とこれに対向する受台
との間に測定すべき被覆電線を挟持し、前記加圧針の変
位量から該電線の被覆体の硬度を検出してその劣化度を
判定するようにした電線被覆劣化判定器における温度補
正方法であって、判定器本体には予め加圧針による加圧
とほぼ同時に被覆体に接触する温度センサを設けておき
、該温度センサが被覆体に接触して一定短時間後の計測
温度から計算により被覆体温度を算出するか、あるいは
所要時間の接触により被覆体温度を実測し、該被覆体温
度とその時の被覆体硬度とから両者に対応しかつ一定の
一次係数を有する硬度/温度の一次式を検索し、該硬度
/温度の一次式から基準温度における該被覆体の硬度を
算出することを特徴とする電線被覆劣化判定器の温度補
正方法。
(1) A covered wire to be measured is held between a pressure needle to which a constant pressure is applied and a pedestal facing it, and the hardness of the wire's coating is detected from the amount of displacement of the pressure needle, and its deterioration is detected. This is a temperature correction method for a wire coating deterioration determination device that determines the degree of deterioration of a wire. The temperature of the sheath can be calculated from the temperature measured after a certain period of time after contacting the sheath, or the temperature of the sheath is actually measured by contacting the sheath for the required time, and the temperature of the sheath and the hardness of the sheath at that time are calculated. A wire coating deterioration determination device, characterized in that it searches for a linear expression of hardness/temperature that corresponds to and has a constant linear coefficient, and calculates the hardness of the coating at a reference temperature from the linear expression of hardness/temperature. Temperature correction method.
(2)被覆体温度を計算により求めるに当たって、接触
後一定短時間が経過したときの温度センサの計測温度の
変化分に一定の温度係数を乗じ、その積に接触前の温度
センサの計測温度を加減算し、その和もしくは差を被覆
体温度とする演算を行なう特許請求の範囲第1項に記載
の電線被覆劣化判定器の温度補正方法。
(2) When calculating the covering temperature, multiply the change in temperature measured by the temperature sensor after a certain period of time has passed after contact by a certain temperature coefficient, and then add the temperature measured by the temperature sensor before contact to the product. 2. A temperature correction method for a wire coating deterioration determiner according to claim 1, which performs an operation of adding and subtracting and using the sum or difference as the coating temperature.
JP27383385A 1985-12-04 1985-12-04 Temperature correction for decision on deterioration of wire covering Pending JPS62132147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27383385A JPS62132147A (en) 1985-12-04 1985-12-04 Temperature correction for decision on deterioration of wire covering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27383385A JPS62132147A (en) 1985-12-04 1985-12-04 Temperature correction for decision on deterioration of wire covering

Publications (1)

Publication Number Publication Date
JPS62132147A true JPS62132147A (en) 1987-06-15

Family

ID=17533182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27383385A Pending JPS62132147A (en) 1985-12-04 1985-12-04 Temperature correction for decision on deterioration of wire covering

Country Status (1)

Country Link
JP (1) JPS62132147A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329730A (en) * 2005-05-25 2006-12-07 Tsutsunaka Plast Ind Co Ltd Deterioration diagnosing method of polyvinyl chloride waterproof sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173439A (en) * 1984-02-17 1985-09-06 Nippon Telegr & Teleph Corp <Ntt> Deciding method of deterioration of covering body of electric wire and deciding device for deterioration degree

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173439A (en) * 1984-02-17 1985-09-06 Nippon Telegr & Teleph Corp <Ntt> Deciding method of deterioration of covering body of electric wire and deciding device for deterioration degree

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329730A (en) * 2005-05-25 2006-12-07 Tsutsunaka Plast Ind Co Ltd Deterioration diagnosing method of polyvinyl chloride waterproof sheet

Similar Documents

Publication Publication Date Title
US6054038A (en) Portable, hand-held, in-situ electrochemical sensor for evaluating corrosion and adhesion on coated or uncoated metal structures
Zhang et al. Rapid determination of fatigue life based on temperature evolution
CA2499560A1 (en) Method and apparatus for detecting and locating gas leaks
Zehnder et al. Hybrid method for determining the fraction of plastic work converted to heat
JPS62165132A (en) Electronic clinical thermometer
CN109855583A (en) The determination method of three coordinate measuring engine measurement uncertainty
JPS62132147A (en) Temperature correction for decision on deterioration of wire covering
JP3103963B2 (en) How to measure thermal conductivity
Sun Method for determining defect depth using thermal imaging
JPS62132145A (en) Decision on deterioration in wire cover
Orzechowski Determining local values of the heat transfer coefficient on a fin surface
JPH06342027A (en) Method and apparatus for evaluating wire
JP4088129B2 (en) Leak detector
JP3300110B2 (en) Gas detector
Medgenberg et al. Detection of localized fatigue damage in steel by thermography
JPH07190861A (en) Method and apparatus for measurement of temperature
JPH1123504A (en) Method for measuring water content per unit volume of and water-cement ratio of fresh concrete
SU934255A1 (en) Method of determining thermal diffusivity of material
Kim et al. Evaluation of the characteristics of the reflection plate to measure defects in the invisible area using infrared thermography
SU958937A1 (en) Thermal resistance determination method
JPS58196450A (en) Detection of crack shape
RU2324165C1 (en) Method of identifying system of thermo-physical properties of hard materials
US11326964B2 (en) Laser calorimeter board
JP3229102U (en) Coating film thickness measuring device
JPH11218509A (en) Point contact-type measuring method for three thermal constants