JPS62128711A - Molding tool having permeability - Google Patents

Molding tool having permeability

Info

Publication number
JPS62128711A
JPS62128711A JP26838085A JP26838085A JPS62128711A JP S62128711 A JPS62128711 A JP S62128711A JP 26838085 A JP26838085 A JP 26838085A JP 26838085 A JP26838085 A JP 26838085A JP S62128711 A JPS62128711 A JP S62128711A
Authority
JP
Japan
Prior art keywords
melting point
mold
ceramic powder
point ceramic
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26838085A
Other languages
Japanese (ja)
Inventor
Teruhiko Yamaguchi
輝彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojima Industries Corp
Original Assignee
Kojima Press Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojima Press Industry Co Ltd filed Critical Kojima Press Industry Co Ltd
Priority to JP26838085A priority Critical patent/JPS62128711A/en
Publication of JPS62128711A publication Critical patent/JPS62128711A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/34Moulds having venting means
    • B29C45/345Moulds having venting means using a porous mould wall or a part thereof, e.g. made of sintered metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3814Porous moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2909/00Use of inorganic materials not provided for in groups B29K2803/00 - B29K2807/00, as mould material
    • B29K2909/02Ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain the heat resistance, sufficient strength and good transferring property of a molding tool, by constituting it with porous formed composite sintered member calcined by using a high melting point ceramic powder and a low melting point ceramic powder. CONSTITUTION:A molding tool 23 is constituted as a composite sintered member of a high melting point ceramic powder 21 with a low melting point ceramic powder 22. The low melting point ceramic powder 22 is sintered around the high melting point ceramic powder 21, and the low melting point ceramic powder 22 is sintered each other to bind the high melting point ceramic powder 21 each other. By this binding there is formed a skeleton where the high melting point ceramic powder 21 is an aggregate and the low melting point ceramic powder 22 is a binding member. Therewith pores 24 are formed, and the whole molding tool 23 has breathability. Therefore the gas of the space in the molding tool 23 at the time of molding is uniformly degassed from the whole surface of the porous mold, and is discharged from a hole 28 provided at a mold frame 27. Thereby pin-holes or cavities do not occur on the surface of a moldings, so a beautiful transferring can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、必要な強度を保らつつ良好な転写機能を備え
た成形型に関し、とくに真空成形、ブロー成形、射出成
形等に用いて最適な通気性を有する成形型に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a mold that has a good transfer function while maintaining necessary strength, and is particularly suitable for use in vacuum forming, blow molding, injection molding, etc. The present invention relates to a mold having good air permeability.

[従来の技術] 従来から、真空成形、ブロー成形、射出成形等の技術は
一般によく知られている。
[Prior Art] Techniques such as vacuum forming, blow molding, and injection molding are generally well known.

たとえば、真空成形は、第9図(イ) (ロ)に示すよ
うに、熱によって軟化させた樹脂シート1を型2にセッ
トし、型2の裏側より型面側へ通じる連通孔3を通して
シート1と型2に囲まれた空間4の気体を吸引すること
により、シート1を型面に付着さばて成形するh法でお
る。
For example, in vacuum forming, as shown in FIGS. 9(a) and 9(b), a resin sheet 1 softened by heat is set in a mold 2, and the sheet is passed through a communication hole 3 leading from the back side of the mold 2 to the mold surface side. By suctioning the gas in the space 4 surrounded by the sheet 1 and the mold 2, the sheet 1 is adhered to the mold surface and molded using the H method.

ブロー成形は、第10図(イ)(ロ)に示すように、熱
によって軟化させた筒状の樹脂パリソン5を金型6によ
って保持し、その内側からのエアブロ−7によってパリ
ソン5をふくらまし、金型6とパリソン5との間の気体
をパリソン5のふくらむ圧力により金型6の型面と裏面
とを連通している連通孔8を通して排出させることによ
り、パリソン5を型面に付着させて成形する方法である
In blow molding, as shown in FIGS. 10(a) and 10(b), a cylindrical resin parison 5 softened by heat is held by a mold 6, and the parison 5 is inflated by an air blow 7 from inside the mold. The parison 5 is attached to the mold surface by discharging the gas between the mold 6 and the parison 5 through the communication hole 8 that communicates the mold surface and the back surface of the mold 6 by the pressure of the expanding parison 5. This is a method of molding.

割出成形は、第11図(イ)(ロ)に示すJ:うに、流
動性をもたせた樹脂等の材料9を、ノズル10から金型
11に囲まれた空間にスプール12を通して割出するこ
とにより成形する方法である。
In index molding, a material 9 such as sea urchin or resin having fluidity is indexed through a spool 12 through a nozzle 10 into a space surrounded by a mold 11 as shown in FIGS. 11(a) and (b). This is a method of molding.

