JP2003128477A - Method of manufacturing porous layered ceramic - Google Patents

Method of manufacturing porous layered ceramic

Info

Publication number
JP2003128477A
JP2003128477A JP2001325745A JP2001325745A JP2003128477A JP 2003128477 A JP2003128477 A JP 2003128477A JP 2001325745 A JP2001325745 A JP 2001325745A JP 2001325745 A JP2001325745 A JP 2001325745A JP 2003128477 A JP2003128477 A JP 2003128477A
Authority
JP
Japan
Prior art keywords
slurry
pore size
bubble
size distribution
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001325745A
Other languages
Japanese (ja)
Inventor
Motohiro Umetsu
基宏 梅津
Shinya Sato
伸也 佐藤
Norikazu Sashita
則和 指田
Tatsuya Shiogai
達也 塩貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2001325745A priority Critical patent/JP2003128477A/en
Publication of JP2003128477A publication Critical patent/JP2003128477A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing porous layered ceramics having a multiple pore size distribution, where its strength does not deteriorate by peeling of the layer is. SOLUTION: Slurries containing pores with different pore size distributions are prepared by mixing a ceramic powder, a solvent, a dispersant, a surfactant, and a thermosetting resin as a binder. Then, the slurries are cast into a mold in order of the pore size distributions from a small to a large, heated with the mold, dried and fired.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質セラミック
ス積層体の製造方法に関するもので、さらに詳しくは、
気孔を含む前駆体を用いて異なる多孔度の層により積層
された多孔質セラミックスを製造する方法に関するもの
である。このような多孔質セラミックス層からなる積層
体の用途としては、流体フィルター、触媒担体や固体電
極燃料電池用電極材などが挙げられる。
TECHNICAL FIELD The present invention relates to a method for producing a porous ceramic laminate, and more specifically,
The present invention relates to a method for producing a porous ceramic in which layers having different porosities are laminated using a precursor containing pores. Examples of applications of the laminated body composed of such a porous ceramics layer include a fluid filter, a catalyst carrier and an electrode material for a solid electrode fuel cell.

【0002】[0002]

【従来の技術】従来、多孔質セラミックスの製造方法と
しては、加圧成形などで作製した成形体の気孔を低温焼
結により制御する方法、セラミックススラリー中に気孔
の基となる有機物を添加し、脱脂により有機物を除去し
気孔を形成する方法、セラミックススラリーを、開気孔
を有する有機物からなるスポンジに含浸させる方法など
が提案されているが、一方、その積層体は、比較的大き
な粒径と比較的狭い細孔径分布を有する成形体を形成
し、その成形体を部分的に焼結して、互いに連結した粒
体間に気孔を形成した網状構造を与えて作製されてい
る。
2. Description of the Related Art Conventionally, as a method for producing porous ceramics, a method of controlling the pores of a compact produced by pressure molding or the like by low-temperature sintering, or adding an organic substance which is the basis of the pores into a ceramic slurry, Methods such as degreasing to remove organic matter to form pores, and a method of impregnating a ceramic slurry with a sponge made of organic matter having open pores have been proposed. It is produced by forming a compact having a narrow pore size distribution, and partially sintering the compact to give a network structure in which pores are formed between interconnected grains.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、気孔の形や大きさを制御することは困難で
あり、多孔度は限られた範囲でしか得ることができな
い。また、低温焼結により多孔度を制御する方法では、
焼結体が緻密質ではないため、曲げ強さや破壊強度など
が低いという問題があった。また、有機物を多孔質前駆
体として用いる多孔質セラミックス積層体を製造する方
法では、脱脂で除去する有機物量が多く、しばしば変形
や破壊をもたらすという問題があった。
However, in the above-mentioned prior art, it is difficult to control the shape and size of the pores, and the porosity can be obtained only in a limited range. Further, in the method of controlling porosity by low temperature sintering,
Since the sintered body is not dense, there is a problem that bending strength and breaking strength are low. Further, the method for producing a porous ceramics laminate using an organic substance as a porous precursor has a problem that a large amount of the organic substance is removed by degreasing, which often causes deformation or destruction.

