JPS621284B2 - - Google Patents

Info

Publication number
JPS621284B2
JPS621284B2 JP54098713A JP9871379A JPS621284B2 JP S621284 B2 JPS621284 B2 JP S621284B2 JP 54098713 A JP54098713 A JP 54098713A JP 9871379 A JP9871379 A JP 9871379A JP S621284 B2 JPS621284 B2 JP S621284B2
Authority
JP
Japan
Prior art keywords
tower
desulfurization
conduit
semi
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54098713A
Other languages
Japanese (ja)
Other versions
JPS5624028A (en
Inventor
Kenichi Gomi
Takeo Komuro
Hidetoshi Akimoto
Norio Arashi
Takao Hishinuma
Fumito Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP9871379A priority Critical patent/JPS5624028A/en
Publication of JPS5624028A publication Critical patent/JPS5624028A/en
Publication of JPS621284B2 publication Critical patent/JPS621284B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 本発明はガス脱硫用炭素質固体を再生する乾式
脱硫プラントに係り、特に当該炭素質固体として
半成コークスを反復利用する排煙脱硫プラントに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dry desulfurization plant for regenerating carbonaceous solids for gas desulfurization, and particularly to a flue gas desulfurization plant that repeatedly uses semi-formed coke as the carbonaceous solids.

火力発電所の石炭焚きボイラーや化学工場等か
らの含イオウ排ガスが公害の元凶となつているこ
とは周知のところである。そして従来から種々の
脱硫方法が提案されてきた。
It is well known that sulfur-containing exhaust gases from coal-fired boilers of thermal power plants and chemical factories are the cause of pollution. Various desulfurization methods have been proposed in the past.

脱硫方法はイオウの回収方式によつて2分され
る。一つは排ガス中の酸化イオウと吸収剤(例え
ば石灰)との反応生成物(例えば石膏)を回収す
る方式であり、一つは排ガス中のイオウ化合物を
単体イオウとして回収する方式である。前者は回
収物の処分、特に我が国においては消費地への輸
送や投棄場の確保に難点がある。一方後者は回収
物が少量で済む。
Desulfurization methods are divided into two types depending on the sulfur recovery method. One method is to recover a reaction product (eg, gypsum) between sulfur oxide in exhaust gas and an absorbent (eg, lime), and the other is to recover sulfur compounds in exhaust gas as elemental sulfur. The former has difficulties in disposing of the collected materials, especially in Japan, in transporting them to consumption areas and securing dumping sites. On the other hand, the latter requires only a small amount of recovered material.

単体イオウを回収する方式の脱硫方法には湿式
法と乾式法とがある。前者はアルカリ水溶液にイ
オウ酸化物を吸収させ、この吸収液を処理すると
いう方式であるので、用水量が膨大となる。一方
後者は吸着剤を用いて脱硫し、使用済み吸着剤か
ら吸着物を脱離・還元するという方式であるので
多量の水は要しない。それ由、乾式法は近年特に
脚光を浴びている脱硫技術である。
Desulfurization methods for recovering elemental sulfur include wet methods and dry methods. The former method involves absorbing sulfur oxides into an alkaline aqueous solution and treating this absorbed solution, which requires an enormous amount of water. On the other hand, the latter method uses an adsorbent to desulfurize and remove and reduce adsorbed matter from the used adsorbent, so a large amount of water is not required. For this reason, the dry method is a desulfurization technology that has received particular attention in recent years.

ただし現在までに提案されている乾式法は吸着
剤として活性炭を使用しており、活然炭は高価で
あるから脱硫プラントにかかるランニングコスト
も高くなつている。
However, the dry methods proposed to date use activated carbon as an adsorbent, and since activated carbon is expensive, the running costs of the desulfurization plant are also high.

そこで本発明者等は先に準活性炭とも言うべき
半成コークスを吸着剤として使用する排煙脱硫方
法を提案した(特願昭54−34617号他)。半成コー
クスは石炭を乾留することによつて得られる。従
つて石炭焚きボイラーの排煙脱硫に半成コークス
を利用すればボイラー燃料と同一の原料が利用で
きるのでランニングコストの低減が図れる。
Therefore, the present inventors have previously proposed a flue gas desulfurization method using semi-formed coke, also known as semi-activated carbon, as an adsorbent (Japanese Patent Application No. 34,617/1984, etc.). Semi-formed coke is obtained by carbonizing coal. Therefore, if semi-formed coke is used for flue gas desulfurization in a coal-fired boiler, the same raw material as the boiler fuel can be used, thereby reducing running costs.

一方、火力発電所の石炭焚きボイラーや化学工
場等からの排ガス量は膨大であるため、多くの炭
素質固体を必要とする。従つてこれを再生して繰
り返し使用する方法をとることが望ましい。
On the other hand, since the amount of exhaust gas from coal-fired boilers in thermal power plants, chemical factories, etc. is enormous, a large amount of carbonaceous solids is required. Therefore, it is desirable to regenerate and use it repeatedly.

