JPS62130383A - Heat receiving plate for nuclear fusion device - Google Patents

Heat receiving plate for nuclear fusion device

Info

Publication number
JPS62130383A
JPS62130383A JP60270602A JP27060285A JPS62130383A JP S62130383 A JPS62130383 A JP S62130383A JP 60270602 A JP60270602 A JP 60270602A JP 27060285 A JP27060285 A JP 27060285A JP S62130383 A JPS62130383 A JP S62130383A
Authority
JP
Japan
Prior art keywords
receiving plate
heat receiving
plasma
surface material
nuclear fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60270602A
Other languages
Japanese (ja)
Inventor
陽二 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60270602A priority Critical patent/JPS62130383A/en
Publication of JPS62130383A publication Critical patent/JPS62130383A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、核融合装置において、プラズマからの熱負荷
、粒子負荷を受ける第1壁、ダイバータ板、リミタ板等
(以下受熱板と称する)の構造の改良に関するものであ
る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a first wall, a diverter plate, a limiter plate, etc. (hereinafter referred to as a heat receiving plate) that receives heat load and particle load from plasma in a nuclear fusion device. It concerns structural improvements.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

核融合装置の受熱板には、プラズマから大きな熱負荷と
粒子負荷がかかる。プラズマからの入射粒子によるスパ
ッタリングで受熱板は損耗するため、受熱板材料はスパ
ッタリング率の小さい材料、すなわち表面損耗量の少な
い材料とする必要がある。また、プラズマからの高熱負
荷を除熱するために、受熱板には冷却装置が必要である
。このため、従来の受熱板は第4図に示すように、銅等
の高熱伝導率の冷却管2上述に高融点でスパッタリング
率の小さな材料からなるプラズマ側表面材4を設け、プ
ラズマからの入射粒子1による損耗を防いでいる。プラ
ズマ側表面材としては、グラファイト、SiCおよび特
開昭59−151084のようなセラミックなどが採用
されている。
The heat receiving plate of a fusion device is subjected to a large heat load and particle load from the plasma. Since the heat receiving plate is worn out by sputtering due to incident particles from the plasma, the material of the heat receiving plate needs to be a material with a low sputtering rate, that is, a material with a small amount of surface wear. Furthermore, in order to remove the high heat load from the plasma, the heat receiving plate requires a cooling device. Therefore, as shown in Fig. 4, a conventional heat receiving plate is provided with a plasma-side surface material 4 made of a material with a high melting point and a low sputtering rate above the cooling tube 2 made of high thermal conductivity such as copper, and is designed to absorb the incident light from the plasma. This prevents wear and tear caused by particles 1. As the surface material on the plasma side, graphite, SiC, and ceramics such as those disclosed in Japanese Patent Application Laid-Open No. 59-151084 are used.

この第4図の従来構造の問題は、冷却管2とプラズマ側
表面材4との接合部の熱応力である。冷却管2の銅の熱
膨張係数は、グラファイト、SiCプラズマ側表面材4
の3〜4倍である。そのため。
The problem with the conventional structure shown in FIG. 4 is thermal stress at the joint between the cooling pipe 2 and the plasma side surface material 4. The thermal expansion coefficient of the copper of the cooling pipe 2 is the same as that of the graphite, SiC plasma side surface material 4.
It is 3 to 4 times the amount. Therefore.