【0004】このような問題を解決するために、特許2
802196号において、最終的に異なる気孔率を有す
る多孔質体を生じるように原料・配合を調整した2種類
の坏土を積層押出成形する方法も提案されている。しか
しながら、このような積層体では不連続面が生じること
から、剥離などにより強度が低下するなどの問題があ
る。
In order to solve such a problem, Patent Document 2
No. 802196 proposes a method of laminating and extruding two types of kneaded materials in which raw materials and blends are adjusted so as to finally produce porous bodies having different porosities. However, in such a laminated body, a discontinuous surface is generated, so that there is a problem that the strength is lowered due to peeling or the like.

【0005】本発明は、かかる事情に鑑みなされたもの
であって、曲げ強さや破壊強度などが高く、剥離などに
より強度が低下せず、多段階の気孔径分布を有する多孔
質セラミックス積層体の製造方法を提供することを目的
とする。
The present invention has been made in view of the above circumstances and provides a porous ceramics laminate having a high flexural strength, a high breaking strength, etc., the strength does not decrease due to peeling and the like, and has a multi-stage pore size distribution. It is intended to provide a manufacturing method.

【0006】[0006]

【課題を解決するための手段】前記した目的は、全体が
均質なセラミックスからなる多孔質セラミックス積層体
の製造方法であって、セラミックス粉末と溶媒と分散剤
と界面活性剤とさらにバインダーとして熱硬化性樹脂と
を混合・攪拌することにより含気泡スラリーを調整する
工程と、前記界面活性剤の種類および添加量を制御する
ことにより前記スラリーと気孔径分布が異なる1以上の
含気泡スラリーを調整する工程と、前記2以上の含気泡
スラリーをその気孔径分布が小さい順に溶媒を吸収しな
い成形型へ注入する工程と、型ごと加熱し硬化させる工
程と、得られた硬化体を乾燥する工程と、焼成する工程
とを含むことを特徴とする多孔質セラミックス積層体の
製造方法により達成される。
The above-mentioned object is a method for producing a porous ceramics laminated body which is composed entirely of homogeneous ceramics, and is thermosetting as a ceramics powder, a solvent, a dispersant, a surfactant and a binder. Of a bubble-containing slurry by mixing and stirring a water-soluble resin and one or more bubble-containing slurries having different pore size distributions from the slurry by controlling the type and addition amount of the surfactant. A step of injecting the above-mentioned two or more air-containing slurries into a mold that does not absorb a solvent in the ascending order of pore size distribution, a step of heating and curing each mold, and a step of drying the obtained cured body, And a step of firing the porous ceramics laminate.

【0007】また、本発明の目的は、前記含気泡スラリ
ー中のセラミックス粉末の含有量が30容量%〜60容
量%であり、かつ、該スラリーと気孔径分布の異なる含
気泡スラリーのセラミックス粉末の含有量とが略同等と
する多孔質セラミックス積層体の製造方法によっても達
成される。
Another object of the present invention is to provide a ceramic powder of a bubble-containing slurry, wherein the content of the ceramic powder in the bubble-containing slurry is 30% by volume to 60% by volume and the pore size distribution is different from that of the slurry. It can also be achieved by a method for producing a porous ceramics laminate having a content substantially equal to the content.

【0008】[0008]

【発明の実施の形態】以下に、本発明の実施形態を詳細
に説明する。本発明において、原料となるセラミックス
粉末としては、アルミナ、ジルコニア、イットリア等の
酸化物の他、窒化ケイ素、サイアロン、炭化ケイ素等の
非酸化物も使用することができる。また、溶媒は、熱硬
化性樹脂を溶解するものであれば特に限定するものでは
ないが、環境安全上及び健康上の配慮を必要とせず、ま
た、有機溶剤回収装置などの装置を必要としない水が望
ましい。分散剤としては、ポリカルボン酸アンモニウム
等のアルカリ性分散剤や酢酸等の酸性分散剤など、使用
するバインダーの適応性にあわせて使用すれば、どのよ
うなものでも良い。次に、界面活性剤としては、要望さ
れる気孔径分布または気孔率によって、陰イオン類とし
てジオクチルスルホコハク酸塩やアルキルサルファート
塩、非イオン類としてアルキルフェノール等を用いるこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. In the present invention, as the raw material ceramic powder, in addition to oxides such as alumina, zirconia and yttria, non-oxides such as silicon nitride, sialon and silicon carbide can be used. The solvent is not particularly limited as long as it dissolves the thermosetting resin, but does not require environmental safety and health considerations, and does not require a device such as an organic solvent recovery device. Water is preferred. Any dispersant may be used, such as an alkaline dispersant such as ammonium polycarboxylate or an acidic dispersant such as acetic acid, as long as it is used according to the adaptability of the binder used. Next, as the surfactant, dioctylsulfosuccinate or alkylsulfate salt as anions and alkylphenol or the like as nonions can be used depending on the desired pore size distribution or porosity.