これらの排ガス中にはイオウ化合物(特にイオ
ウ酸化物)だけでなく、酸素や水素等が共存して
いる為、イオウ化合物は単に炭素質固体の表面に
物理吸着するだけでなく酸素や水素等と反応して
硫酸と化して吸着している。
These exhaust gases contain not only sulfur compounds (especially sulfur oxides) but also oxygen, hydrogen, etc., so sulfur compounds not only physically adsorb onto the surface of carbonaceous solids, but also interact with oxygen, hydrogen, etc. It reacts and turns into sulfuric acid, which is then adsorbed.

SO2+1/2O2+H2O→H2SO4 (1) そこで、硫酸の付着した炭素質固体は、350か
ら450℃に加熱して酸化イオウ(SO2)を脱離し再
生する方法が提案された。
SO 2 +1/2O 2 +H 2 O→H 2 SO 4 (1) Therefore, a method has been proposed in which the carbonaceous solid to which sulfuric acid has adhered is heated to 350 to 450°C to remove sulfur oxide (SO 2 ) and regenerate it. It was done.

H2SO4+1/2C→1/2CO2+H2O+SO2 (2) しかし(2)式のようにSO2の脱離時には化学的に
多量の炭素を消耗し、しかもこの炭素は吸着に寄
与していた活性点であるだけに吸着力の低下を招
く。
H 2 SO 4 +1/2C→1/2CO 2 +H 2 O+SO 2 (2) However, as shown in equation (2), a large amount of carbon is chemically consumed when SO 2 is desorbed, and this carbon contributes to adsorption. This leads to a decrease in adsorption power since it is an active site.

この対策として特公昭48−6027号公報記載の技
術がある。この技術では炭素質固体の再生に際し
少くとも一酸化炭素か水素ガスのいずれかを炭素
質固体に加熱接触させ、SO2の脱離を図つてい
る。本方法によれば(2)式の反応が生じなければ炭
素質固体の活性点を除去することなく脱離再生が
可能になると推測されるが、相変わらず250から
450℃という温度条件が必要であるから活性点の
消耗は免れない。まして強度・性状共に活性炭よ
りも劣る半成コークスの再生に適用するならば尚
更のことである。加えてこれら賦活用のガスを他
から供給する必要があり、再生の為にかえつてラ
ンニングコストが上昇してしまうという欠点があ
る。
As a countermeasure to this problem, there is a technique described in Japanese Patent Publication No. 48-6027. In this technology, when regenerating a carbonaceous solid, at least either carbon monoxide or hydrogen gas is heated and brought into contact with the carbonaceous solid to remove SO 2 . According to this method, if the reaction of equation (2) does not occur, it is presumed that desorption regeneration is possible without removing the active sites of the carbonaceous solid, but as usual, from 250
Since a temperature condition of 450°C is required, depletion of active sites is inevitable. This is especially true if it is applied to the regeneration of semi-formed coke, which is inferior in both strength and properties to activated carbon. In addition, it is necessary to supply the gas for reuse from another source, which has the drawback of increasing running costs due to regeneration.

本発明の目的は炭素質固体の寿命を低コストで
維持できる乾式脱硫プラントを提供するにある。
An object of the present invention is to provide a dry desulfurization plant that can maintain the life of carbonaceous solids at low cost.

本発明は、排ガス中の酸化イオウを炭素質固体
によつて硫酸として吸着する脱硫塔、前記硫酸を
吸着した炭素質固体を所定の温度に加熱し吸着し
た硫酸を酸化イオウとして脱離する脱離塔、前記
硫酸を二酸化イオウとして脱離した前記炭素質固
体を所定の温度に加熱し、前記脱離した二酸化イ
オウと反応させ元素状硫黄を形成する転換塔、及
び前記元素状硫黄を回収する硫黄回収器を備えた
乾式脱硫プラントであつて、前記脱離塔で硫酸を
除去した前記炭素質固体の一部を前記脱硫塔に供
給する導管を有するとともに前記硫黄を除去した
前記炭素質固体の残部を前記転換塔に供給する導
管を有し、かつ前記転換塔で前記二酸化イオウに
さらされた前記炭素質固体を前記脱硫塔に供給す
る導管を有することを特徴とする乾式脱硫プラン
トにある。
The present invention provides a desulfurization tower that adsorbs sulfur oxide in exhaust gas as sulfuric acid by a carbonaceous solid, and a desulfurization tower that heats the carbonaceous solid that has adsorbed sulfuric acid to a predetermined temperature and desorbs the adsorbed sulfuric acid as sulfur oxide. a conversion column for heating the carbonaceous solid from which the sulfuric acid has been desorbed as sulfur dioxide to a predetermined temperature and reacting with the desorbed sulfur dioxide to form elemental sulfur; and sulfur for recovering the elemental sulfur. A dry desulfurization plant equipped with a recovery device, comprising a conduit for supplying a part of the carbonaceous solid from which sulfuric acid has been removed in the desorption tower to the desulfurization tower, and the remainder of the carbonaceous solid from which the sulfur has been removed. and a conduit for supplying the carbonaceous solid exposed to the sulfur dioxide in the conversion tower to the desulfurization tower.

