JPH11218509A - Point contact-type measuring method for three thermal constants - Google Patents

Point contact-type measuring method for three thermal constants

Info

Publication number
JPH11218509A
JPH11218509A JP3230998A JP3230998A JPH11218509A JP H11218509 A JPH11218509 A JP H11218509A JP 3230998 A JP3230998 A JP 3230998A JP 3230998 A JP3230998 A JP 3230998A JP H11218509 A JPH11218509 A JP H11218509A
Authority
JP
Japan
Prior art keywords
temperature
measured
thermal
contact
constants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3230998A
Other languages
Japanese (ja)
Inventor
Ichiro Takahashi
一郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3230998A priority Critical patent/JPH11218509A/en
Publication of JPH11218509A publication Critical patent/JPH11218509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus in which three thermal constants can be measured simply at a site in such a way that many kinds of industrial materials to be used as constituent members for various machines and apparatuses are not worked to have a special sample shape. SOLUTION: In the method, three thermal constants as a thermal conductivity, a thermal diffusivity and a specific heat capacity are measured by using a temperature probe 2. In the method, a temperature sensing part 2a' at the temperature probe 2 is kept at a temperature which is different from that of an object 1 to be measured, the temperature sensing part 2a' is brought into contact with one point on the surface of the object 1, to be measured, in such a way that its contact area becomes very small, and a temperature change within a certain time immediately after its contact is found. Thereby, the there thermal constants are measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱三定数の点接触
式測定方法及び装置。詳しくは、被測定物と異なる温度
の感温部を被測定物の表面へ一点で接触させ、接触直後
の温度変化を計測するだけで被測定物体の材質や表面状
態等に関係なくその場で熱三定数を簡便正確に測定でき
る方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a thermal three constants by a point contact method. Specifically, a temperature-sensitive part at a temperature different from the measured object is brought into contact with the surface of the measured object at a single point, and the temperature change immediately after the contact is measured, regardless of the material or surface condition of the measured object. The present invention relates to a method and an apparatus that can easily and accurately measure thermal three constants.

【0002】[0002]

【従来の技術】従来、熱三定数の測定装置としてフラッ
シュ法によるものが知られており、それはレーザー発生
装置や試料保持・温度検出装置などにより構成されてい
て、大掛りな装置であるため被測定物体をその場におい
て測定することができるものではない。一方、熱伝導率
のみが求められる熱線法やプローブ法も知られている
が、それは接触面が正確な平面で、十分接触を良くする
必要があり、また、金属材料への適用は難しいという問
題点がある。
2. Description of the Related Art Conventionally, as a measuring device of thermal three constants, a device using a flash method is known, which is constituted by a laser generator, a sample holding / temperature detecting device, etc., and is a large-scale device. The measurement object cannot be measured on the spot. On the other hand, the hot wire method and the probe method, which require only the thermal conductivity, are also known, but they have the problem that the contact surface must be an accurate plane, the contact must be sufficiently improved, and application to metal materials is difficult. There is a point.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、省エネルギー化機械・装置の設計において
熱物性情報が不可欠である。このため、機械・装置の構
成部材となる多種類の工業材料は特別な試料形状に加工
することなく、その場で測定できなることが要求される
が、現状においてはこれができない点である。
The problem to be solved by the present invention is that thermo-physical property information is indispensable in designing an energy-saving machine / device. For this reason, it is required that many kinds of industrial materials used as components of the machine / device can be measured on the spot without being processed into a special sample shape, but this cannot be done at present.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するため
本発明に係る熱三定数の接触式測定方法及び装置は、下
記の方法及び装置を採用することを特徴とする。 (1) 温度プローブを利用して熱伝導率、熱拡散率、
比熱容量の熱三定数を測定する方法であって、温度プロ
ーブの感温部を被測定物体とは異なる温度に保ち、この
感温部を被測定物体表面へ接触面積が微小となるように
一点で接触させ、接触直後のある時間内の温度変化を求
めることによって熱三定数を計測する。 (2) 被測定物体表面と微小面積で接触する感温部を
自由な温度に制御できる温度プローブと、A/D変換器
と、メモリー機能を有するデータ収録装置と、コンピュ
ーターとを備える。 更に方法及び装置の詳細を述べれば、感温部となる温度
センサを内蔵した温度プローブは被測定物体と異なる温
度に感温部を保ち、被測定物体へ微小面積で一点で接触
させる。この一点で接触させることの利点は、一般に接
触熱抵抗を小さくする上で接触圧力を1MPa以上とす
ることは常識であるが、本発明の温度プローブは30g
程度と軽量で、しかも接触面積が極めて小さいので十分
に前記条件で測定できることと、接触面積がその都度変
わってもその影響を解析上評価できるようにして解析し
得ることにある。そして、接触直後のある時間(数秒)
の温度変化により生ずる起電力を、A/D変換機能とメ
モリー及びデータ収録機能とを有するデジタルマルチメ
ータを用いて検出し、その結果からコンピューターによ
って理論接触モデルによる理論温度応答が実測によるそ
れと一致するように熱三定数、すなわち、熱伝導率、熱
拡散率、比熱容量を決定する方法と、この方法の実施に
適した装置であって、あらゆる工業材料を対象とし、表
面が柔らかく多孔性の物体にも適用し得る特徴を有す
る。
Means for Solving the Problems To solve the above-mentioned problems, a contact type measuring method and apparatus for thermal three constants according to the present invention is characterized by employing the following method and apparatus. (1) Thermal conductivity, thermal diffusivity,
A method of measuring the thermal constant of the specific heat capacity, in which a temperature-sensitive part of a temperature probe is maintained at a temperature different from that of an object to be measured, and the temperature-sensitive part is one point so that a contact area with a surface of the object to be measured becomes small. The thermal three constants are measured by determining the temperature change within a certain time immediately after the contact. (2) A temperature probe capable of controlling the temperature sensing portion in contact with the surface of the object to be measured with a small area to a free temperature, an A / D converter, a data recording device having a memory function, and a computer. More specifically, the method and apparatus will be described in detail. A temperature probe having a built-in temperature sensor serving as a temperature-sensing section keeps the temperature-sensing section at a temperature different from that of the object to be measured, and makes a single point contact with the object to be measured with a small area. The advantage of this one-point contact is that it is common sense that the contact pressure is generally set to 1 MPa or more in order to reduce the contact thermal resistance.
Since the contact area is extremely small and the contact area is extremely small, the measurement can be sufficiently performed under the above-mentioned conditions. Further, even if the contact area changes each time, the influence can be evaluated and analyzed. And a certain time immediately after contact (several seconds)
The electromotive force generated by the temperature change is detected using a digital multimeter having an A / D conversion function, a memory and a data recording function. From the result, the theoretical temperature response based on the theoretical contact model matches with the measured value by the computer. A method for determining the thermal three constants, that is, thermal conductivity, thermal diffusivity, and specific heat capacity, and an apparatus suitable for carrying out this method. It has features that can be applied to

【0005】[0005]

【実施例】以下に本発明に係る熱三定数の点接触式測定
方法及び装置の実施の形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a method and an apparatus for measuring a thermal three constants in a point contact manner according to the present invention will be described below.

