JPS62131992A - Rotary compressor - Google Patents
Rotary compressorInfo
- Publication number
- JPS62131992A JPS62131992A JP27093585A JP27093585A JPS62131992A JP S62131992 A JPS62131992 A JP S62131992A JP 27093585 A JP27093585 A JP 27093585A JP 27093585 A JP27093585 A JP 27093585A JP S62131992 A JPS62131992 A JP S62131992A
- Authority
- JP
- Japan
- Prior art keywords
- check valve
- pressure
- suction
- cylinder chamber
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、冷凍装置の運転効率の改善を実現できる回
転形圧縮機に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a rotary compressor that can improve the operating efficiency of a refrigeration system.
第4図、第5図は例えば実開昭58−87988号公報
に示された従来の回転形圧縮機を示す断面図であり、図
において、1は密閉ケースで、固定子2及び回転子3よ
りなる電動要素4と、その回転子3に回転軸5を介して
連結された圧縮要素6とを一内蔵している。この圧縮要
素6は、シリンダ7とこのシリンダ7の両端の開口をそ
れぞれ蓋するように固定されると共に前記回転軸5を支
承するフレーム8とヘッド9とで囲われたシリンダ室1
0を備え、このシリンダ室10内に、前記回転軸5に偏
心して嵌挿されたローリングピストン11が収納されて
いる。12はヘッド9に一端が固定され、密閉ケース1
を貫通して図示しない冷却器に連通ずる吸入管である。4 and 5 are sectional views showing a conventional rotary compressor disclosed in, for example, Japanese Utility Model Application Publication No. 58-87988. In the figures, 1 is a closed case, a stator 2 and a rotor 3. The motor-driven element 4 and the compression element 6 connected to the rotor 3 via the rotating shaft 5 are built in. The compression element 6 includes a cylinder chamber 1 which is fixed to cover openings at both ends of the cylinder 7 and is surrounded by a frame 8 and a head 9 that support the rotating shaft 5.
0, and a rolling piston 11 eccentrically fitted onto the rotating shaft 5 is housed in the cylinder chamber 10. 12 has one end fixed to the head 9, and the sealed case 1
This is a suction pipe that penetrates through and communicates with a cooler (not shown).
13は上記吸入管12の出口である吸入口12aを開閉
する逆止弁で、弾性金属板の一端をボルト14でヘッド
9に固定してなるリード弁(舌状弁)として構成されて
いる。15はこの逆止弁13を有する吸入口12aとシ
リンダ室10の低圧側とを連通させる吸入路、16はこ
の吸入路15内に突設されて、逆止弁13の開限度を規
制するストッパ部である。A check valve 13 opens and closes the suction port 12a, which is the outlet of the suction pipe 12, and is constructed as a reed valve (tongue-shaped valve) with one end of an elastic metal plate fixed to the head 9 with a bolt 14. Reference numeral 15 indicates a suction passage that communicates the intake port 12a having the check valve 13 with the low pressure side of the cylinder chamber 10, and reference numeral 16 indicates a stopper that protrudes into the suction passage 15 and regulates the opening limit of the check valve 13. Department.
なお、8aはフレーム8に設けられた油溝で、密閉ケー
ス1の底部に貯えられている潤滑油1aを回転軸5に供
給する。Note that 8a is an oil groove provided in the frame 8, which supplies lubricating oil 1a stored at the bottom of the sealed case 1 to the rotating shaft 5.
次に動作について説明する。Next, the operation will be explained.
上述の回転形圧縮機は、例えば冷蔵庫の冷却系統に接続
されている。The above-mentioned rotary compressor is connected to a cooling system of a refrigerator, for example.
電動要素4に通電して、圧縮機を運転すると、回転子3
が回転し、その回転はクランク軸5を介して圧縮要素6
を構成するローリングピストン11に伝達されて、シリ
ンダ7内における冷媒ガ不の吸入・圧縮・吐出のサイク
ルが繰り返されることにナル。ローリングピストン11
の回転に伴うシリンダ室10の容積変化に応じて吸入路
16は低圧力となり、図外の冷却器からの冷媒ガスの圧
力とのバランスで、逆止弁13が開閉を繰り返す。When the electric element 4 is energized and the compressor is operated, the rotor 3
rotates, and the rotation is transmitted through the crankshaft 5 to the compression element 6
This is transmitted to the rolling piston 11 that constitutes the cylinder 7, and the cycle of sucking, compressing, and discharging the refrigerant inside the cylinder 7 is repeated. rolling piston 11
The pressure in the suction passage 16 becomes low as the volume of the cylinder chamber 10 changes as the cylinder rotates, and the check valve 13 repeats opening and closing in balance with the pressure of refrigerant gas from a cooler (not shown).