[発明が解決しようとづる問題点] ところが、上記のような各成形方法において、成形型と
して単なる通常の金型を用いる場合には以下のような問
題がある。
[Problems to be Solved by the Invention] However, in each of the above-mentioned molding methods, when a simple ordinary mold is used as a mold, the following problems arise.

真空成形においては、型面に形成されたいくつかの連通
孔3を通して気体を吸引しているが、全ての連通孔3か
ら均一に気体を吸引することは困難であり多かれ少なか
れ吸引むらが生じるため、複雑な形状の転写が十分てぎ
ないおそれがあり、また微細な模様(シボ、ステッチな
ど)の転写もできないという問題がある。また、シボの
ついた樹脂シートを用いて転写すると、シート加熱時に
シボが熱で博くなってしまうという問題もある。
In vacuum forming, gas is sucked through several communicating holes 3 formed on the mold surface, but it is difficult to suck the gas uniformly from all the communicating holes 3, resulting in more or less uneven suction. However, there is a problem that complex shapes may not be transferred sufficiently, and fine patterns (grains, stitches, etc.) cannot be transferred. Furthermore, when transferring using a resin sheet with grains, there is a problem that the grains become wider due to heat when the sheet is heated.

また、ブロー成形においては、型面に形成されたいくつ
かの連通孔8を通して気体を排出しているが、排出のむ
らが複雑な形状程生じやすく型通りの転写が十分にはで
きないおそれがあるという問題がある。
In addition, in blow molding, gas is discharged through several communication holes 8 formed on the mold surface, but the more complex the shape is, the more uneven the gas discharge becomes, which may result in insufficient transfer of the mold. There's a problem.

これら真空成形、射出成形において気体の吸引むら必る
いは排出むらを減少させるためには、連通孔3.8の数
を増やすことが考えられるが、現実には成形品の意匠面
との関係から連通孔の増大が難しい場合が多く、しかも
連通孔をあまり増大させると型の強度面で問題が生じる
In order to reduce the unevenness of gas suction or discharge in these vacuum forming and injection molding processes, increasing the number of communication holes 3.8 may be considered, but in reality, this is due to the relationship with the design of the molded product. In many cases, it is difficult to increase the number of communicating holes, and if the number of communicating holes is increased too much, problems will arise in terms of the strength of the mold.

ざらに射出成形においては、金型11に囲まれた空間に
残された気体が十分に排出されないため、成形品にピン
ホールや巣ができやすいという問題がある。
In general, injection molding has a problem in that the gas remaining in the space surrounded by the mold 11 is not sufficiently exhausted, so that pinholes and cavities are easily formed in the molded product.

このような問題に対して、多孔質構造に構成した成形型
が知られている(たとえば特開昭60−6243@)。
To solve this problem, a mold having a porous structure is known (for example, JP-A-60-6243@).

しかし、この提案の成形型は、鉄系粉とセラミックス粉
を骨材にした多孔質構造からなっており、セラミックス
は耐熱性に優れた材料ではあるものの鉄系粉には耐熱性
に限界がおるため、型全体として耐熱性が不足するおそ
れがあるという問題がある。また、一般に、セラミック
スと鉄系の材料との結合強度を上げることは難しいとさ
れているので、型の強度を十分に確保することが難しい
おそれが必るという問題もある。
However, the proposed mold has a porous structure made of iron-based powder and ceramic powder as aggregates, and although ceramic is a material with excellent heat resistance, iron-based powder has a limited heat resistance. Therefore, there is a problem that the mold as a whole may lack heat resistance. Furthermore, since it is generally considered difficult to increase the bonding strength between ceramics and iron-based materials, there is also the problem that it may be difficult to ensure sufficient strength of the mold.

本発明は、上記のような問題点に鑑み、耐熱性は勿論の
こと十分な強度を有し多数回の使用に耐えることができ
、かつ微細で複雑な形状にも良好な転写性を有し、しか
も十分な通気性を有することによって成形型内や成形材
料中の気体の除去を容易に行える成形型を提供すること
を目的とする。
In view of the above-mentioned problems, the present invention has not only heat resistance but also sufficient strength, can withstand multiple uses, and has good transferability even in fine and complicated shapes. Moreover, it is an object of the present invention to provide a mold that has sufficient air permeability so that gases in the mold and the molding material can be easily removed.