【0006】図1は本発明に係る熱三定数の点接触式測
定方法の実施に適した測定装置Aの概念図であり、この
測定装置Aは、被測定物体1と異なる温度の感温部2a
を微小面積で被測定物1の表面と一点で接触させ、接触
後のある時間の温度変化を起電力として求める温度プロ
ーブ2と、求めた起電力をA/D変換するA/D変換器
3と、変換値を検出するメモリー機能を有するデータ収
録装置4と、検知されたデータを演算し熱三定数を算出
するコンピューター5とにより構成されるもので、A/
D変換器3とデータ収録装置4は、個別のものを用いて
もよいが、両機能を備えるものがデジタルマルチメータ
として市販されるのでこれを用いると便利であり、コン
ピューター5は、社内LANでワークステーションを用
いても良いが、ノート型パソコンやマイクロンピュータ
ーが可搬型としては便利である。
FIG. 1 is a conceptual diagram of a measuring device A suitable for carrying out a method for measuring a thermal three constants according to the present invention, which is a thermosensitive part having a temperature different from that of the object 1 to be measured. 2a
Is brought into contact with the surface of the DUT 1 at a single point in a very small area, and a temperature probe 2 for obtaining a temperature change during a certain time after the contact as an electromotive force, and an A / D converter 3 for A / D converting the obtained electromotive force. And a data recording device 4 having a memory function of detecting a converted value, and a computer 5 for calculating detected heat and calculating thermal three constants.
Although the D converter 3 and the data recording device 4 may be used individually, those having both functions are commercially available as digital multimeters, so it is convenient to use them. A workstation may be used, but a notebook computer or a micro computer is convenient as a portable type.

【0007】前記測定装置Aにおける温度プローブ2
は、図2に示す通り温度センサとして素線径0.13m
mのK型熱電対2aを用い(この熱電対2aは小型のサ
ーミスタやIC温度センサ、測温抵抗体等を代替でき
る)、ビード状にスポット溶接した接触点、即ち感温部
2a’が露出するようにアルミナ管の保温材6で包み、
保温材6の外側には発熱体となるステンレスシース管7
を嵌め、シース管7の外側には熱電対2aの感温部2
a’に近い端部だけをシース管7に接触させ、その後側
はシース管7から隔離させたステンレス管8を被せ、ス
テンレス管8の外側にはアルミナ管9を取り付け、さら
に、その外側には保持部10を取り付ける。そして、シ
ース管7とステンレス管8との後側、すなわち、熱電対
2aの感温部2a’とは反対側に端子11と12を設け
て、これら端子11、12を電源13に接続してシース
管7へ直接通電することにより、これを発熱させて熱電
対2aを加熱させるようにしたものである。従って、被
測定物体1とは異なる温度の感温部2a’を微小面積で
被測定物体1の表面と一点で接触させることができて、
しかも、感温部2a’が周囲の空気対流の影響を受け
ず、スタンドあるいは手による保持もし易いという小型
軽量、最大径30mm、全長120mm、重量30gの
温度プローブ2が得られる。なお、この温度プローブ2
の保持は、スタンドにより行うと柔らかい材料への接触
時の沈み込みを極力少なくし得ることや、接触圧力を必
要以上に大きくしないというメリットがある。
The temperature probe 2 in the measuring device A
Represents a wire diameter of 0.13 m as a temperature sensor as shown in FIG.
m type K thermocouple 2a (this thermocouple 2a can replace a small thermistor, IC temperature sensor, resistance temperature detector, etc.), and the contact point spot-welded in a bead shape, that is, the temperature sensing part 2a 'is exposed. Wrapped in a heat insulating material 6 of alumina tube
A stainless sheath tube 7 serving as a heating element is provided outside the heat insulating material 6.
And the outside of the sheath tube 7 is connected to the thermocouple 2a of the thermocouple 2a.
Only the end near a ′ is brought into contact with the sheath tube 7, a stainless steel tube 8 separated from the sheath tube 7 is put on the rear side, an alumina tube 9 is attached to the outside of the stainless tube 8, and The holding unit 10 is attached. Then, terminals 11 and 12 are provided on the rear side of the sheath tube 7 and the stainless steel tube 8, that is, on the opposite side of the thermocouple 2 a from the temperature sensing portion 2 a ′, and these terminals 11 and 12 are connected to the power supply 13. By directly energizing the sheath tube 7, the sheath tube 7 is heated to heat the thermocouple 2a. Therefore, the temperature sensing part 2a 'having a temperature different from that of the measured object 1 can be brought into contact with the surface of the measured object 1 at a single point with a small area,
In addition, the temperature probe 2 having a small size and light weight, a maximum diameter of 30 mm, a total length of 120 mm, and a weight of 30 g can be obtained in which the temperature sensing portion 2a 'is not affected by the surrounding air convection and can be easily held by a stand or a hand. Note that this temperature probe 2
Holding by using a stand has the advantages that the sinking when contacting a soft material can be minimized and that the contact pressure is not increased more than necessary.

【0008】前記測定装置Aによる熱三定数の測定は、
温度プローブ2の熱電対2aの温度を被測定物体1より
も30℃程度高くして、図1に示すように被測定物体1
の表面へ接触させる。この場合、感温部2a’は微小面
積により一点で被測定物体表面と接触するから、被測定
物体1の表面が平面であっても、凹凸面であっても、ま
た、硬度差等があっても同様の接触条件が得られる。そ
して、感温部2a’は接触直後のある時間、数秒間の温
度の変化に応じた起電力を発生し、この起電力をA/D
変換器3により5ヘルツ位のサンプリング周波数でA/
D変換し、変換値をメモリー機能を有するデータ収録装
置4に格納して、データをコンピューター5で温度値に
換算し、理論値との突き合わせを行うことによって、熱
伝導率、熱拡散率、比熱容量の熱三定数を同時に測定す
るものである。
The measurement of the thermal three constants by the measuring device A is as follows.
The temperature of the thermocouple 2a of the temperature probe 2 is set to about 30 ° C. higher than that of the object 1 to be measured, and as shown in FIG.
Contact the surface of In this case, since the temperature sensing part 2a 'comes into contact with the surface of the object to be measured at a single point due to the small area, the surface of the object to be measured 1 may be flat, uneven, or have a difference in hardness. The same contact conditions can be obtained. Then, the temperature sensing part 2a 'generates an electromotive force corresponding to a change in the temperature for a few seconds during a certain time immediately after the contact, and converts this electromotive force into an A / D signal.
A / D conversion is performed by the converter 3 at a sampling frequency of about 5 Hz.
D conversion, the converted value is stored in a data recording device 4 having a memory function, and the data is converted into a temperature value by a computer 5 and compared with a theoretical value to obtain a thermal conductivity, a thermal diffusivity, and a ratio. The heat constant of heat capacity is measured simultaneously.