圧縮機が停止すると、逆止弁13は、自身の弾性復元力
で吸入口12aを塞ぐ。この停止後間もなく、シリンダ
室10の高圧側に残っている圧縮された冷媒ガスが、シ
リンダ7・フレーム8・ヘッド9およびローリングピス
トン11の各組付部品間に介在する微小隙間を介して、
シリンダ室10の低圧側から吸入路16に逆流入してく
る。When the compressor stops, the check valve 13 closes the suction port 12a with its own elastic restoring force. Shortly after this stop, the compressed refrigerant gas remaining on the high pressure side of the cylinder chamber 10 passes through the minute gaps between the assembled parts of the cylinder 7, frame 8, head 9, and rolling piston 11.
It flows back into the suction passage 16 from the low pressure side of the cylinder chamber 10.
逆止弁13は、そのとき既に閉じており、逆流してくる
過熱された冷媒ガスを遮断する。これにより過熱ガスが
吸入管12を経て図外の冷却器に流入し、冷却器内の温
度を上昇させる現象は防止される。The check valve 13 is already closed at that time and blocks the superheated refrigerant gas flowing back. This prevents the superheated gas from flowing into the cooler (not shown) through the suction pipe 12 and increasing the temperature inside the cooler.
しかしながら、従来の回転形圧縮機にあっては、逆止弁
13がリード弁として構成されているので、開状態にお
けるリフト量h(第5図参照)が十分とは云えず、吸入
ガスの通路が絞られることとなる。そのため圧縮機運転
中の圧縮要素における吸入ガスの流れ抵抗が大きくなり
、圧縮機のガス吸入効率を低下させ、冷凍装置のエネル
ギー消費を無駄に増加させてしまうという問題点があっ
た。However, in the conventional rotary compressor, since the check valve 13 is configured as a reed valve, the lift amount h (see Fig. 5) in the open state is not sufficient, and the suction gas passage is will be narrowed down. Therefore, there is a problem in that the flow resistance of the suction gas in the compression element during compressor operation becomes large, reducing the gas suction efficiency of the compressor and unnecessarily increasing the energy consumption of the refrigeration system.
この発明は、上記のような問題点を解消するためになさ
れたもので、冷媒ガスの吸入効率がほとんど低下しない
逆上機能を有する回転形圧縮機を得ることを目的とする
。The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a rotary compressor having a reversal function in which the suction efficiency of refrigerant gas is hardly reduced.
この発明に係る回転形圧縮機は、シリンダ室に近接して
、このシリンダ室の低(E側と圧縮機吸入口とを連絡す
る円筒状の吸入路をシリンダに内設し、この吸入路に吸
入路内径より僅かに小さい外径を有する逆止弁を軸方向
摺動自在に挿入する。The rotary compressor according to the present invention has a cylindrical suction passage provided in the cylinder adjacent to the cylinder chamber and communicating between the lower (E side) of the cylinder chamber and the compressor suction port. A check valve having an outer diameter slightly smaller than the inner diameter of the suction passage is slidably inserted in the axial direction.
そしてこの逆止弁で吸入路を吸入側空間と弁収納側空間
とに仕切り、この弁収納側空間とシリンダ室の低圧側空
間とを均圧路を介して連結したものである。The check valve partitions the suction passage into a suction side space and a valve housing space, and the valve housing space and the low pressure side space of the cylinder chamber are connected via a pressure equalization passage.