[問題点を解決するための手段] この[1的に沿う本発明の通気性を有する成形型は、高
融点のセラミックス3>と低融点のセラミックス粉を主
成分とし、これに焼成時に焼却する成分を焼成前におけ
る粘結剤として含む泥漿状の試料を、成形して低融点の
セラミックスぢ)が焼結する温度で焼成した焼成体から
なっている。そして、該焼成体は、高融点のセラミック
ス粉が骨材となり低融点のセラミックス粉が焼結して高
融点のセラミックス粉量をつなぐ結合材となる骨格を有
し、該骨格により型全体として多孔質構造になっている
[Means for Solving the Problems] The mold having air permeability of the present invention, which meets the above [1], has a high melting point ceramic 3> and a low melting point ceramic powder as main components, which are incinerated during firing. A sintered body is obtained by molding a slurry-like sample containing components as a binder before sintering and sintering it at a temperature that will sinter the low-melting-point ceramic. The fired body has a skeleton in which the high melting point ceramic powder becomes the aggregate and the low melting point ceramic powder is sintered to act as a binding material that connects the high melting point ceramic powder, and this skeleton makes the entire mold porous. It has a quality structure.

ここで望ましくは、焼成体は、成形型の型面を形成する
型面薄層と該型面薄層の背面側に位置する背部補強層と
の積層構造に構成され、型面薄層は細粒の高融点のセラ
ミックス扮、背部補強層は粗粒の高融点のセラミックス
粉が用いられたしのからなっている。また、上記の焼成
体の焼成は酸化雰囲気中で行われることが望ましい。
Preferably, the fired body has a laminated structure of a mold surface thin layer forming the mold surface of the mold and a back reinforcing layer located on the back side of the mold surface thin layer, and the mold surface thin layer is a thin mold surface layer. The back reinforcement layer is made of coarse-grained, high-melting-point ceramic powder. Further, it is desirable that the above-mentioned fired body be fired in an oxidizing atmosphere.

[イ乍用] このような成形型においては、高融点のセラミックス扮
のまわりに低融点のセラミックス粉か付着するとともに
、低融点のセラミックス扮の表面張ツノにより気孔が生
じる。そして、焼成は低融点のセラミックス粉が焼結す
る温度で行なわれるので、高融点のセラミックス粉は高
強度を有する骨材としてそのまま残り、低融点のセラミ
ックス扮部とで形成された骨格により多孔質構造となる
ことで、型全体の通気性が確保されるとともに、高融点
のセラミックス粉により成形型として望ましい強度が確
保される。そして、セラミックスからなる型として構成
されるので十分な耐熱性が実現され、かつ高融点と低融
点のセラミックス扮同士の結合であるから内部結合強度
も十分に確保される。
[For Use] In such a mold, low melting point ceramic powder adheres around the high melting point ceramic material, and pores are generated due to the surface tension horns of the low melting point ceramic material. Since firing is carried out at a temperature at which the low-melting point ceramic powder is sintered, the high-melting point ceramic powder remains as a high-strength aggregate, and the skeleton formed by the low-melting point ceramic part creates a porous structure. This structure ensures air permeability throughout the mold, and the high melting point ceramic powder ensures the desired strength as a mold. Furthermore, since it is constructed as a mold made of ceramic, sufficient heat resistance is achieved, and since it is a bond between high melting point and low melting point ceramics, sufficient internal bonding strength is ensured.

また、多孔質構造により従来方法のにうに気体吸引、ま
たは排出のための孔を設けなくてすむので、複相な形状
でおっても型全体からの気体吸引あるいは気体排出が可
能になるとともに、所定の型面が容易に形成される。そ
して、型面におけるセラミックス粉の粒度を適切に設定
ずれば、上述の通気性を確保しつつ滑らかな肌面を得る
ことができ、微細で複雑な形状であっても良好な転写性
71)” i’Jtられる。
In addition, the porous structure eliminates the need to provide holes for gas suction or gas discharge as in conventional methods, making it possible to suction or discharge gas from the entire mold even with a multi-phase shape. A predetermined mold surface is easily formed. By appropriately setting the particle size of the ceramic powder on the mold surface, it is possible to obtain a smooth skin surface while ensuring the above-mentioned air permeability, and good transferability even for fine and complex shapes71). i'Jt is done.

[実施例1 以下に本発明の望ましい実施態様を図面を参照して説明
覆る。
[Example 1] Preferred embodiments of the present invention will be described below with reference to the drawings.