冷却管2とプラズマ側表面材4をロウ付等で接合する時
、接合部に大きな残留応力が生じる。この残留応力によ
り、冷却管2とプラズマ側表面材4の接合部に割れを生
じたり、また一般にぜい性材料と考えられるプラズマ側
表面材4の破壊を生じる場合がある。たとえ接合できた
としても、受熱板にプラズマから高熱負荷がかかる場合
、冷却管2とプラズマ側表面材4との熱伸びの違いによ
り、接合部に大きな熱応力が生じる。トカマク型の核融
合装置では、プラズマからの熱負荷は通常繰返し負荷と
なるため、この熱応力は繰返し応力となる。この繰返し
応力のために、冷却管2、プラズマ側表面材4の破壊、
接合部のばくり等が発生する危険が大である。
When the cooling pipe 2 and the plasma-side surface material 4 are bonded together by brazing or the like, a large residual stress is generated at the bonded portion. This residual stress may cause cracks in the joint between the cooling pipe 2 and the plasma side surface material 4, or may cause destruction of the plasma side surface material 4, which is generally considered to be a brittle material. Even if the bonding is successful, if a high heat load is applied to the heat receiving plate from the plasma, a large thermal stress will be generated in the bonded portion due to the difference in thermal elongation between the cooling pipe 2 and the plasma side surface material 4. In a tokamak-type fusion device, the thermal load from the plasma is usually a repetitive load, so this thermal stress is a repetitive stress. Due to this repeated stress, the cooling pipe 2 and the plasma side surface material 4 may be destroyed.
There is a high risk that the joints will burst.

さらに、グラファイト、SiC等の低原子番号材料から
なるプラズマ側表面材4の場合、その表面温度が材料の
許容温度を越えるおそれがある。すなわち、これら非金
属の低原子番号材料の熱伝導率は、数百℃の高温では銅
の熱伝導率の174〜1710であり、核融合装置の中
性子照射環境ではさらに小さくなる。このように熱伝導
率が低いために、スパッタリングによる損耗に対して長
寿命になるようにプラズマ側表面材4の厚さを厚くした
場合、その表面温度を許容値以下に抑えることが困雅と
なり、また、受熱板の熱応力も大きくなる問題がある6 〔発明の目的〕 本発明は、熱応力が少くプラズマ側表面材の温度分布が
なだらかで信頼性の高い、長寿命の受熱板を提供するこ
とを目的とする。
Furthermore, in the case of the plasma side surface material 4 made of a low atomic number material such as graphite or SiC, there is a possibility that the surface temperature thereof exceeds the allowable temperature of the material. That is, the thermal conductivity of these nonmetallic low atomic number materials is 174 to 1710 that of copper at high temperatures of several hundred degrees Celsius, and is even lower in the neutron irradiation environment of a nuclear fusion device. Because of this low thermal conductivity, when the plasma side surface material 4 is made thicker in order to have a longer service life against wear and tear due to sputtering, it becomes difficult to keep the surface temperature below the allowable value. In addition, there is a problem that the thermal stress of the heat receiving plate becomes large.6 [Object of the Invention] The present invention provides a long-life heat receiving plate that has little thermal stress, has a gentle temperature distribution on the plasma side surface material, and is highly reliable. The purpose is to

〔発明の概要〕[Summary of the invention]

本発明の受熱板は冷却管上に設けられるプラズマ側表面
材として、高融点で低スパッタリング率の金属、たとえ
ばグラファイト、Sic等と高熱伝導率の金属、たとえ
ば銅等とを混合し加圧一体化させた構造とすることによ
り実現される。
The heat receiving plate of the present invention is a plasma-side surface material provided on a cooling tube, and is a mixture of a metal with a high melting point and low sputtering rate, such as graphite or SiC, and a metal with high thermal conductivity, such as copper, and is integrated under pressure. This is achieved by creating a structure that allows

〔発明の実施例〕[Embodiments of the invention]

以下、本発明による核融合装置の受熱板の一実施例を第
1図により説明する。
Hereinafter, one embodiment of a heat receiving plate of a nuclear fusion device according to the present invention will be described with reference to FIG.

第1図に示す受熱板において、2は銅等からなる冷却管
であり、3はプラズマ側表面材である。
In the heat receiving plate shown in FIG. 1, 2 is a cooling pipe made of copper or the like, and 3 is a plasma side surface material.

プラズマ側表面材3は、銅等の高熱伝導率の金属3bと
グラファイト、SiC等の低スパッタリング率の金属3
aの混在した層から形成されている。
The plasma side surface material 3 is made of a metal 3b with high thermal conductivity such as copper and a metal 3 with a low sputtering rate such as graphite or SiC.
It is formed from a mixed layer of a.