【0009】バインダーとして用いる熱硬化性樹脂の種
類としては、熱硬化する高分子ポリマーであれば何でも
よく、例えば、エポキシ樹脂、アクリル樹脂、フェノー
ル樹脂、ユリア樹脂、メラミン樹脂等が挙げられる。ま
た、これらの単量体でも構わない。さらに、高分子ポリ
マーを組み合わせた複合体、あるいは単量体を組み合わ
せた複合体、もしくは高分子ポリマーと単量体を組み合
わせた複合体などであってもいずれも差し支えない。こ
こで、さらに好ましい実施形態として、1種以上の高分
子ポリマー、または、それらの単量体であることが良
い。
The thermosetting resin used as the binder may be any kind of thermosetting polymer such as an epoxy resin, an acrylic resin, a phenol resin, a urea resin and a melamine resin. Also, these monomers may be used. Further, a composite of a combination of high molecular weight polymers, a composite of a combination of monomers, or a composite of a combination of high molecular weight polymers and monomers may be used. Here, as a further preferred embodiment, one or more high molecular polymers or their monomers may be used.

【0010】また、成形型は、スラリー中の溶媒を吸収
しなければ、どのような材質でも問題ないが、バインダ
ーとして用いるバインダーの種類によっては、空気中の
酸素と反応して未硬化層を形成するため、空気を透過し
ないステンレス等の金属類、または化学安定性の高いフ
ッ素系樹脂等が好ましい。
The mold may be made of any material as long as it does not absorb the solvent in the slurry. However, depending on the kind of binder used as the binder, it reacts with oxygen in the air to form an uncured layer. Therefore, metals such as stainless steel that does not allow air to pass through, or fluorine-based resins having high chemical stability are preferable.

【0011】次に、本発明の製造方法をさらに具体的に
述べると、セラミックス粉末に、溶媒、分散剤、界面活
性剤を加え、それにバインダーとしてエポキシ樹脂等の
熱硬化性樹脂を加え、必要があればそれにさらに硬化を
助ける反応開始剤や硬化剤を添加して混合し、セラミッ
クス粉末の含有量が30〜60容量%のスラリーを調製
する。ここで、セラミックス粉末の含有量を30容量%
以上のスラリーとする理由は、セラミックス粉末の含有
量が、30容量%未満であると、乾燥時の成形体の収縮
が大きく乾燥割れが発生する恐れがあり、好ましくない
からである。また、セラミックス粉末の含有量が60容
量%を超えると、スラリー粘度が著しく増加し、スラリ
ーの調整が困難であるだけでなく、スラリー内へ均一に
気泡を発生させることができなくなるため好ましくな
い。
Next, the production method of the present invention will be described in more detail. To the ceramic powder, a solvent, a dispersant, and a surfactant are added, and a thermosetting resin such as an epoxy resin is added as a binder. If any, a reaction initiator or a curing agent that aids in curing is added thereto and mixed to prepare a slurry having a ceramic powder content of 30 to 60% by volume. Here, the content of the ceramic powder is 30% by volume.
The reason for using the above-mentioned slurry is that if the content of the ceramic powder is less than 30% by volume, the molded body during shrinking may greatly contract and drying cracks may occur, which is not preferable. On the other hand, if the content of the ceramic powder exceeds 60% by volume, the viscosity of the slurry is remarkably increased, it is difficult to adjust the slurry, and it is not possible to uniformly generate bubbles in the slurry, which is not preferable.

【0012】また、積層体を作製する際は、各含気泡ス
ラリーのセラミックス粉末の含有量を同等にする必要が
ある。これは、乾燥の際に、積層界面に乾燥収縮の差異
による応力が発生するため、硬化体が剥離、破損し好ま
しくないからである。
Further, when producing the laminated body, it is necessary to make the content of the ceramic powder in each of the air-containing slurries equal. This is because a stress is generated at the interface of the laminate due to the difference in drying shrinkage at the time of drying, so that the cured body is peeled off and damaged, which is not preferable.