本発明の通気性を有する成形型を第1図に、その成形型
の模式的な断面を第2図に示す。第2図において、21
は高融点のセラミックス粉、22は低融点のセラミック
ス粉を示しており、本発明における通気性を有する成形
型23は、高融点のセラミックス粉21と低融点のセラ
ミックス扮22との複合焼結体として構成される。高融
点のセラミックス扮21のまわりに低融点のセラミック
ス粉22が焼結し、ざらに低融点のセラミックス粉22
同士も焼結して高融点のセラミックス扮21同士を結合
している。この結合により、高融点、のセラミックス扮
21を骨材、低融点のセラミックス粉22を結合材とす
る骨格が形成され、その骨格が形成されることにより気
孔24が形成されている。したがって、成形型23仝体
は多孔質構造に構成されており、通気性を有している。
FIG. 1 shows a mold having air permeability according to the present invention, and FIG. 2 shows a schematic cross section of the mold. In Figure 2, 21
indicates a high melting point ceramic powder, and 22 indicates a low melting point ceramic powder, and the air permeable mold 23 in the present invention is a composite sintered body of a high melting point ceramic powder 21 and a low melting point ceramic layer 22. Constructed as. A low melting point ceramic powder 22 is sintered around a high melting point ceramic layer 21, and a low melting point ceramic powder 22 is sintered around the high melting point ceramic powder 21.
They are also sintered to bond the high melting point ceramics 21 together. Through this bonding, a skeleton is formed in which the high-melting-point ceramic powder 21 is used as an aggregate and the low-melting-point ceramic powder 22 is used as a binding material, and the pores 24 are formed by forming this skeleton. Therefore, the mold 23 body has a porous structure and is breathable.

この多孔質構造の成形型23は、後述の如く高融点のセ
ラミックス粉21と低融点のセラミックス扮22を主成
分としたものを焼成した焼成体からなるが、第1図に示
す実施例においては、焼成体は、成形型23の型面を形
成する型面薄層25と該型面薄層25の背面側に位置す
る背部補強層26との積層構造に構成されている。そし
て、型面薄層25には細粒の高融点のセラミックス粉2
1が用いられており、背部補強層26には粗粒の高融点
のセラミックス粉21が用いられている。
This mold 23 with a porous structure is made of a fired body made of a ceramic powder 21 with a high melting point and a ceramic powder 22 with a low melting point, which are fired as main components, as will be described later. The fired body has a laminated structure of a mold surface thin layer 25 forming the mold surface of the mold 23 and a back reinforcing layer 26 located on the back side of the mold surface thin layer 25. The mold surface thin layer 25 is made of fine grained ceramic powder 2 with a high melting point.
1 is used, and the back reinforcing layer 26 is made of coarse-grained ceramic powder 21 with a high melting point.

成形型23の焼成は低融点のセラミックス粉22が焼結
する温度で行われるので、高融点のセラミックス扮21
が有する強度は焼成後にもそのまま維持され、高融点の
セラミックス粉21は成形型23の強度を確保する骨格
のうらの骨材となる。
Since the mold 23 is fired at a temperature at which the low melting point ceramic powder 22 is sintered, the high melting point ceramic powder 21
The strength of the mold 23 is maintained even after firing, and the high melting point ceramic powder 21 becomes the aggregate at the back of the skeleton that ensures the strength of the mold 23.

したがって、ト述の如き積層4′M造をとることで、型
面薄層25によりきめ細かい肌面の型面が1qられ、成
形型23全体として十分な強度か確保されるとともに、
十分な通気性も保たれる。
Therefore, by adopting the laminated 4'M structure as described above, the mold surface thin layer 25 increases the mold surface with a fine texture by 1q, ensuring sufficient strength for the mold 23 as a whole,
Sufficient ventilation is also maintained.

このような(1?g成の成形型23が第1図に示ずにう
に型枠27によって保持され、成形時の成形型23内空
隙のガスは、多孔質の成形型23の型面仝而より均一に
型内を通して脱気され、型枠27に設けられた穴28か
ら排出される。
A mold 23 of 1-g is held by a mold frame 27 in a manner not shown in FIG. The air is more uniformly degassed through the mold and discharged through holes 28 provided in the mold frame 27.

上記成形型23において、高融点のセラミックス粉21
としては、アルミナ、ムライト、シリカ、ジルコニア、
マグネシア、カルシア等の酸化物およびこれらの複合酸
化物で、耐蝕、耐熱性に問題のないものが適当である。
In the mold 23, a high melting point ceramic powder 21
Examples include alumina, mullite, silica, zirconia,
Among oxides such as magnesia and calcia, and composite oxides thereof, those without problems in corrosion resistance and heat resistance are suitable.

また、その粒度は、型面薄層25では50ミクロン以下
、背部補強層26では200ミクロン以上が適当でおる
。しかし、この粒度は使用方法によっては必ずししこの
範囲でなく−Cもよい。
The particle size is suitably 50 microns or less for the mold surface thin layer 25 and 200 microns or more for the back reinforcing layer 26. However, depending on the method of use, this particle size is not necessarily in this range, and -C may also be used.