冷却管2とプラズマ側表面材3との接合は、ロウ付また
は鋳込み等の方法で実施される。
The cooling pipe 2 and the plasma-side surface material 3 are joined by brazing, casting, or the like.

本発明の作用について説明する。プラズマ側表面材3は
高熱伝導率の金属3bを含有しているため、低スパッタ
リング材のみからなる従来のプラズマ側表面材よりも熱
伝導率が大きくなる。したがって、本発明によれば従来
の受熱板に比べてプラズマ側表面材3内の温度分布をな
だらかにし、その表面温度を下げることができる。
The operation of the present invention will be explained. Since the plasma side surface material 3 contains the metal 3b having high thermal conductivity, its thermal conductivity is higher than that of a conventional plasma side surface material made only of a low sputtering material. Therefore, according to the present invention, the temperature distribution within the plasma side surface material 3 can be made gentler and the surface temperature can be lowered compared to the conventional heat receiving plate.

プラズマ側表面材3は熱膨張係数の大きい銅等の高熱伝
導率の金属3bを含有しているので、冷却管2との間の
熱膨張係数の差は従来の受熱板に比べて小さい。また、
プラズマ側表面材3は延性が増すとともに、グラファイ
ト等の低強度材よりも強度が増す、したがって、本発明
によれば、熱伸びの違いによる熱応力を緩和できるので
、熱応力による破損を防止し、受熱板の長寿命化を図る
ことができる。
Since the plasma side surface material 3 contains a metal 3b having high thermal conductivity such as copper having a large coefficient of thermal expansion, the difference in coefficient of thermal expansion between it and the cooling pipe 2 is smaller than that of a conventional heat receiving plate. Also,
The plasma side surface material 3 has increased ductility and is stronger than low-strength materials such as graphite. Therefore, according to the present invention, thermal stress due to differences in thermal elongation can be alleviated, thereby preventing damage due to thermal stress. , it is possible to extend the life of the heat receiving plate.

本発明によるプラズマ側表面材3の平均熱膨張係数を次
のTunner & Kernerの式により算出した
結果が第3図である。
FIG. 3 shows the results of calculating the average coefficient of thermal expansion of the plasma side surface material 3 according to the present invention using the following Tunner & Kerner equation.

α。= ΣαnKnvn/ΣKnV。α. = ΣαnKnvn/ΣKnV.

ここで、 K:構成材料のたて弾性率 α:構成材料の熱膨張係数 V二体積含率 α。:複合材料の熱膨張係数 第3図においては、銅のKを10600kg/mm”、
 rxを16.5X10−”/’C、グラファイトのK
を806kg/膿2゜αを5.ILX10’″′1℃と
した場合のα。と銅の体積含有率を示している。数%の
銅が含有されただけでも、平均熱膨張率は非常に大きく
なっている。
Here, K: Vertical modulus of elasticity α of the constituent material: Coefficient of thermal expansion V2 volume content α of the constituent material. :In the thermal expansion coefficient of the composite material in Figure 3, the K of copper is 10,600 kg/mm",
rx 16.5X10-”/'C, graphite K
806kg/pus 2゜α5. It shows α and the volume content of copper when ILX10''''1°C. Even if only a few percent of copper is contained, the average coefficient of thermal expansion becomes very large.

次に第2図を参照して別の実施例を説明する。Next, another embodiment will be described with reference to FIG.