【0013】以上のように、調整したスラリーを真空脱
気しながら、攪拌羽により攪拌することにより、スラリ
ー内に気泡を発生させることにより本発明に用いる含気
泡スラリーが得られる。
As described above, the prepared slurry is vacuum-degassed and stirred by stirring blades to generate bubbles in the slurry to obtain the bubble-containing slurry used in the present invention.

【0014】以下に、本発明の積層体を作製する手順を
模式図と実施例により具体的に説明する。 含気泡スラリーの調製 アルミナ粉末100重量部に、溶媒として水15重量部
と、これにポリカルボン酸系の分散剤を1重量部と、メ
タクリルアミド系のバインダーを 6重量部と、硬化剤
として過硫酸アンモニウムを0.05重量部と、アニ
オン系界面活性剤であるジオクチルスルホコハク酸塩と
を添加して配合し 、25℃、16時間ポットミルで混
合した後、真空中で攪拌羽にて攪拌し てアルミナ粉末
を52容量%含有し、気孔径分布が60〜180mmで
あ る含気泡スラリーを調製した。
The procedure for producing the laminate of the present invention will be specifically described below with reference to schematic diagrams and examples. Preparation of Aerated Slurry 100 parts by weight of alumina powder, 15 parts by weight of water as a solvent, 1 part by weight of a polycarboxylic acid-based dispersant, 6 parts by weight of a methacrylamide binder and 1 part by weight of a curing agent. 0.05 parts by weight of ammonium sulfate and
Dioctyl sulfosuccinate, which is an on-type surfactant, was added and blended, mixed at 25 ° C. for 16 hours in a pot mill, and then stirred in a vacuum with a stirring blade to contain 52% by volume of alumina powder. A bubble-containing slurry having a pore size distribution of 60 to 180 mm was prepared.

【0015】気孔径分布の異なる含気泡スラリーの調製 前記と同様の方法で、ノニオン系界面活性剤であるアル
キルフェノールを添加して気孔径分布が60〜480m
mである含気泡スラリーを調製し た。
Preparation of aerated slurries having different pore size distributions In the same manner as described above, a nonionic surfactant, alkylphenol, was added to obtain a pore size distribution of 60 to 480 m.
An aerated slurry having a diameter of m was prepared.

【0016】(3)含気泡スラリーの成形型への注型 図1に示すように、アニオン系界面活性剤を添加したス
ラリーを70×100×40mmの大きさの成形体が得
られるステンレス製の型1に注入して層2を形成した
後、ノニオン系界面活性剤を添加したスラリーをゆっく
りと型に注入して層3を形成した。次に、スラリー中の
水分の蒸発を抑える食用油を50mlを流し込んだ。
(3) Casting of Air-Containing Slurry into Molding Mold As shown in FIG. 1, a slurry containing an anionic surfactant is used to obtain a molded product of 70 × 100 × 40 mm, which is made of stainless steel. After injecting into the mold 1 to form the layer 2, the slurry containing the nonionic surfactant was slowly injected into the mold to form the layer 3. Next, 50 ml of edible oil that suppresses evaporation of water in the slurry was poured.

【0017】(4)硬化、脱型、乾燥および焼結 型ごと70℃で2時間加熱しスラリーを硬化させた。得
られた硬化体を脱型した後、室温で4日間乾燥し、これ
を10℃/hで昇温し、450℃で3時間保持して脱脂
し、1600℃で3時間保持して焼成して多孔質セラミ
ックス積層体を作製した。なお、本実施例では、積層数
が2層の場合について説明したが、積層数には制限が無
く、何層にも及ぶ積層硬化体の作製が可能である。
(4) Curing, demolding, drying, and sintering The mold was heated at 70 ° C. for 2 hours to cure the slurry. After demolding the obtained cured product, it was dried at room temperature for 4 days, heated at 10 ° C./h, held at 450 ° C. for 3 hours to degrease, and held at 1600 ° C. for 3 hours to be baked. To produce a porous ceramics laminate. In this embodiment, the case where the number of laminated layers is 2 has been described, but the number of laminated layers is not limited, and it is possible to manufacture a laminated cured body having many layers.