低融点のセラミックス粉22としては、ホウ砂、フリッ
ト等の酸化物およびこれらを含めた酸化物の複合酸化物
で、高融点のセラミックス粉21より融点がかなり低く
かつ耐蝕、耐熱性に問題のないものが適当である。また
、その粒度は、型面薄層25、背部補強層26両者とも
同じものを用いてよく、20ミクロン以下が適当である
1、シかし、この粒度は前記の高融点のセラミックス扮
21の粒度によって必ずしもこの範囲でなくてもにい。
The low melting point ceramic powder 22 is made of oxides such as borax, frit, etc., and composite oxides of oxides including these, which have a much lower melting point than the high melting point ceramic powder 21 and have no problems in corrosion resistance and heat resistance. things are appropriate. The particle size may be the same for both the mold surface thin layer 25 and the back reinforcing layer 26, and is suitably 20 microns or less. It does not necessarily have to be within this range depending on the particle size.

また、高融点のセラミックス扮21と低融点のセラミッ
クス扮22の重量比は、100:10ないし1’OO:
50が適当である。この範囲よりも低融点のセラミック
ス粉22の含有量が少ないと強度が下がり、多いと通気
性か悪くなる。この重量比および高融点のセラミックス
粉21の粒度、焼成温度を調整することにより、成形型
23の強度と通気性を調整できる。
Further, the weight ratio of the high melting point ceramic layer 21 and the low melting point ceramic layer 22 is 100:10 to 1'OO:
50 is appropriate. If the content of ceramic powder 22 with a melting point lower than this range is less, the strength will decrease, and if it is more, the air permeability will be poor. By adjusting this weight ratio, the particle size of the high melting point ceramic powder 21, and the firing temperature, the strength and air permeability of the mold 23 can be adjusted.

つぎに、成形型23の製作方法の一実施例について説明
する。
Next, an embodiment of a method for manufacturing the mold 23 will be described.

第3図は成形型23の製造工程を示しており、まり゛、
型面薄層25を形成するために、細粒の高融点のセラミ
ックス粉21と、低融点のセラミックス扮22とを、適
度な粘度と可塑性を17るための粘結剤、可塑剤等を添
加して十分に混合し、泥漿状の試料を得る。
Figure 3 shows the manufacturing process of the mold 23.
In order to form a mold surface thin layer 25, fine grained high melting point ceramic powder 21 and low melting point ceramic powder 22 are added with a binder, plasticizer, etc. to achieve appropriate viscosity and plasticity. Mix thoroughly to obtain a slurry-like sample.

つぎに、第4図に示すように、前工程で得た泥漿状の試
料29を、型枠30にセラ1〜された型モデル31に流
し込み振動鋳込み成形をし、’l rTl rTl程度
の薄層を形成させ、これを次工程で破壊されない程度に
半固化させる。
Next, as shown in FIG. 4, the slurry-like sample 29 obtained in the previous step is poured into a mold model 31 which has been molded into a mold frame 30, and subjected to vibration casting to form a thin film of about 'l rTl rTl. A layer is formed and this is semi-solidified to the extent that it will not be destroyed in the next process.

つぎに、背部補強層26を形成するために、粗粒の高融
点のセラミックス粉21と、低融点のセラミックスI)
22とを、適度な粘度と可塑性を得るための粘結剤、可
塑剤等を添加して十分に混合し、泥漿状の試料を得る。
Next, in order to form the back reinforcing layer 26, coarse grained high melting point ceramic powder 21 and low melting point ceramic powder I) are used.
A binder, a plasticizer, etc. are added to obtain a suitable viscosity and plasticity, and the mixture is thoroughly mixed to obtain a slurry-like sample.

つぎに、第5図に示すように、前工程で半固化ざUた型
面薄層25に泥漿状の試料32を流し込んで振動鋳込み
成形をし、可塑性が失なわれない程度に乾燥して脱型さ
せる。この脱型して得たものを、酸化雰囲気中で焼成し
て成形型23を得る。
Next, as shown in FIG. 5, a slurry-like sample 32 is poured into the semi-solidified grain-shaped surface thin layer 25 in the previous step and subjected to vibration casting, and dried to the extent that the plasticity is not lost. Remove the mold. The demolded product is fired in an oxidizing atmosphere to obtain a mold 23.

なお、適度な粘度と可塑性を得るための粘結剤、可塑剤
等は、焼成時に焼却する成分であり、粘結剤としてはブ
チラール樹脂等、可塑剤としてはフタル酸エステル等が
適当である。
Incidentally, the binder, plasticizer, etc. for obtaining appropriate viscosity and plasticity are components that are incinerated during firing, and suitable binders include butyral resin, and suitable plasticizers include phthalate esters.

以上のような成形方法により、型−[デル31からの転
写性や再現性が良好なものが得られ、また十分な強度を
有する成形型23が得られる。
By the above-described molding method, a mold 23 having good transferability and reproducibility from the mold 31 and sufficient strength can be obtained.

つぎに、本発明を各種成形方法に適用した場合のより具
体的な実施例について説明する。
Next, more specific examples in which the present invention is applied to various molding methods will be described.