この発明における逆圧弁は、圧縮機の運転でシリンダ室
の低圧側の圧力が低下すると、冷却器から吸入される冷
媒ガスの圧力の方が高い状態になり、その圧力差により
押し開かれる。そして弁体は吸入路内を大きく摺動して
、弁収納側空間に退避する。そめため、吸入路のガス吸
入側空間は広いスペースとなり、吸入管から吸入された
冷媒ガスは、その通路を絞られることなく通過し、した
がって極めて効率良く吸入される。When the pressure on the low pressure side of the cylinder chamber decreases due to operation of the compressor, the pressure of the refrigerant gas sucked from the cooler becomes higher, and the reverse pressure valve in this invention is pushed open due to the pressure difference. The valve body then largely slides within the suction passage and retreats to the valve storage space. Therefore, the space on the gas suction side of the suction passage becomes a wide space, and the refrigerant gas sucked from the suction pipe passes through the passage without being restricted, and is therefore sucked in extremely efficiently.
圧縮機が停止すると、均圧路の作用でシリンダ室の低圧
側空間と吸入路の弁収納側空間および吸入側空間とが直
ちに均圧化されるから、逆止弁は(バネ力または自重で
移動して)g!に入口を閉じる。When the compressor stops, the low-pressure side space of the cylinder chamber and the valve storage side space and suction side space of the suction path are immediately equalized by the action of the pressure equalization path, so the check valve (due to spring force or self-weight) Move) g! Close the entrance.
続いてシリンダ室内の高圧側からリークしてくる過熱冷
媒ガスは、この逆止弁で遮断されるから、冷却器への過
熱ガスの逆流による温度上昇は防止される。Subsequently, superheated refrigerant gas leaking from the high pressure side in the cylinder chamber is blocked by this check valve, so that a temperature rise due to backflow of superheated gas to the cooler is prevented.
以下、この発明の一実施例を図について説明する。第1
〜3図において、符号1〜12は第4図、第5図と全く
同一であり、詳細説明は省略する。An embodiment of the present invention will be described below with reference to the drawings. 1st
3, reference numerals 1 to 12 are the same as those in FIGS. 4 and 5, and detailed explanation will be omitted.
図において、21はシリンダ7の胴部を軸方向に貫通す
る円筒状の吸入路であり、その一端側に吸入管12の吸
入口12aが位置し、反対端側はフレーム8で閉塞する
ように設けられている。22はこの吸入路21とシリン
ダ室10の低圧側とを連通させた吸入溝である。23は
逆圧弁であり、前記吸入路21の内径より僅かに小さい
外径を有し、かつ吸入路21の全長より短かい円筒形状
に形成され、吸入路21内に軸方向に摺動自在に挿入さ
れている。24は逆止弁23の内部に組込まれた圧縮フ
ィルばねで逆止弁23を常時吸入口12a側に向って付
勢しているが、その付勢力は逆止弁23の摺動抵抗より
いくらか大きい程度でよい。前記吸入路21は挿入され
た逆止弁23によって、吸入ガスの通路となる吸入側空
間21aと開状態の逆止弁23を収納する弁収納側空間
21bとに仕切られている。25は吸入路21の前記弁
収納側空間21bとシリンダ室10の低圧側とを連通さ
せる均圧路であり、フレーム8に形成されている。なお
、26はシリンダTの胴部に設けられた滑弁で、先端の
シーリングエツジ26aをばね26bの弾圧力で常にロ
ーリングピストン11の外周面に摺接させることにより
、シリンダ室10を低圧側と高圧側に区画している。In the figure, 21 is a cylindrical suction passage that passes through the body of the cylinder 7 in the axial direction, and the suction port 12a of the suction pipe 12 is located at one end of the passage, and the opposite end is closed by the frame 8. It is provided. 22 is a suction groove that communicates this suction passage 21 with the low pressure side of the cylinder chamber 10. Reference numeral 23 denotes a back pressure valve, which has an outer diameter slightly smaller than the inner diameter of the suction passage 21 and is formed in a cylindrical shape shorter than the overall length of the suction passage 21, and is slidable in the axial direction within the suction passage 21. It has been inserted. Reference numeral 24 denotes a compressed fill spring built into the check valve 23 that constantly biases the check valve 23 toward the suction port 12a, but the biasing force is somewhat greater than the sliding resistance of the check valve 23. A large amount is fine. The suction passage 21 is partitioned by the inserted check valve 23 into a suction side space 21a serving as a passage for suction gas and a valve housing side space 21b housing the check valve 23 in an open state. Reference numeral 25 denotes a pressure equalizing passage that communicates the valve housing side space 21b of the suction passage 21 with the low pressure side of the cylinder chamber 10, and is formed in the frame 8. Reference numeral 26 is a slide valve provided in the body of the cylinder T, and by constantly bringing the sealing edge 26a at the tip into sliding contact with the outer peripheral surface of the rolling piston 11 by the elastic force of the spring 26b, the cylinder chamber 10 is set to the low pressure side. It is divided on the high pressure side.