【0009】図3は、熱物性の参照(標準)値が知られ
ているJIS−SUS304ステンレス鋼の径50m
m、厚さ10mmのものを被測定物体として、温度プロ
ーブを手持ちにより被測定物体の表面へ微小面積で一点
で接触させて得られた温度応答測定例を示すものであ
り、縦軸には温度プローブ及び被測定物体の接触直前の
初期温度Tp 0 及びTs 0 によって温度プローブの温度
p を無次元化したTp *=(Tp −Tp0)/(Ts0
p0)を、横軸には接触後の時刻t秒の1/2乗をと
り、温度プローブの初期温度を約30℃被測定物体より
高くして得られた結果に二体接触熱伝導モデルによる理
論解のそれを重ね合わせたもので、接触直後を除く広範
な時間帯で両者が良く一致することを示している。図4
は、数回繰り返し測定した場合の温度応答曲線を1/t
1 / 2 に対して三個所の接触点○、□、△について描い
たもので、接触直後のばらつきを除けば1/t1 / 2
1で直線的変化が再現性よく現れることを示しており、
この直線部から熱三定数の算定ができる。
FIG. 3 shows a JIS-SUS304 stainless steel having a known (standard) thermophysical property value of 50 m in diameter.
m, an object having a thickness of 10 mm as an object to be measured, showing a temperature response measurement example obtained by contacting the surface of the object to be measured at a single point with a small area by holding a temperature probe, and the vertical axis indicates the temperature. probe and immediately before contact of the object to be measured the initial temperature T p 0 and T s 0 T the temperature T p of the temperature probe dimensionless by p * = (T p -T p0 ) / (T s0 -
T p0 ) is plotted on the abscissa as a half of time t seconds after the contact, and the result obtained when the initial temperature of the temperature probe is higher than the object to be measured by about 30 ° C. is a two-body contact heat conduction model. It is a superposition of the theoretical solutions of the two, and shows that they agree well over a wide range of time except immediately after contact. FIG.
Is 1 / t of the temperature response curve when measured several times repeatedly.
This is drawn for three contact points ○, □, and Δ with respect to 1/2, and 1 / t 1/2 <
1 indicates that a linear change appears with good reproducibility,
The thermal three constants can be calculated from this linear portion.

【0010】また、前記ステンレス鋼と、それと同じ形
状のアルミニューム(JIS−A1050系)、POC
O−AMX−5Q1グラファイト、石英ガラス(純度9
9.999%)、アクリル樹脂の5種類の被測定物体に
ついて、熱三定数を測定してそのうちの熱伝導率の算出
結果を、それらの参照(標準)値と比較した結果は、図
5の通りであり熱伝導率の測定値と参照(標準)値が良
く一致することを示している。
Further, the stainless steel, aluminum (JIS-A1050 series) having the same shape as the stainless steel, POC
O-AMX-5Q1 graphite, quartz glass (purity 9
9.999%), five kinds of measured objects of acrylic resin were measured for thermal three constants, and the results of calculating the thermal conductivity were compared with their reference (standard) values. This shows that the measured value of the thermal conductivity and the reference (standard) value are in good agreement.

【0011】前記5種類の被測定物体について測定した
熱三定数のうち熱拡散率の算出結果を、それらの参照
(標準)値と比較した結果は、図6の通りであり熱拡散
率も測定値と参照(標準)値が良く一致することを示し
ている。
FIG. 6 shows the results of comparing the calculation results of the thermal diffusivity among the three thermal constants measured for the five types of objects to be measured with their reference (standard) values. It shows that the value and the reference (standard) value match well.

【0012】前記5種類の被測定物体について測定した
熱三定数のうち比熱容量の算出結果を、それらの参照
(標準)値と比較した結果は、図7の通りであり比熱容
量も測定値と参照(標準)値が良く一致することを示し
ている。
FIG. 7 shows the results of comparing the calculated results of the specific heat capacities among the three heat constants measured for the five types of objects to be measured with their reference (standard) values. It shows that the reference (standard) values match well.

【0013】[0013]

【発明の効果】(請求項1の効果) (1) 各種機械や装置の構成部材となる多種類の工業
材料を、その場において、加工しないそのままの状態で
材質にも関係なく一様に測定して、熱伝導率・熱拡散率
・比熱容量の熱三定数を同時に求めることができ、しか
も、装置は安価で、操作は簡便であり、測定の結果も安
定している。 (2) 被測定物体の表面が平面でなくてもよく、ま
た、大きさ(厚さ)も数mm以下と小さくても適用でき
る。さらに、被測定物体、あるいは測定位置によって接
触面積が変ってもそれを解析上評価することが可能なの
で再現性よく測定できる。 (請求項2の効果) 温度
プローブは測定状況に応じて容易に適当な温度にコンク
ロールするこができて、スタンドあるいは手による保持
がし易く、その感温部が被接触物体の表面へ接触して、
温度変化に応じた起電力変化をすると、A/D変換器、
データ収録装置、コンピューターが即座に起電力変化に
応じて熱三定数を算出するから、迅速な測定が可能で、
どこへでも簡便に携帯して現場測定を行うのに便利な装
置を提供できる。
(Effect of Claim 1) (1) Uniform measurement of various types of industrial materials, which are constituent members of various machines and devices, on the spot, regardless of the materials, without processing The thermal three constants of thermal conductivity, thermal diffusivity, and specific heat capacity can be simultaneously obtained, and the apparatus is inexpensive, the operation is simple, and the measurement results are stable. (2) The present invention is applicable even if the surface of the object to be measured is not a flat surface and the size (thickness) is as small as several mm or less. Furthermore, even if the contact area changes depending on the object to be measured or the measurement position, it can be evaluated analytically, so that measurement can be performed with good reproducibility. (Effect of Claim 2) The temperature probe can be easily controlled to an appropriate temperature according to the measurement situation, and can be easily held by a stand or a hand, and the temperature sensing part comes into contact with the surface of the contacted object. do it,
When the electromotive force changes according to the temperature change, an A / D converter,
Since the data recording device and computer immediately calculate the thermal three constants according to the electromotive force change, quick measurement is possible,
It is possible to provide a convenient device that can be easily carried anywhere to perform on-site measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る熱三定数の点接触式測定装置の構
成を示す概念図である。
FIG. 1 is a conceptual diagram showing a configuration of a thermal three-constant point-contact measuring device according to the present invention.