第6図は、真空成形に適用した実施例を示しており、真
空ポンプからのガス吸引41によって、型面薄層25a
と背部補強層26aを有する成形型23a内のガスが型
面仝休より排出され、それによって熱によって軟化した
樹脂シート42が型面に均一に吸着されて成形される。
FIG. 6 shows an embodiment applied to vacuum forming, in which the mold surface thin layer 25a is removed by gas suction 41 from a vacuum pump.
The gas in the mold 23a having the back reinforcing layer 26a is discharged from the mold surface, whereby the resin sheet 42 softened by heat is uniformly adsorbed to the mold surface and molded.

これによれば、樹脂シート42は型面仝休に吸着して型
の凹凸が転写されるため、微細で複21[な形状も転写
される。なお、43は型枠、44はクランプを示してい
る。
According to this, the resin sheet 42 is attracted to the rest of the mold surface and the unevenness of the mold is transferred, so that even fine and complex shapes are transferred. Note that 43 indicates a formwork, and 44 indicates a clamp.

第7図はブロー成形に本発明を適用した実施例を示して
おり、熱によって軟化させた筒状の樹脂パリソン51を
型面薄層25bと背部補強層26bを有する成形型23
bによってはさみこみ、その内部にさした法則針52を
通してガスを吹き込むことによって、袋状に樹脂51を
ふくらませて成形される。
FIG. 7 shows an embodiment in which the present invention is applied to blow molding, in which a cylindrical resin parison 51 softened by heat is placed in a mold 23 having a mold surface thin layer 25b and a back reinforcing layer 26b.
The resin 51 is inflated and molded into a bag shape by inserting the resin 51 into the bag and blowing gas through the regular needle 52 inserted into the inside thereof.

この1易合、袋状の樹脂51aと成形型23bとの間に
あるガスは、成形型23bの型面全体より排出されるた
め、袋状の樹脂51aは角の部分もぎれいに転写するこ
とができる。な、r3.53は型枠、54は扱かれるガ
スを示している。
In this case, the gas between the bag-shaped resin 51a and the mold 23b is discharged from the entire mold surface of the mold 23b, so that the bag-shaped resin 51a can be neatly transferred even at the corners. I can do it. Note that r3.53 indicates the formwork, and 54 indicates the gas to be handled.

第8図は割出成形に本発明を適用した実施例を示してお
り、流動性をもたせた樹脂等の+A利61を、型面薄層
25cと背部補強層26cを有する成形型23cに囲ま
れた空間にノズル62からスプール63を通して射出す
ることによって成形される。
FIG. 8 shows an embodiment in which the present invention is applied to index molding, in which a +A material 61 made of fluidized resin or the like is surrounded by a mold 23c having a thin mold surface layer 25c and a back reinforcing layer 26c. It is molded by injecting it from a nozzle 62 into a spool 63.

この場合、成形型23C内に残されたガスや1か1脂等
にとりこまれたガスが、成形型23Gの型面全体から排
出されるため、成形品の表面にピンボールや巣ができす
、きれいな転写かでさる。なお、64は型枠、65は排
出されるガスを示している。
In this case, the gas remaining in the mold 23C or the gas trapped in one or more fats is discharged from the entire surface of the mold 23G, causing pinballs or cavities to form on the surface of the molded product. , a beautiful transcription. In addition, 64 shows a formwork, and 65 shows the gas discharge|emitted.

なお、以上は本発明の代表的な実施例を示したものであ
り、本発明はこれらに限定されるものではない。たとえ
ば、本発明は、溶融金属、ゴム、ガラスおるいは−[ル
タル、に1[りなどの溶融状または軟化した可塑物質を
、空隙を右する型を用いで、千力流し込み、加圧流入あ
るいは塑性流動を伴なう方法などにより成形する方法で
脱気、脱水性が゛要求される成形型にも適用可能である
Note that the above-mentioned examples are representative examples of the present invention, and the present invention is not limited thereto. For example, in the present invention, molten metal, rubber, glass, or a molten or softened plastic material such as rutal or nitric acid is poured into the mold using a mold with a gap, and the material is poured under pressure. Alternatively, it can also be applied to molds that require degassing and dewatering properties in molding methods that involve plastic flow.

[発明の効果] 以上説明したJ:うに、本発明の通気性を有する成形型
によるときは、成形型を高融点のセラミックス扮と低融
点のセラミックス粉を用いて焼成した多孔質構造の複合
焼結体から構成したので、耐熱性は勿論のこと十分な強
度を有する成形型を得ることができ、かつ微細で複雑な
形状に対しても良好な転写性を有することができるとい
う効果が’1qられる。
[Effects of the Invention] When using the air-permeable mold of the present invention as described above, the mold is a composite sintered mold with a porous structure fired using a high-melting point ceramic material and a low-melting point ceramic powder. Since it is composed of a solid body, it is possible to obtain a mold that has sufficient strength as well as heat resistance, and has the advantage of being able to have good transferability even for minute and complex shapes. It will be done.