【0018】(5)評価 得られた焼成体を切断し、切断面の気孔の分散状態を光
学顕微鏡で調べた。その結果、アニオン系界面活性剤を
添加したスラリーから得られた気孔径分布50〜150
mmの層(以下、層Aと略記する。)と、ノニオン系界
面活性剤を添加したスラリーから得られた50〜400
mmの層(以下、層Bと略記する。)が円滑な接合状態
であり、かつ、各層の気孔は均一に分散していた。次
に、得られた焼成体の各層をアルキメデス法で評価した
結果、層Aの嵩比重は1.80で、気孔率は70%であ
り、層Bの嵩比重は1.80で、気孔率は55%であっ
た。また、焼成収縮は、16〜17%で、緻密体の収縮
率とほぼ同じであった。次に、また、層Aおよび層Bの
曲げ強度を測定した結果、層Aは34MPa、層Bは1
8MPaと高強度であった。
(5) Evaluation The obtained fired body was cut, and the dispersed state of the pores on the cut surface was examined by an optical microscope. As a result, the pore size distribution obtained from the slurry to which the anionic surfactant was added was 50 to 150.
mm-layer (hereinafter abbreviated as layer A) and a slurry obtained by adding a nonionic surfactant to 50 to 400.
The mm layer (hereinafter abbreviated as layer B) was in a smoothly joined state, and the pores of each layer were uniformly dispersed. Next, as a result of evaluating each layer of the obtained fired body by the Archimedes method, the bulk specific gravity of the layer A is 1.80, the porosity is 70%, the bulk specific gravity of the layer B is 1.80, and the porosity is Was 55%. Further, the firing shrinkage was 16 to 17%, which was almost the same as the shrinkage rate of the dense body. Next, the bending strengths of the layer A and the layer B were measured again. As a result, the layer A was 34 MPa and the layer B was 1
The strength was as high as 8 MPa.

【0019】[0019]

【発明の効果】以上の通り、本発明にかかる製造方法に
よれば、曲げ強さや破壊強度などが高く、剥離などによ
り強度が低下せず、多段階の気孔径分布を有する多孔質
セラミックス積層体が得られるようになった。このこと
により、多孔質セラミックス積層体を、安価で容易に作
製することができ、効果を有する。
As described above, according to the manufacturing method of the present invention, the bending strength and the breaking strength are high, the strength does not decrease due to peeling and the like, and the porous ceramic laminate has a multi-stage pore size distribution. Has come to be obtained. By this, the porous ceramics laminated body can be easily manufactured at a low cost and has an effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に関わる多孔質セラミックス積
層体の製造方法の模式図である。
FIG. 1 is a schematic diagram of a method for manufacturing a porous ceramics laminate according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 成形型 2 アニオン系界面活性剤を添加して形成したスラリー
層 3 ノニオン系界面活性剤を添加して形成したスラリー
1 Mold 2 Slurry layer formed by adding anionic surfactant 3 Slurry layer formed by adding nonionic surfactant

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩貝 達也 千葉県佐倉市大作2−4−2 太平洋セメ ント株式会社中央研究所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tatsuya Shiogai             2-4-2 Daisaku Sakura City, Chiba Prefecture Pacific Semé             Central Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 全体が均質なセラミックスからなる多孔
質セラミックス積層体の製造方法であって、セラミック
ス粉末と溶媒と分散剤と界面活性剤とさらにバインダー
として熱硬化性樹脂とを混合・攪拌することにより含気
泡スラリーを調整する工程と、前記界面活性剤の種類お
よび添加量を制御することにより前記スラリーと気孔径
分布が異なる1以上の含気泡スラリーを調整する工程
と、前記2以上の含気泡スラリーをその気孔径分布が小
さい順に溶媒を吸収しない成形型へ注入する工程と、型
ごと加熱し硬化させる工程と、得られた硬化体を乾燥す
る工程と、焼成する工程とを含むことを特徴とする多孔
質セラミックス積層体の製造方法。
1. A method for producing a porous ceramics laminate, which is composed entirely of homogeneous ceramics, wherein ceramics powder, a solvent, a dispersant, a surfactant, and a thermosetting resin as a binder are mixed and stirred. And a step of adjusting one or more bubble-containing slurries having a pore size distribution different from that of the slurry by controlling the kind and the addition amount of the surfactant, and the two or more bubble-containing slurries. It is characterized by including a step of injecting the slurry into a molding die that does not absorb the solvent in the order of its pore size distribution being small, a step of heating and curing the whole die, a step of drying the obtained cured body, and a step of firing. And a method for producing a porous ceramics laminate.
【請求項2】 請求項1記載の含気泡スラリー中のセラ
ミックス粉末の含有量が30〜60容量%であり、か
つ、前記スラリーと気孔径分布の異なる含気泡スラリー
のセラミックス粉末の含有量とが略同等であることを特
徴とする請求項1記載の多孔質セラミックス積層体の製
造方法。
2. The content of the ceramic powder in the bubble-containing slurry according to claim 1 is 30 to 60% by volume, and the content of the ceramic powder in the bubble-containing slurry having a pore size distribution different from that of the slurry. The method for producing a porous ceramic laminate according to claim 1, wherein the methods are substantially the same.
JP2001325745A 2001-10-24 2001-10-24 Method of manufacturing porous layered ceramic Pending JP2003128477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325745A JP2003128477A (en) 2001-10-24 2001-10-24 Method of manufacturing porous layered ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325745A JP2003128477A (en) 2001-10-24 2001-10-24 Method of manufacturing porous layered ceramic