【図2】同上装置に用いた温度プローブの構成を示す縦
断面図である。
FIG. 2 is a longitudinal sectional view showing a configuration of a temperature probe used in the same device.

【図3】本発明の方法でJIS−SUS304ステンレ
ス鋼の熱三定数を測定した場合の温度応答測定例を示す
線図である。
FIG. 3 is a diagram showing an example of temperature response measurement when the thermal ternary constant of JIS-SUS304 stainless steel is measured by the method of the present invention.

【図4】同上被測定物体の繰り返し測定による再現性を
示した線図である。
FIG. 4 is a diagram showing reproducibility of the object to be measured by repeated measurement.

【図5】本発明の方法で5種類の被測定物体の熱三定数
の測定を行い、得られた熱伝導率の算出結果と参照(標
準)値とを比較した線図である。
FIG. 5 is a diagram comparing the thermal thermal constants of five types of objects to be measured with the method of the present invention, and comparing the obtained thermal conductivity calculation results with reference (standard) values.

【図6】同上被測定物体の熱三定数の測定を行い、得ら
れた熱拡散率の算出結果と参照(標準)値とを比較した
線図である。
FIG. 6 is a diagram comparing the calculated thermal diffusivity with a reference (standard) value obtained by measuring the thermal three constants of the object to be measured.

【図7】同上被測定物体の熱三定数の測定を行い、得ら
れた比熱容量の算出結果と参照(標準)値とを比較した
線図である。
FIG. 7 is a diagram comparing the calculated results of the specific heat capacities with reference (standard) values by measuring the thermal three constants of the object to be measured.

【符号の説明】 A 熱三定数の測定装置 1 被測定物体 2 温度プローブ 2a 熱電対 2a’ 感温部 3 A/D変換器 4 メモリー機能を有するデータ収録装置 5 コンピューター[Explanation of Symbols] A measuring device for thermal three constants 1 object to be measured 2 temperature probe 2a thermocouple 2a 'temperature sensing unit 3 A / D converter 4 data recording device with memory function 5 computer

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年3月20日[Submission date] March 20, 1998

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Correction target item name] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、省エネルギー化機械・装置の設計において
熱物性情報が不可欠であり、このため、機械・装置の構
成部材となる多種類の工業材料は特別な試料形状に加工
することなく、その場で測定できることが要求される
が、現状においてはこれができない点である。
An object of the present invention [0005] to be Solved thermal physical property information in the design of energy saving machinery and equipment are essential, and therefore, many types of industrial as a component of the machinery and equipment It is required that the material can be measured on the spot without processing it into a special sample shape, but this is not possible at present.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】また、前記ステンレス鋼と、それと同じ形
状のアルミニウム(JIS−A1050系)、POCO
AXM−5Q1グラファイト、石英ガラス(純度9
9.999%)、アクリル樹脂の5種類の被測定物体に
ついて、熱三定数を測定してそのうちの熱伝導率の算出
結果を、それらの参照(標準)値と比較した結果は、図
5の通りであり熱伝導率の測定値と参照(標準)値が良
く一致することを示している。
Further, said stainless steel, the same aluminum (JIS-A1050 series) of the same shape, POCO
AXM- 5Q1 graphite, quartz glass (purity 9
9.999%), five kinds of measured objects of acrylic resin were measured for thermal three constants, and the results of calculating the thermal conductivity were compared with their reference (standard) values. This shows that the measured value of the thermal conductivity and the reference (standard) value are in good agreement.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0013】[0013]

【発明の効果】(請求項1の効果) (1) 各種機械や装置の構成部材となる多種類の工業
材料を、その場において、加工しないそのままの状態で
材質にも関係なく一様に測定して、熱伝導率・熱拡散率
・比熱容量の熱三定数を同時に求めることができ、しか
も、装置は安価で、操作は簡便であり、測定の結果も安
定している。 (2) 被測定物体の表面が平面でなくてもよく、ま
た、大きさ(厚さ)も数mm以下と小さくても適用でき
る。さらに、被測定物体、あるいは測定位置によって接
触面積が変ってもそれを解析上評価することが可能なの
で再現性よく測定できる。 (請求項2の効果) 温度プローブは測定状況に応じて
容易に適当な温度にコントロールするこができて、スタ
ンドあるいは手による保持がし易く、その感温部が被接
触物体の表面へ接触して、温度変化に応じた起電力変化
をすると、A/D変換器、データ収録装置、コンピュー
ターが即座に起電力変化に応じて熱三定数を算出するか
ら、迅速な測定が可能で、どこへでも簡便に携帯して現
場測定を行うのに便利な装置を提供できる。
(Effect of Claim 1) (1) Uniform measurement of various types of industrial materials, which are constituent members of various machines and devices, on the spot, regardless of the materials, without processing The thermal three constants of thermal conductivity, thermal diffusivity, and specific heat capacity can be simultaneously obtained, and the apparatus is inexpensive, the operation is simple, and the measurement results are stable. (2) The present invention is applicable even if the surface of the object to be measured is not a flat surface and the size (thickness) is as small as several mm or less. Furthermore, even if the contact area changes depending on the object to be measured or the measurement position, it can be evaluated analytically, so that measurement can be performed with good reproducibility. (Effect of Claim 2) The temperature probe can easily be controlled to an appropriate temperature according to the measurement situation, is easily held by a stand or a hand, and its temperature sensing part comes into contact with the surface of the contacted object. Then, when the electromotive force changes according to the temperature change, the A / D converter, the data recording device, and the computer immediately calculate the thermal three constants according to the electromotive force change. However, it is possible to provide a device which is easily carried and convenient for on-site measurement.

【手続補正書】[Procedure amendment]

【提出日】平成11年1月18日[Submission date] January 18, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 熱三定数の点接触式測定方法 [Title of the Invention] Method of measuring the thermal three constants by point contact method

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱三定数の点接触
式測定方法。詳しくは、被測定物体の表面へこれとは異
なる温度の感温部を一点で接触させ、接触直後の温度応
答曲線と理論温度応答曲線とを突き合わせるだけで被測
定物体の材質や表面状態等に関係なくその場において熱
三定数を簡便正確に測定できる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring thermal three constants by a point contact method. Specifically, to this the surface of the object to be measured different
Contact the temperature-sensitive part at a certain temperature, and
The present invention relates to a method for simply and accurately measuring the thermal three constants on the spot irrespective of the material and surface condition of the object to be measured simply by comparing the response curve with the theoretical temperature response curve .