次に作用について説明する。Next, the effect will be explained.
圧縮機停止中、冷却、1%統内は冷媒蒸気圧により定ま
る圧力に均一化されているから、逆止弁23の両側すな
わち吸入管12内と吸入路21の弁収納側空間2ib内
とも同一圧力であり、差圧は生じない。When the compressor is stopped, the cooling and 1% internal pressure is equalized to the pressure determined by the refrigerant vapor pressure, so the pressure is the same on both sides of the check valve 23, that is, in the suction pipe 12 and in the valve storage side space 2ib of the suction passage 21. pressure, and no differential pressure occurs.
したがって、逆止弁23は、圧縮コイルばね24の弾性
力でヘッド9側に押し付けられ、そのシー/l/面23
aでガス吸入口128を閉止している(第3図参照)。Therefore, the check valve 23 is pressed against the head 9 side by the elastic force of the compression coil spring 24, and its sea/l/face 23
The gas inlet 128 is closed at point a (see FIG. 3).
圧縮機が運転を始めると、ローリングピストン110回
転につれてシリンダ室10の吸入側10aの容積−が拡
大されていき(第2図参照)、その内圧が低下する。す
るとシリンダ室吸入側10aと均圧路25を介して連通
している吸入路21の弁収納側空1’141f21bの
圧力も低下し、逆止弁23をはさんで吸入管12内の圧
力との間に差圧が生じる。When the compressor starts operating, the volume of the suction side 10a of the cylinder chamber 10 is expanded as the rolling piston 110 rotates (see FIG. 2), and its internal pressure is reduced. Then, the pressure in the valve storage side space 1'141f21b of the suction passage 21, which communicates with the cylinder chamber suction side 10a via the pressure equalization passage 25, also decreases, and the pressure in the suction pipe 12 across the check valve 23 decreases. A differential pressure occurs between the two.
この差圧が逆止弁23の圧縮コイルばね24のばね力よ
り大きくなると(ばね24は、逆止弁23の摺動抵抗よ
りやや大きい程度の弱いばね力である)、逆止弁23は
押し戻されて弁収納側空間21b内に移動し、吸入口1
2aは開かれる(第1図参照)。これにより、冷却器か
らの冷媒ガスは、吸入管12→吸入口12a→吸入路の
吸入側空間21a→吸入溝22と流れてシリンダ室10
内に吸入される。このとき流入ガスの流速に基づく動圧
も逆止弁23のシール面23aに加わり、シリンダ室1
0内の吸入側圧力より僅かに高い吸入管12側の圧力と
相まって、十分な受圧面積を有してシリンダ状に形成さ
れている逆止弁23を大きく開く方向に作用する。よっ
て、吸入側空間21aには十分の流入面積が確保され、
圧縮要素6の吸入側における冷媒ガスの吸入抵抗は、従
来に比し極めて小さくなり、圧縮機の吸入効率が向上す
る。When this differential pressure becomes larger than the spring force of the compression coil spring 24 of the check valve 23 (the spring 24 has a weak spring force that is slightly larger than the sliding resistance of the check valve 23), the check valve 23 is pushed back. and moves into the valve housing side space 21b, and the suction port 1
2a is opened (see Figure 1). As a result, the refrigerant gas from the cooler flows from the suction pipe 12 to the suction port 12a to the suction side space 21a of the suction passage to the suction groove 22 to reach the cylinder chamber 10.
inhaled into the body. At this time, dynamic pressure based on the flow rate of the inflow gas is also applied to the sealing surface 23a of the check valve 23, and the cylinder chamber 1
Coupled with the pressure on the suction pipe 12 side which is slightly higher than the suction side pressure in 0, the check valve 23, which is formed in a cylindrical shape and has a sufficient pressure receiving area, acts in the direction of widening. Therefore, a sufficient inflow area is ensured in the suction side space 21a,
The suction resistance of refrigerant gas on the suction side of the compression element 6 becomes extremely small compared to the conventional case, and the suction efficiency of the compressor is improved.