また、型面仝休に十分に良好な通気性を有しているので
、成形型内や成形何科中の気体を容易にかつ均一に除去
することができ、微細で複雑な形状の意匠面等を有する
ものに対しても容易に成形することか可能になるという
効果も得られる。
In addition, it has sufficiently good air permeability to prevent the mold surface from drying, making it possible to easily and uniformly remove gas inside the mold and during the molding process, allowing the design surface of fine and complex shapes to be easily and evenly removed. Another effect is that it becomes possible to easily mold objects having the following properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る通気性を有する成形型
の断面図、 第2図は第1図の成形型の内部組織を示す部分拡大断面
図、 第3図は第1図の成形型を176だめの製造工程のノロ
−図、 第4図は第3図のフロー中の一工程を示す製造過程にJ
5ける装置の断面図、 第5図は第3図のフロー中の一工程を示1製逍過程にお
ける装置の断面図、 第6図は本発明を真空成形に適用した場合の成形型の断
面図、 第7図は本発明をブロー成形に適用した場合の成形型の
断面図、 第8図は本発明を射出成形に適用した場合の成形型の断
面図、 第9図(イ)(ロ)は従来の真空成形に用いる成形型の
断面図、 第10図(イ)(ロ)は従来のブロー成形に用いる成形
型の断面図、 第11図(イ)(ロ)は従来の射出成形に用いる成形型
の断面図、 でおる。 21・・・・・・高融点のセラミックス粉22・・・・
・・低融点のセラミックス粉23.23a、23b、2
3 G−・−・成形型24・・・・・・気孔 25.25a、25b、25 c −・−・を面薄層2
6.26a、26b、26G・・・・・・背部補強層2
7・・・・・・型枠 2B・・・・・・穴 29.32・・・・・・泥漿状の試料 30・・・・・・型枠 31・・・・・・型ヒデル 42・・・・・・樹脂シート 51・・・・・・樹脂パリソン 62・・・・・・ノズル 63・・・・・・スプール 第6図 230 +1’l: It智1 第7図
FIG. 1 is a cross-sectional view of a breathable mold according to an embodiment of the present invention, FIG. 2 is a partially enlarged cross-sectional view showing the internal structure of the mold shown in FIG. 1, and FIG. 3 is a cross-sectional view of the mold shown in FIG. Figure 4 is a flow diagram of the manufacturing process of 176 molds.
Figure 5 is a cross-sectional view of the apparatus in step 1 of the manufacturing process shown in Figure 3. Figure 6 is a cross-sectional view of the mold when the present invention is applied to vacuum forming. Figure 7 is a cross-sectional view of a mold when the present invention is applied to blow molding, Figure 8 is a cross-sectional view of a mold when the present invention is applied to injection molding, and Figure 9 (a) is a cross-sectional view of a mold when the present invention is applied to injection molding. ) is a cross-sectional view of a mold used in conventional vacuum forming, Figures 10 (a) and (b) are cross-sectional views of a mold used in conventional blow molding, and Figures 11 (a) and (b) are cross-sectional views of a mold used in conventional injection molding. A cross-sectional view of the mold used for this. 21... Ceramic powder with high melting point 22...
...Low melting point ceramic powder 23.23a, 23b, 2
3 G--Molding mold 24... Pores 25.25a, 25b, 25c--The thin layer 2
6.26a, 26b, 26G... Back reinforcement layer 2
7... Formwork 2B... Hole 29. 32... Slime sample 30... Formwork 31... Mold hidden 42. ... Resin sheet 51 ... Resin parison 62 ... Nozzle 63 ... Spool Fig. 6 230 +1'l: Itchi 1 Fig. 7

Claims (3)