【0002】[0002]

【従来の技術】従来、熱三定数の測定方法としてフラッ
シュ法によるものが知られており、それはレーザー発生
装置や試料保持・温度検出装置などで構成されていて、
大掛りな装置であるため被測定物体をその場において測
定できるものではない。一方、熱伝導率のみが求められ
る熱線法やプローブ法も知られているが、それは接触面
が正確な平面で、十分接触を良くする必要があり、ま
た、金属材料への適用は難しいという問題点がある。
こで、本発明者等は、熱物性が既知である熱電対プロー
ブの先端を試料とは異なる温度に保持して被測定物体の
表面へ接触させ、接触直後のある時間の温度変化を求め
ることによって熱三定数を計測する熱物性テスターを開
発して平成9年10月23日に講演発表した。しかしな
がら、この熱物性テスターは、手軽に使える道具的なも
のであるため、熱物性値が既知の熱電対プローブを使用
しないと測定ができない。被測定面積が直径50mm、
厚さが10mm以上あるものでないと測定時間の関係で不
都合である。熱電対プローブを試料温度よりも30℃高
温にする必要がある等の問題点を有する。
2. Description of the Related Art Conventionally, a flash method has been known as a method for measuring thermal three constants, which is constituted by a laser generator, a sample holding / temperature detecting device, and the like.
Since it is a large-scale device, it is not possible to measure an object to be measured on the spot. On the other hand, the hot wire method and the probe method, which require only the thermal conductivity, are also known, but they have the problem that the contact surface must be an accurate plane, the contact must be sufficiently improved, and application to metal materials is difficult. There is a point. So
Here, the present inventors have proposed a thermocouple probe whose thermophysical properties are known.
Hold the tip of the probe at a different temperature from the sample and
Contact the surface and find the temperature change for a certain time immediately after the contact
Open a thermophysical property tester that measures the thermal three constants
He gave a presentation on October 23, 1997. But
However, this thermophysical tester is easy to use
Use a thermocouple probe with known thermophysical properties
Otherwise, measurements cannot be made. The area to be measured has a diameter of 50 mm,
If the thickness is not more than 10 mm, it is
It is convenient. Thermocouple probe 30 ° C higher than sample temperature
There are problems such as the need to heat.

【0003】[0003]

【発明が解決しようとする課題】本発明は、前記問題点
を解決するため、計測において被測定物体及び温度プロ
ーブの両者の温度応答の理論解と実測値とを突き合わせ
て熱三定数を求めることにより温度プローブの熱物性を
測定条件としない。被測定面積は微小で薄くてもよく、
従って、被測定面の熱物性分布も診断できて、温度プロ
ーブの温度を自由に変更して測定することもできる特徴
を有して、熱物性情報が不可欠である省エネルギー機械
・装置の構成材料となる多種類の工業材料を特別な加工
をすることなく、その場において熱物性の測定とその分
布の計測とができるもので、それによって材料組成分布
などの情報を非破壊的に診断できる技術手段が提供され
る。
DISCLOSURE OF THE INVENTION The present invention has the above problems.
In order to solve the problem, the measured object and the temperature
Match the theoretical and measured values of the temperature response of both
The thermal properties of the temperature probe
Not used as measurement conditions. The area to be measured may be small and thin,
Therefore, the distribution of thermophysical properties on the surface to be measured can be diagnosed, and the temperature
Features that can be measured by freely changing the temperature of the probe
Energy-saving machine that has thermophysical property information
・ Special processing of various types of industrial materials used as equipment constituent materials
Measurement and measurement of thermophysical properties
It is capable of measuring cloth, and thereby the material composition distribution
Technical means that can non-destructively diagnose information such as
You.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するため
本発明に係る熱三定数の点接触式測定方法は、下記の
術手段を採用することを特徴とする。 (1) 温度プローブを利用して熱伝導率、熱拡散率、
比熱容量の熱三定数を測定する方法であって、温度プロ
ーブの感温部を被測定物体とは異なる温度に保ち、この
感温部を被測定物体表面へ接触面積が小さくなるように
一点で接触させ、接触直後のある時間内の実測温度応答
曲線を理論温度応答曲線と突き合わせて熱三定数を同時
に算出する。 (2) 被測定物体表面と微小面積で接触して、感温部
を自由な温度に制御できる温度プローブは、小型軽量に
形成されて被測定物体の現場計測に便利なものである。 更にこの方法の詳細を述べれば、感温部となる温度セン
サを内蔵した温度プローブは被測定物体と異なる温度に
感温部を保ち、被測定物体へ微小面積で一点で接触させ
る。この一点で接触させることの利点は、一般に接触熱
抵抗を小さくする上で接触圧力を1MPa以上とするこ
とは常識であるが、本発明の温度プローブは30g程度
と軽量で、しかも、接触面積が極めて小さいので十分に
前記条件で測定できることと、接触面積がその都度変わ
ってもその影響を解析上評価できるようにして解析し得
ることにある。そして、接触後のある時間(数秒)の温
度変化により生ずる起電力を、AD変換機能とメモリー
及びデータ収録機能を有するデジタルマルチメーターを
用いて検出し、その結果からコンピューターによって理
論接触モデルによる理論温度応答が実測のそれと一致す
るように熱三定数、すなわち、熱伝導率、熱拡散率、比
熱容量を決定する方法であって、あらゆる工業材料を対
象とし、表面が柔らかく多孔性の物体にも適用し得る特
徴を有する。
[MEANS FOR SOLVING THE PROBLEMS]
Thermal contact point measurement according to the present inventionMethodBelowSkill
Operative meansIs adopted. (1) Thermal conductivity, thermal diffusivity,
A method for measuring the thermal constants of specific heat capacity,
Keep the temperature sensing part of the
Reduce the contact area between the temperature sensing part and the surface of the object to be measured.
Contact at one point, within a certain time immediately after contactMeasured temperature response
Simultaneous thermal ternary constant by matching curve with theoretical temperature response curve
Is calculated.  (2) Contact with the surface of the object to be measured in a small areado it,Temperature sensing part
Temperature probe that can control the temperature freelyIs small and light
It is formed and is convenient for on-site measurement of an object to be measured. FurtherThis wayIn detail, the temperature sensor
Temperature probe with built-in
Keep the temperature-sensitive part and contact the object to be measured with a small area at one point
You. The advantage of this single point of contact is that
In order to reduce the resistance, the contact pressure must be 1 MPa or more.
Is common sense, but the temperature probe of the present invention is about 30 g
And light, and the contact area is extremely small
What can be measured under the above conditions, and the contact area changes each time
Even if the impact can be evaluated analytically,
It is to be. Then, for a certain time (several seconds) after contact,
A / D conversion function and memory
Digital multimeter with data recording function
Computer, and from the results,
Temperature response by stoichiometric contact model agrees with that of actual measurement
The thermal three constants, ie, thermal conductivity, thermal diffusivity, ratio
Determine heat capacityThe wayFor all industrial materials
Characteristics that can be applied to porous objects with soft surfaces.
Have signs.