次に圧縮機が停止すると、シリンダ室1oの吸入側10
a・吸入溝22・吸入路吸入側空間21a・吸入管12
及び均圧路25・吸入路弁収納側空間21bの各部にお
ける圧力が瞬時に均圧化されて、逆止弁23の両端面間
の差圧は零となる。Next, when the compressor stops, the suction side 10 of the cylinder chamber 1o
a・Suction groove 22・Suction path suction side space 21a・Suction pipe 12
The pressure in each part of the pressure equalizing passage 25 and the suction passage valve storage space 21b is instantly equalized, and the differential pressure between both end faces of the check valve 23 becomes zero.
その結果逆止弁23は圧縮コイルばね2・4のばね力で
吸入口12aに向って押し付けられ、流入路を閉止する
。それ故、その後リークしてくる圧縮機高圧側の過熱ガ
スが遮断できる。しかも、逆止弁23の圧縮フィルばね
24側にも、均圧路25を介して過熱ガス圧が背圧と表
って加わるから、逆止弁23にはセルフシール力が作用
することとなり、確実な遮断が保証される。また構造が
単純で、組立も容易(ボルト止め等不要)である。As a result, the check valve 23 is pressed toward the suction port 12a by the spring force of the compression coil springs 2 and 4, thereby closing the inflow path. Therefore, superheated gas from the high pressure side of the compressor that leaks afterwards can be shut off. Furthermore, since superheated gas pressure is applied as back pressure to the compressed fill spring 24 side of the check valve 23 via the pressure equalization path 25, a self-sealing force acts on the check valve 23. Reliable shutoff is guaranteed. Furthermore, the structure is simple and assembly is easy (no bolts or the like required).
なお、上記実施例では、逆止弁23を一方に押すための
圧縮フィルばね24を設けたものを示したが、これは吸
入路21が水平の場合、又は吸入ガスが上方から下方に
流れるため逆止弁をスプリングの弾圧力で上方に押す構
造の場合に適用する事を考慮したものである。これに対
して、吸入ガスが下方から上方に流れる構造の場合は、
圧縮機停止と同時に逆止弁は自重で落下し逆止弁機能を
果すことができるので、この場合は、圧縮コイルばね2
4を設けずにいわゆる自重閉止形としてよい。In the above embodiment, the compressed fill spring 24 for pushing the check valve 23 in one direction is provided, but this is not possible when the suction passage 21 is horizontal or because the suction gas flows from above to below. This is intended to be applied to a structure in which a check valve is pushed upward by the elastic force of a spring. On the other hand, in the case of a structure in which the intake gas flows from the bottom to the top,
At the same time as the compressor stops, the check valve falls under its own weight and can perform the check valve function, so in this case, the compression coil spring 2
4 may be omitted and a so-called dead weight closing type may be used.
この発明は、上記のように、圧縮要素の吸入路に、吸入
路の内径よりわずかに小さい外径を有し一端をシール面
とする逆止弁を摺動自在に挿入するとともに、との逆止
弁収納空間とシリンダ室内とを連通させる均圧路を設け
たので、吸入ガス通路面積の絞り部位がなく、圧縮機の
吸入効率が改善され、冷凍装置の省エネルギー化が容易
に実現できる効果がある。As described above, the present invention includes slidably inserting a check valve having an outer diameter slightly smaller than the inner diameter of the suction passage into the suction passage of the compression element and having one end as a sealing surface, and Since a pressure equalization path is provided that communicates the stop valve storage space with the cylinder chamber, there is no restriction part for the suction gas passage area, improving the suction efficiency of the compressor and making it easier to save energy in the refrigeration system. be.