【特許請求の範囲】[Claims] (1)高融点のセラミックス粉と低融点のセラミックス
粉を主成分とし、これに焼成時に焼却する成分を焼成前
における粘結剤として含む泥漿状の試料を、成形して前
記低融点のセラミックス粉か焼結する温度で焼成した焼
成体からなり、該焼成体は、前記高融点のセラミックス
粉が骨材となり前記低融点のセラミックス粉が焼結して
前記高融点のセラミックス粉間をつなぐ結合材となる骨
格を有し、該骨格により型全体として多孔質構造になっ
ていることを特徴とする通気性を有する成形型。
(1) A slurry-like sample containing a high melting point ceramic powder and a low melting point ceramic powder as main components and a component to be incinerated during firing as a binder before firing is molded into the low melting point ceramic powder. The fired body is composed of a fired body fired at a calcination temperature, and the fired body has the high melting point ceramic powder as an aggregate, the low melting point ceramic powder is sintered, and a binding material that connects the high melting point ceramic powder. What is claimed is: 1. A mold with air permeability, characterized in that the mold has a skeleton as follows, and the skeleton provides a porous structure as a whole.
(2)前記焼成体を、成形型の型面を形成する型面薄層
と該型面薄層の背面側に位置する背部補強層との積層構
造に構成し、前記型面薄層には細粒の前記高融点のセラ
ミックス粉を用いるとともに前記背部補強層には粗粒の
前記高融点のセラミックス粉を用いた特許請求の範囲第
1項記載の通気性を有する成形型。
(2) The fired body is configured to have a laminated structure of a mold surface thin layer forming the mold surface of the mold and a back reinforcing layer located on the back side of the mold surface thin layer, and the mold surface thin layer is 2. The air-permeable mold according to claim 1, wherein the fine-grained ceramic powder with a high melting point is used, and the back reinforcing layer uses the coarse-grained ceramic powder with a high melting point.
(3)前記焼成体が酸化雰囲気中で焼成されたものであ
る特許請求の範囲第1項記載の通気性を有する成形型。
(3) The mold having air permeability according to claim 1, wherein the fired body is fired in an oxidizing atmosphere.
JP26838085A 1985-11-30 1985-11-30 Molding tool having permeability Pending JPS62128711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26838085A JPS62128711A (en) 1985-11-30 1985-11-30 Molding tool having permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26838085A JPS62128711A (en) 1985-11-30 1985-11-30 Molding tool having permeability

Publications (1)

Publication Number Publication Date
JPS62128711A true JPS62128711A (en) 1987-06-11

Family

ID=17457683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26838085A Pending JPS62128711A (en) 1985-11-30 1985-11-30 Molding tool having permeability

Country Status (1)

Country Link
JP (1) JPS62128711A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR890100688A (en) * 1988-10-25 1990-11-29 Hartmann As Brdr Construction of moulded plastic objects
JPH0315118U (en) * 1989-06-22 1991-02-15
US5064597A (en) * 1988-03-30 1991-11-12 General Electric Company Method of compression molding on hot surfaces
GR890100465A (en) * 1988-07-21 1991-12-10 Hartmann As Brdr Moulding and method for producing moulded objects
EP2357070A1 (en) * 2010-02-12 2011-08-17 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Injection moulding method for condensation resins and device for the method
JP2016199026A (en) * 2015-04-10 2016-12-01 株式会社松浦機械製作所 Resin injection molding die

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064597A (en) * 1988-03-30 1991-11-12 General Electric Company Method of compression molding on hot surfaces
GR890100465A (en) * 1988-07-21 1991-12-10 Hartmann As Brdr Moulding and method for producing moulded objects
GR890100688A (en) * 1988-10-25 1990-11-29 Hartmann As Brdr Construction of moulded plastic objects
JPH0315118U (en) * 1989-06-22 1991-02-15
EP2357070A1 (en) * 2010-02-12 2011-08-17 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Injection moulding method for condensation resins and device for the method
JP2016199026A (en) * 2015-04-10 2016-12-01 株式会社松浦機械製作所 Resin injection molding die

Similar Documents

Publication Publication Date Title
JPH026620B2 (en)
US20050252631A1 (en) Ceramic article and method of manufacture therefor
JPH05254914A (en) Method for making sintered body
JPS62128711A (en) Molding tool having permeability
JP3240023B2 (en) Manufacturing method of durable air-permeable type
JP2851293B2 (en) Heterogeneous porous mold for mold production from foundry sand and method for producing the same
JP4671501B2 (en) Lightweight ceramic member and manufacturing method thereof
JPS60162623A (en) Blow molding mold and manufacture of master used thereto
JP4079533B2 (en) Ceramic molding body sealing method, ceramic molded body sealing apparatus, porous ceramic member manufacturing method, and ceramic filter manufacturing method
JP2003137670A (en) Porous body having continuous pores and method of producing the same
JPH01210306A (en) Forming mold of slurry-like material and manufacture thereof
JPH0663684A (en) Production of ceramic core for casting
JP2614749B2 (en) Manufacturing method of porous metal body
JPS63221010A (en) Molding die, molding method of article by using said die and pressure casting molding method
JPH07113103A (en) Production of gas permeable compact
JP2000272980A (en) Porous material having continuous pore and its production
JPH08244018A (en) Mold of hydraulic inorganic molded article
JPS60206608A (en) Gas-permeable mold
JPH0566907B2 (en)
JPS60206609A (en) Gas-permeable mold
JP2003128477A (en) Method of manufacturing porous layered ceramic
JPS6167703A (en) Production of porous metallic pattern
JPS616183A (en) Air permeable bent plug
JPH0336611B2 (en)
JPH0157970B2 (en)