【0005】[0005]

【実施例】以下に本発明に係る熱三定数の点接触式測定
方法の実施の形態を図面に基いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a point contact type measurement of thermal three constants according to the present invention will be described.
An embodiment of the method will be described with reference to the drawings.

【0006】図1は本発明に係る熱三定数の点接触式測
定方法の実施に適した測定装置Aの概念図である。この
測定装置Aは、被測定物体1と異なる温度の感温部2a
を微小面積で被測定物体1の表面と一点で接触させ、接
触後のある時間の温度変化を起電力として求める温度プ
ローブ2と、求めた起電力をA/D変換するA/D変換
器3と、変換値を検出するメモリー機能を有するデータ
収録装置4と、検知されたデータを演算し熱三定数を算
出するコンピューター5とにより構成されるもので、A
/D変換器3とデータ収録装置4は、個別のものを用い
てもよいが、両機能を備えるものがデジタルマルチメー
タとして市販されるのでこれを用いると便利であり、コ
ンピューター5は、社内LANでワークステーションを
用いてもよいが、ノート型パソコンやマイクロコンピュ
ーターが可搬型としては便利である。
FIG. 1 is a conceptual diagram of a measuring device A suitable for carrying out a thermal contact point measuring method according to the present invention . The measuring device A includes a temperature sensing unit 2a having a temperature different from that of the object 1 to be measured.
Is brought into contact with the surface of the object 1 to be measured at a single point in a very small area, and a temperature probe 2 for obtaining a temperature change during a certain time after the contact as an electromotive force, and an A / D converter 3 for A / D converting the obtained electromotive force And a data recording device 4 having a memory function of detecting a converted value, and a computer 5 for calculating detected heat and calculating thermal three constants.
Although the / D converter 3 and the data recording device 4 may be used individually, those having both functions are commercially available as digital multimeters, so that it is convenient to use them. A work station may be used, but a notebook computer or a microcomputer is convenient as a portable type.

【0007】前記測定装置Aにおける温度プローブ2
は、図2に示す通り温度センサとして素線径0.13m
mのK型熱電対2aを用い(この熱熱電対2aは小型の
サーミスタやIC温度センサ、測温抵抗体等を代替でき
る)、ビード状にスポット溶接した接触点、即ち感温部
2a’が露出するようにアルミナ管の保温材6で包み、
保温材6の外側には発熱体となるステンレスシース管7
を嵌め、シース管7の外側には熱電対2aの感温部2
a’に近い端部だけをシース管7に接触させ、その後側
はシース管7から離隔させたステンレス管8を被せ、ス
テンレス管8の外側にはアルミナ管9を取り付け、さら
に、その外側には保持部10を取付ける。そして、シー
ス管7とステンレス管8との後側、すなわち、熱電対2
aの感温部2a’とは反対側に端子11と12を設け
て,これら端子11、12を電源13に接続してシース
管7へ直接通電することにより、これを発熱させて熱電
対2aを加熱させるようにしたものである。従って、被
測定物体1とは異なる温度の感温部2a’を微小面積で
被測定物体1の表面と一点で接触させることができて、
しかも、感温部2a’が周囲の空気対流の影響を受け
ず、スタンドあるいは手による保持もし易いという小型
軽量、最大径30mm、全長120mm、重量30gの
温度プローブが得られる。なお、この温度プローブ2の
保持は、スタンドにより行なうと柔らかい材料への接触
時の沈み込みを極力少なくし得ることや、接触圧力を必
要以上に大きくしないというメリットがある。
The temperature probe 2 in the measuring device A
Represents a wire diameter of 0.13 m as a temperature sensor as shown in FIG.
m type K thermocouple 2a (this thermocouple 2a can replace a small thermistor, an IC temperature sensor, a temperature measuring resistor, etc.), and the contact point spot-welded in the form of a bead, that is, the temperature sensing part 2a ' Wrap it in a heat insulating material 6 of an alumina tube so that it is exposed,
A stainless sheath tube 7 serving as a heating element is provided outside the heat insulating material 6.
And the outside of the sheath tube 7 is connected to the thermocouple 2a of the thermocouple 2a.
Only the end near a ′ is brought into contact with the sheath tube 7, and the rear side is covered with a stainless steel tube 8 separated from the sheath tube 7, an alumina tube 9 is attached to the outside of the stainless steel tube 8, and the outside thereof is further attached to the outside. Attach the holding unit 10. Then, the rear side of the sheath tube 7 and the stainless steel tube 8, that is, the thermocouple 2
The terminals 11 and 12 are provided on the side opposite to the temperature sensing part 2a ', and these terminals 11 and 12 are connected to a power source 13 to directly energize the sheath tube 7, thereby generating heat and causing thermocouple 2a. Is heated. Therefore, the temperature sensing part 2a 'having a temperature different from that of the measured object 1 can be brought into contact with the surface of the measured object 1 at a single point with a small area,
In addition, a temperature probe having a small size and light weight, a maximum diameter of 30 mm, a total length of 120 mm, and a weight of 30 g can be obtained in which the temperature sensing portion 2a 'is not affected by the surrounding air convection and can be easily held by a stand or a hand. When the temperature probe 2 is held by the stand, there is an advantage that sinking when contacting a soft material can be reduced as much as possible and that the contact pressure is not increased more than necessary.

【0008】前記測定装置Aによる熱三定数の測定は、
温度プローブ2の熱電対2aの温度を被測定物体1より
も30℃程度高くして、図1に示すように被測定物体1
の表面へ接触させる。この場合、感温部2a’は微小面
積により一点で被測定物体表面と接触するから、被測定
物体1の表面が平面であっても、球面や凹凸面などであ
っても、また、硬度差があっても同様の接触条件が得ら
れる。そして、感温部2a’は接触直後のある時間、数
秒間の温度の変化に応じた起電力を発生し、この起電力
をA/D変換器3により5ヘルツ位のサンプリング周波
数でA/D変換し、変換値をメモリー機能を有するデー
タ収録装置4に格納して、データをコンピューター5で
温度値に換算し、理論値との突き合わせを行うことによ
って、熱伝導率、熱拡散率、比熱容量の熱三定数を同時
に測定するものである。
The measurement of the thermal three constants by the measuring device A is as follows.
The temperature of the thermocouple 2a of the temperature probe 2 is set to about 30 ° C. higher than that of the object 1 to be measured, and as shown in FIG.
Contact the surface of In this case, since the temperature sensing part 2a 'comes in contact with the surface of the object to be measured at a single point due to the small area, the surface of the object to be measured 1 may be flat, spherical or uneven, or may have a hardness difference. The same contact conditions can be obtained even if there is. Then, the temperature sensing portion 2a 'generates an electromotive force corresponding to a change in temperature for a few seconds after the contact for a certain period immediately after the contact, and the A / D converter 3 converts the electromotive force into an A / D signal at a sampling frequency of about 5 Hz. After conversion, the converted value is stored in a data recording device 4 having a memory function, and the data is converted into a temperature value by a computer 5 and compared with a theoretical value to obtain a thermal conductivity, a thermal diffusivity, and a specific heat capacity. Are measured simultaneously.