第1図はこの発明の一実施例による回転形圧縮機を示す
要部断面側面図、第2図は第1図のn−■断面図、第3
図は第1図に示す逆止弁の閉止状態を示す要部断面側面
図、第4図は従来の回転形圧縮機を示す要部断面側面図
、第5図は第4図のv−■断面図である。
1は密閉ケース、4は電動要素、6は圧縮要素、10は
シリンダk、12 aは吸入口、21は吸入路、21a
は吸入側空間、21bは弁収納側空間、23は逆止弁、
24は圧縮コイルばね、25は均圧路。
なお、図中同一符号は同−又は相当部分を示す。FIG. 1 is a sectional side view of a main part showing a rotary compressor according to an embodiment of the present invention, FIG.
The figure is a cross-sectional side view of the main part showing the closed state of the check valve shown in Fig. 1, Fig. 4 is a cross-sectional side view of the main part showing a conventional rotary compressor, and Fig. 5 is v-■ of Fig. FIG. 1 is a sealed case, 4 is an electric element, 6 is a compression element, 10 is a cylinder k, 12a is an intake port, 21 is an intake passage, 21a
21b is a space on the suction side, 21b is a space on the valve storage side, 23 is a check valve,
24 is a compression coil spring, and 25 is a pressure equalization path. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (2)
路に逆止弁を設けてなる回転形圧縮機において、前記逆
止弁を、吸入路内径より僅かに小さい外径を有して吸入
路内に軸方向に摺動自在に挿入すると共に、その逆止弁
で前記吸入路を吸入側空間と弁収納側空間とに仕切り、
かつ該弁収納側空間と前記シリンダ室とを均圧路を介し
て連結したことを特徴とする回転形圧縮機。(1) In a rotary compressor in which a check valve is provided in a suction passage that communicates a suction port of a compression element with a cylinder chamber, the check valve has an outer diameter slightly smaller than an inner diameter of the suction passage. is slidably inserted into the suction passage in the axial direction, and partitions the suction passage into a suction side space and a valve housing side space with the check valve,
A rotary compressor characterized in that the valve storage side space and the cylinder chamber are connected via a pressure equalization path.
記逆止弁は自重閉止形の逆止弁であることを特徴とする
特許請求の範囲第1項記載の回転形圧縮機。(2) The rotary compressor according to claim 1, wherein the axis of the suction passage is formed in the direction of gravity action, and the check valve is a self-locking type check valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27093585A JPS62131992A (en) | 1985-12-02 | 1985-12-02 | Rotary compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27093585A JPS62131992A (en) | 1985-12-02 | 1985-12-02 | Rotary compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62131992A true JPS62131992A (en) | 1987-06-15 |
Family
ID=17493048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27093585A Pending JPS62131992A (en) | 1985-12-02 | 1985-12-02 | Rotary compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62131992A (en) |
-
1985
- 1985-12-02 JP JP27093585A patent/JPS62131992A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200401080A (en) | Dual volume-ratio scroll machine | |
JPH11107950A (en) | Injection device of compressor | |
JPS62131992A (en) | Rotary compressor | |
WO2020125064A1 (en) | Scroll compressor, air conditioner, and backpressure adjustment method for scroll compressor | |
JPH02227583A (en) | Scroll compressor | |
JPS6187988A (en) | Scroll compressor | |
KR100228859B1 (en) | Valve system for a hermetic compressor | |
WO2023139829A1 (en) | Rotary compressor | |
JPH0127279B2 (en) | ||
KR100531279B1 (en) | rotary type compressor | |
JPS5856392Y2 (en) | vane compressor | |
KR100228860B1 (en) | Oil-sticking prevention two-port valve system of a compressor | |
JPS6137834Y2 (en) | ||
JPS6345595Y2 (en) | ||
JPH027409Y2 (en) | ||
KR19980037760A (en) | Compressor wrapper valve structure | |
JPS5939195Y2 (en) | Rotary compressor capacity control device | |
JPS5899671A (en) | Fluid control valve for refrigerator | |
JPS6143991Y2 (en) | ||
US20070081910A1 (en) | Compressor valve plate with spiral groove | |
JPS5862471A (en) | Refrigerator | |
JPS6016267A (en) | Refrigeration cycle | |
JPH01247784A (en) | Compressor | |
KR19980037764A (en) | Flapper Valve System of Compressor | |
JPS5898692A (en) | Rotary compressor |