第2図に示す受熱板は、プラズマ側表面材3における高
融点で低スパッタリング材3aと高熱伝導率の金属3b
の割合を、場所によって変化させたものである。すなわ
ち、冷却管2との接合面近傍では高熱伝導率の金属3b
の割合を多くし、接合面から離れるにつれて高熱伝導率
の金属3bの割合を少くしたものである。この構成とす
ることにより、プラズマからの熱負荷1粒子負荷を受け
る表面には、高融点の低スパッタリング材3aのみから
なる層を形成できるため、スパッタリングによる損耗を
少なくすることができる。また、プラズマ中へ高熱伝導
率の金属3bが混入することを防止できる。したがって
、混入不純物によるプラズマからの熱放射量を少くする
ために、プラズマ側表面材に低原子番号からなる材料を
用いる必要がある場合には、この構成が有効である。な
お、本実施例は前記実施例と同様に、接合面近傍での熱
応力を緩和でき。
The heat receiving plate shown in FIG. 2 includes a high melting point, low sputtering material 3a and a high thermal conductivity metal 3b in the plasma side surface material 3.
The proportions of these changes depending on location. That is, near the joint surface with the cooling pipe 2, the metal 3b with high thermal conductivity
The ratio of metal 3b having high thermal conductivity is increased, and the ratio of metal 3b having high thermal conductivity is decreased as the distance from the joint surface increases. With this configuration, a layer consisting only of the high melting point, low sputtering material 3a can be formed on the surface that receives the thermal load of one particle from the plasma, so that wear due to sputtering can be reduced. Further, it is possible to prevent the metal 3b having high thermal conductivity from being mixed into the plasma. Therefore, this configuration is effective when it is necessary to use a material with a low atomic number for the plasma side surface material in order to reduce the amount of heat radiation from the plasma due to mixed impurities. Note that, like the previous embodiment, this embodiment can alleviate thermal stress near the bonding surface.

受熱板の破損の防止、長寿命化を図ることができる。It is possible to prevent damage to the heat receiving plate and extend its life.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、熱伸びの違いによる熱応
力を緩和できるので、熱応力による受熱板の破損を防止
し、受熱板の長寿命化を図ることができる。また、プラ
ズマ側表面材の熱伝導率を大きくできるので、プラズマ
側表面材内の温度分布をなだらかにし、その表面温度を
下げることができる。これにより、スパッタリングによ
る損耗に対して長寿命になるようにプラズマ側表面材板
厚を厚くした場合にも、その表面温度を許容値以下に抑
えることができる。そして、信頼性の高い長寿命の核融
合装置受熱板を提供することができる。
As described above, according to the present invention, thermal stress due to differences in thermal elongation can be alleviated, so damage to the heat receiving plate due to thermal stress can be prevented and the life of the heat receiving plate can be extended. Furthermore, since the thermal conductivity of the plasma-side surface material can be increased, the temperature distribution within the plasma-side surface material can be made gentle and the surface temperature can be lowered. As a result, even when the thickness of the plasma-side surface material is increased so as to have a long life against wear and tear due to sputtering, the surface temperature can be kept below the allowable value. In addition, it is possible to provide a highly reliable and long-life fusion device heat receiving plate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の核融合装置の受熱板の断面
図、第2図は本発明の他の実施例の断面図、第3図は本
発明による受熱板のプラズマ側表面材の平均熱膨張係数
と銅の体積含有率との関係を示す曲線図、第4図は従来
の受熱板の断面図である。 1・・・プラスマからの熱負荷1粒子負荷2・・・冷却
管 3・・・本発明によるプラズマ側表面材3a・・・低ス
パッタリング材 3b・・・高熱伝導率の金属 4・・・従来のプラズマ側表面材 代理人 弁理士 則 近 憲 佑 同  三俣弘文 111111〜/ 第1図 第2図 411A447m嗜トi午[1 第3図 第4vA
FIG. 1 is a sectional view of a heat receiving plate of a nuclear fusion device according to an embodiment of the present invention, FIG. 2 is a sectional view of another embodiment of the present invention, and FIG. 3 is a plasma side surface material of a heat receiving plate according to the present invention. FIG. 4 is a curve diagram showing the relationship between the average coefficient of thermal expansion and the volume content of copper, and FIG. 4 is a cross-sectional view of a conventional heat receiving plate. 1... Heat load from plasma 1 Particle load 2... Cooling pipe 3... Plasma side surface material according to the present invention 3a... Low sputtering material 3b... High thermal conductivity metal 4... Conventional Plasma side surface material agent Patent attorney Nori Chika Ken Yudo Hirofumi Mitsumata 111111~ / Figure 1 Figure 2 411A447m 斯萩 [1 Figure 3 Figure 4vA