【0009】図3は、熱物性の参照(標準)値が知られ
ているJIS−SUS304ステンレス鋼の径50m
m、厚さ10mmのものを被測定物体として、温度プロ
ーブを手持ちにより被測定物体の表面へ微小面積で一点
で接触させて得られた温度応答測定例を示すものであ
り、縦軸には温度プローブ及び被測定物体の接触直前の
初期温度Tp0及びTs0によって温度プローブの温度Tp
を無次元化したTp * =(T p−Tp0)/(Ts0−Tp0
を、横軸には接触後の時刻t秒の1/2乗をとり、温度
プローブの初期温度を約30℃被測定物体よりも高くし
て得られた結果に二体接触熱伝導モデルによる理論解の
それを重ね合わせたもので、接触直後を除く広範な時間
帯で両者が良く一致することを示している。図4は、数
回繰り返し測定した場合の温度応答曲線を1/t1/2
対して三個所の接触点○、□、△について描いたもの
で、接触直後のばらつきを除けば1/t1/2<1で直線
的に変化が再現性良く現れることを示しており、この直
線部から熱三定数の算定ができる。
FIG. 3 shows that reference (standard) values of thermophysical properties are known.
JIS-SUS304 stainless steel diameter 50m
m and a thickness of 10 mm as the object to be measured,
One point with a small area to the surface of the object to be measured by holding the probe
This shows an example of temperature response measurement obtained by contacting with
The vertical axis shows the temperature immediately before the contact between the temperature probe and the measured object.
Initial temperature Tp0And Ts0The temperature T of the temperature probep
Dimensionless Tp * = (T p-Tp0) / (Ts0-Tp0)
Is plotted on the abscissa, and the half of the time t seconds after the contact is taken as the
Make the initial temperature of the probe about 30 ° C higher than the object to be measured.
Of the theoretical solution by the two-body contact heat conduction model
Extensive time except immediately after contact
The band indicates that the two agree well. Figure 4 shows the number
Temperature response curve for 1 / t1/2To
On the other hand, three points of contact ○, □, △
And 1 / t excluding the variation immediately after contact1/2<1 straight line
Changes appear with good reproducibility.
The thermal three constants can be calculated from the line.

【0010】また、前記ステンレス鋼と、それと同じ形
状のアルミニウム(JIS−Al050系)、POCO
−AXM−5Q1グラファイト、石英ガラス(純度9
9.999%)、アクリル樹脂の5種類の被測定物体に
ついて、熱三定数を測定してそのうち熱伝導率の算出結
果を、それらの参照(標準)値と比較した結果は、図5
の通りであり熱伝導率の測定値と参照(標準)値とが良
く一致することを示している。
[0010] Further, the stainless steel and aluminum (JIS-Al050-based) having the same shape, POCO
AXM-5Q1 graphite, quartz glass (purity 9
9.999%) and five kinds of objects to be measured of acrylic resin, thermal three constants were measured, and the results of calculating the thermal conductivity were compared with their reference (standard) values.
This shows that the measured value of the thermal conductivity and the reference (standard) value are in good agreement.

【0011】前記5種類の被測定物体について測定した
熱三定数のうち熱拡散率の算出結果を、それらの参照
(標準)値と比較した結果は、図6の通りであり熱拡散
率も測定値と参照(標準)値が良く一致することを示し
ている。
FIG. 6 shows the results of comparing the calculation results of the thermal diffusivity among the three thermal constants measured for the five types of objects to be measured with their reference (standard) values. It shows that the value and the reference (standard) value match well.

【0012】前記5種類の被測定物体について測定した
熱三定数のうち比熱容量の算出結果を、それらの参照
(標準)値と比較した結果は、図7の通りであり比熱容
量も測定値と参照(標準)値が良く一致することを示し
ている。
FIG. 7 shows the results of comparing the calculated results of the specific heat capacities among the three heat constants measured for the five types of objects to be measured with their reference (standard) values. It shows that the reference (standard) values match well.

【0013】[0013]

【発明の効果】請求項1の効果 (1) 各種機械や装置の構成材料となる多種類の工業
材料を、その場において加工しないそのままの状態で材
や表面状態にも関係なく一様に測定して、熱伝導率・
熱拡散率、比熱容量の熱三定数を同時に求めることがで
きて、しか、装置は安価で、操作も簡単であり、測定の
結果も安定している。 (2) すべての感温センサーを用いて測定することが
可能で、被測定物体の表面が平面でなく、球面や凹凸面
等であってもよく、大きさ、厚さも微小で薄いものでも
よい。従って、被測定面の熱物性分布も診断できて、温
度プローブの温度を自由に変更して測定することができ
る。 請求項2の効果 温度プローブは、測定条件に応じて温
度を自由にコントロールすることができるもので、手ま
たはスタンドによる保持がし易く、かつ、小型軽量のも
のであるため、どこへでも簡便に携帯して被測定物体の
現場測定を便利に行い得る。
According to the first aspect of the present invention, (1) uniform measurement of various types of industrial materials, which are constituent materials of various machines and devices, regardless of the material or surface condition without being processed on the spot. And the thermal conductivity
The thermal three constants of the thermal diffusivity and the specific heat capacity can be obtained at the same time, but the apparatus is inexpensive, the operation is simple, and the measurement results are stable. (2) Measurement using all temperature sensors
It is possible that the surface of the object to be measured is not flat but spherical or uneven
Etc., even if the size and thickness are minute and thin
Good. Therefore, it is possible to diagnose the distribution of thermophysical properties on the surface to be measured,
The temperature of the probe can be freely changed and measured.
You. The temperature probe is capable of freely controlling the temperature in accordance with the measurement conditions, and is easily held by a hand or a stand, and is small and lightweight.
Therefore, you can easily carry it anywhere to
In-situ measurement can be conveniently performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る熱三定数の点接触式測定方法に用
いた測定装置の構成を示す概念図である。
FIG. 1 is a diagram illustrating a method for measuring a thermal three constants according to the present invention using a point contact method.
FIG. 3 is a conceptual diagram showing a configuration of a measuring device used .