Publications (1)

Publication Number Publication Date
JP2003128477A true JP2003128477A (en) 2003-05-08

Family

ID=19142245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325745A Pending JP2003128477A (en) 2001-10-24 2001-10-24 Method of manufacturing porous layered ceramic

Country Status (1)

Country Link
JP (1) JP2003128477A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038751A (en) * 2009-08-18 2011-02-24 Ngk Insulators Ltd Method of manufacturing heat reservoir
KR101131913B1 (en) 2009-02-06 2012-04-03 곽진우 Method for manufaturing light molding product
CN109053214A (en) * 2018-11-15 2018-12-21 广东金意陶陶瓷集团有限公司 A kind of technique and foamed ceramic material of layering system material cloth production foamed ceramic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101131913B1 (en) 2009-02-06 2012-04-03 곽진우 Method for manufaturing light molding product
JP2011038751A (en) * 2009-08-18 2011-02-24 Ngk Insulators Ltd Method of manufacturing heat reservoir
CN109053214A (en) * 2018-11-15 2018-12-21 广东金意陶陶瓷集团有限公司 A kind of technique and foamed ceramic material of layering system material cloth production foamed ceramic

Similar Documents

Publication Publication Date Title
Janssen et al. Tailor-made ceramic-based components—Advantages by reactive processing and advanced shaping techniques
US6576182B1 (en) Process for producing shrinkage-matched ceramic composites
KR100770310B1 (en) Method for producing ceramic sintered body having the shape of curved surface
US20090159853A1 (en) Colloidal templating process for manufacture of highly porous ceramics
WO2022222778A1 (en) Fine ceramic material formed by means of ceramic precursor framework and preparation method therefor and use thereof
CN107266117A (en) The manufacture method of honeycomb structured body and honeycomb structured body
CN103922750B (en) Wear-resistant silicon nitride ceramic material and preparation method thereof
CN105198475A (en) Method for producing complex-shaped porous silicon nitride ceramic product
CN103274693A (en) Porous silicon carbide ceramic provided with novel pore wall structure and preparation method thereof
CN110498673A (en) A kind of mullite crystal whisker enhancing alumina hollow ball porous ceramics preparation method
CN106588073A (en) Process for preparing novel laminated porous ceramic
US8349111B2 (en) Method for joining ceramic components
JP2003128477A (en) Method of manufacturing porous layered ceramic
CN105314996A (en) Method for preparing one-way through porous silicon carbide-silicon ceramic material
CN102173831A (en) Method for preparing lamellar zirconium boride ultrahigh-temperature ceramic through casting method
CN103482981A (en) Preparation method of porous silicon nitride ceramic material
JP2008222500A (en) Porous molding, porous filled molding, method for producing porous molding and method for producing porous filled molding
JP2006334976A (en) Method for producing fine ceramic using ultrasonic waves
JPH1121182A (en) Production of porous ceramic
KR100419778B1 (en) Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering
JPS63288974A (en) Production of fiber reinforced ceramics
JPH08104575A (en) Composite material and its production
CN101244936B (en) Injection mold SiC ceramic preliminary shaping blank method for reinforcing metallic infiltration
JPH0536204B2 (en)
JP2003238267A (en) Method of producing ceramic porous composite member