Claims (2)

【特許請求の範囲】[Claims] (1)高融点低スパッタリング率の材料と高熱伝導率の
金属とを混合し加圧一体化された表面材と、この表面材
に接合された冷却管とを備えたことを特徴とする核融合
装置の受熱板。
(1) Nuclear fusion characterized by comprising a surface material that is a mixture of a material with a high melting point and low sputtering rate and a metal with high thermal conductivity and integrated under pressure, and a cooling pipe joined to this surface material. Heat receiving plate of the device.
(2)表面材中の高熱伝導率の金属の含有率は熱負荷・
粒子負荷を受ける表面よりも冷却管との接合面における
ほうが高いことを特徴とする特許請求の範囲第一項記載
の核融合装置の受熱板。
(2) The content of high thermal conductivity metal in the surface material is
2. The heat receiving plate for a nuclear fusion device according to claim 1, wherein the heat receiving plate for a nuclear fusion device according to claim 1 is higher at the interface with the cooling pipe than at the surface receiving the particle load.
JP60270602A 1985-12-03 1985-12-03 Heat receiving plate for nuclear fusion device Pending JPS62130383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60270602A JPS62130383A (en) 1985-12-03 1985-12-03 Heat receiving plate for nuclear fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60270602A JPS62130383A (en) 1985-12-03 1985-12-03 Heat receiving plate for nuclear fusion device

Publications (1)

Publication Number Publication Date
JPS62130383A true JPS62130383A (en) 1987-06-12

Family

ID=17488381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60270602A Pending JPS62130383A (en) 1985-12-03 1985-12-03 Heat receiving plate for nuclear fusion device

Country Status (1)

Country Link
JP (1) JPS62130383A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118796A (en) * 1987-11-02 1989-05-11 Mitsubishi Atom Power Ind Inc First wall of nuclear fusion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118796A (en) * 1987-11-02 1989-05-11 Mitsubishi Atom Power Ind Inc First wall of nuclear fusion device

Similar Documents

Publication Publication Date Title
US6245442B1 (en) Metal matrix composite casting and manufacturing method thereof
EP2952496B1 (en) Joined material and method for producing same
US3714702A (en) Method for diffusion bonding refractory metals and alloys
JPS62130383A (en) Heat receiving plate for nuclear fusion device
JPS5849607B2 (en) Cooling stave with non-fused double cooling pipes
JPH11287565A (en) Refractory brick
JP3501834B2 (en) Manufacturing method of joined body of ceramic material and metal material
JPH0647188B2 (en) Bonding material and bonding method for graphite and metal material
JPS63220085A (en) Crucible for melting uranium
JPS5926984A (en) Metallizing melt adhesion of ceramics and metal
JPH07241663A (en) Stoke for low pressure casting
JPS62227596A (en) Ceramics-metal joining member
JP2667394B2 (en) Manufacturing method of metal members
JPS6010103B2 (en) Sintered refractory metal with improved porosity resistance in welded parts
JPH07167972A (en) First wall for nuclear fusion device
JP3307760B2 (en) High heat flux heat receiving plate
JPH0317793B2 (en)
JPH0469590A (en) First wall of nuclear fusion device
JPS60145972A (en) Ceramic-metal bonded body
JPS6270272A (en) Bonding structure of ceramics
JPS62252376A (en) Method of joining alumina ceramic and copper plate
JPH0621322B2 (en) Ceramic expansion brazing alloy for brazing
JPS63210073A (en) Method of setting ceramics
JPS6179187A (en) Bumper limiter for nuclear fusion device
JPS6173089A (en) Limiter structure