【図2】同上装置に用いた温度プローブの構成を示す縦
断面図である。
FIG. 2 is a longitudinal sectional view showing a configuration of a temperature probe used in the same device.

【図3】本発明の方法でJIS−SUS304ステンレ
ス鋼の熱三定数を測定した場合の温度応答測定例を示す
線図である。
FIG. 3 is a diagram showing an example of temperature response measurement when the thermal ternary constant of JIS-SUS304 stainless steel is measured by the method of the present invention.

【図4】同上被測定物体の繰り返し測定による再現性を
示した線図である。
FIG. 4 is a diagram showing reproducibility of the object to be measured by repeated measurement.

【図5】本発明の方法で5種類の被測定物体の熱三定数
の測定を行ない、得られた熱伝導率の算出結果と参照
(標準)値とを比較した線図である。
FIG. 5 is a diagram comparing the thermal thermal constants of five types of objects to be measured with the method of the present invention, and comparing the obtained thermal conductivity calculation results with reference (standard) values.

【図6】同上被測定物体の熱三定数野測定を行ない、得
られた熱拡散率の算出結果と参照(標準)値とを比較し
た線図である。
FIG. 6 is a diagram showing a comparison between a calculation result of a thermal diffusivity and a reference (standard) value obtained by performing a thermal tri-constant field measurement of the object to be measured.

【図7】同上被測定物体の熱三定数の測定を行ない、得
られた比熱容量の算出結果と参照(標準)値とを比較し
た線図である。
FIG. 7 is a diagram comparing the calculated results of the specific heat capacities with reference (standard) values by measuring the thermal three constants of the object to be measured.

【符号の説明】 A 熱三定数の測定装置 1 被測定物体 2 温度プローブ 2a 熱電対 2a’ 感温部 3 A/D変換器 4 メモリー機能を有するデータ収録装置 5 コンピューター[Explanation of Symbols] A measuring device for thermal three constants 1 object to be measured 2 temperature probe 2a thermocouple 2a 'temperature sensing unit 3 A / D converter 4 data recording device with memory function 5 computer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 温度プローブを利用して熱伝導率、熱拡
散率、比熱容量の熱三定数を測定する方法であって、 温度プローブの感温部を被測定物体とは異なる温度に保
ち、 この感温部を被測定物体表面へ接触面積が微小となるよ
うに一点で接触させ、 接触直後のある時間内の温度変化を求めることによって
熱三定数を計測することを特徴とする熱三定数の点接触
式測定方法。
1. A method for measuring a thermal conductivity, a thermal diffusivity, and a heat constant of a specific heat capacity using a temperature probe, wherein a temperature-sensitive part of the temperature probe is maintained at a temperature different from an object to be measured. The thermal ternary constant is characterized in that the thermal sensation part is brought into contact with the surface of the object to be measured at a single point so that the contact area is small, and the thermal ternary constant is measured by determining a temperature change within a certain time immediately after the contact. Point contact measurement method.
【請求項2】 被測定物体表面と微小面積で接触する感
温部を自由な温度に制御できる温度プローブと、A/D
変換器と、メモリー機能を有するデータ収録装置と、コ
ンピューターとを備えることを特徴とする熱三定数の点
接触式測定装置。
2. A temperature probe capable of controlling a temperature sensing portion in contact with the surface of an object to be measured with a small area to a free temperature, and an A / D converter.
A thermal three-constant point-contact measuring device comprising a converter, a data recording device having a memory function, and a computer.
JP3230998A 1998-01-30 1998-01-30 Point contact-type measuring method for three thermal constants Pending JPH11218509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3230998A JPH11218509A (en) 1998-01-30 1998-01-30 Point contact-type measuring method for three thermal constants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3230998A JPH11218509A (en) 1998-01-30 1998-01-30 Point contact-type measuring method for three thermal constants

Publications (1)

Publication Number Publication Date
JPH11218509A true JPH11218509A (en) 1999-08-10

Family

ID=12355350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3230998A Pending JPH11218509A (en) 1998-01-30 1998-01-30 Point contact-type measuring method for three thermal constants

Country Status (1)

Country Link
JP (1) JPH11218509A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044509A1 (en) * 2001-11-19 2003-05-30 The Circle For The Promotion Of Science And Engineering Method for thermal analysis and system for thermal analysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044509A1 (en) * 2001-11-19 2003-05-30 The Circle For The Promotion Of Science And Engineering Method for thermal analysis and system for thermal analysis

Similar Documents

Publication Publication Date Title
Buttsworth Assessment of effective thermal product of surface junction thermocouples on millisecond and microsecond time scales
US4255962A (en) Method and means of rapidly distinguishing a simulated diamond from natural diamond
US3321974A (en) Surface temperature measuring device
CA2011659C (en) Measuring sensor for fluid state determination and method for measurement using such sensor
US4276768A (en) Relates to apparatus for measuring the dew point
US7377687B2 (en) Fluid temperature measurement
US3332285A (en) Fast precision temperature sensing thermocouple probe
JPS6250652A (en) Method and instrument for measuring thermal diffusivity
GB2023848A (en) Thermoelectric metal sorter
Zhang et al. A dual-thermistor probe for absolute measurement of thermal diffusivity and thermal conductivity by the heat pulse method
JPH11218509A (en) Point contact-type measuring method for three thermal constants
US4046009A (en) Thermocouple for continuously measuring the temperature along the length of a surface
EP0617271B1 (en) Method for simultaneous determination of thermal conductivity and kinematic viscosity
EP0984273A3 (en) Device for measuring thermophysical properties of solid materials and method therefor
JP4203893B2 (en) Method of measuring principal axis thermophysical property value of two-dimensional anisotropic material by heat flow meter type multi-point temperature measurement method and measuring device
JPH0638071B2 (en) Method and apparatus for measuring thermal conductivity
SU783664A1 (en) Apparatus for determining heat-conduction factor
JP3114137B2 (en) Thermal conductivity gas concentration analyzer
JP3246861B2 (en) Thermal characteristic measuring device and soil moisture content measuring device using the same
JP4042816B2 (en) Moisture content detection sensor
JPH0566160A (en) Calorimetric unit and method
HU189716B (en) Method and appaeatus for non-destructive testing the heat physical characteristics of materials
RU2101674C1 (en) Thermal probe for nondestructive testing of thickness of protective film coats
JPH04105053A (en) Measuring method for thermal conductivity of molten resin
JPS6293639A (en) Method and apparatus for rapidly measuring heat conductivity