本発明は炭素質固体に活性点を設けるには水蒸
気や二酸化イオウ、二酸化炭素等を加熱接触させ
て炭素質固体表面上に細孔を作ることが有効であ
ることを実験により確認し、先ず脱硫に寄与した
炭素質固体を加熱して吸着物(最も多量にあるも
のは硫酸)を水蒸気、二酸化イオウ、二酸化炭素
等にガス化し、次いで該ガス化吸着物によつて前
記炭素質固体を賦活することを特徴とする。
The present invention has confirmed through experiments that it is effective to create pores on the surface of a carbonaceous solid by heating and contacting water vapor, sulfur dioxide, carbon dioxide, etc. to create active sites in a carbonaceous solid. The carbonaceous solid that has contributed to the carbonaceous solid is heated to gasify the adsorbate (most abundantly sulfuric acid) into water vapor, sulfur dioxide, carbon dioxide, etc., and then the carbonaceous solid is activated by the gasified adsorbate. It is characterized by

以下、本発明の一実施例を図面に従つて説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を採用した火力発電
所の乾式脱硫プラントのフロー図である。石炭は
導管1を経て燃料として石炭焚きボイラー2に供
給する。石炭焚きボイラーからはイオウを含有す
る排ガスが発生し、導管3を経て後述する脱硫塔
4に至る。脱硫塔4は移動層式反応塔である。一
方、石炭の一部は導管1から分岐した導管5を経
て吸着剤原料として乾留塔6に供給する。乾留塔
6では原料石炭を酸素遮断下で600から900℃に加
熱してタールや揮発分を除去する。乾留塔6で生
成したタールや揮発分は導管7を経て抜き出す。
一方、石炭は乾留塔6における乾留で半成コーク
スとなり、導管8を経て賦活塔9に至る。賦活塔
9には、導管10から水蒸気が、導管11から酸
素が供給されており、700から900℃に加熱するこ
とにより、半成コークスの表面上に細孔ができ、
脱硫能のある賦活炭が生成される。水蒸気による
賦活反応を示せば次式のようになる。
FIG. 1 is a flow diagram of a dry desulfurization plant for a thermal power plant employing an embodiment of the present invention. Coal is supplied as fuel to a coal-fired boiler 2 via a conduit 1. Sulfur-containing exhaust gas is generated from the coal-fired boiler, and passes through a conduit 3 to a desulfurization tower 4, which will be described later. The desulfurization tower 4 is a moving bed type reaction tower. On the other hand, a part of the coal is supplied to the carbonization tower 6 as an adsorbent raw material through a conduit 5 branched from the conduit 1. In the carbonization tower 6, the raw coal is heated to 600 to 900°C while blocking oxygen to remove tar and volatile matter. Tar and volatile components generated in the carbonization tower 6 are extracted through a conduit 7.
On the other hand, the coal is carbonized in the carbonization tower 6 to become semi-formed coke, and reaches the activation tower 9 via the conduit 8. The activation tower 9 is supplied with steam from a conduit 10 and oxygen from a conduit 11, and by heating it from 700 to 900°C, pores are created on the surface of the semi-formed coke.
Activated carbon with desulfurization ability is produced. The activation reaction by water vapor is expressed by the following equation.

C+H2O→CO+H2 (3) 余剰ガスは導管12から抜き出し、賦活炭は粒
径を5から10mmに揃えて導管13から抜き出す。
賦活炭は導管13、導管14、導管15を経て前
記した脱硫塔4に至り、約150℃の温度条件下で
(1)式の反応を生じ、脱硫反応が進行する。脱硫さ
れたガスは導管16から抜き出して後段の工程例
えば電気集塵器に送る(この系統は図示せず)。
この過程で賦活炭は、活性点が吸着物に覆われた
半成コークスとなる。一方、使用済みの半成コー
クスは脱硫塔4の底部から抜き出して振動ふるい
17にかけ、粉化コークスを分離する。粉化コー
クスは導管18を経て石炭焚きボイラー2に戻し
燃焼させる。粉化コークスを除去した後の半成コ
ークスは導管19を経て移動層式反応塔である脱
離塔20に送る。脱離塔20は350から500℃の温
度に保持し、(2)式の反応を進行させる。この過程
では2式の反応以外に硫酸に飽和吸着されている
水分も同時に放出される。このように水蒸気を主
成分とし、二酸化イオウや二酸化炭素をも含む発
生ガスは導管21を経て移動層式反応塔である転
換塔22に至る。一方、脱離を終えた半成コーク
スは脱離塔20の底部から抜き出して振動ふるい
23にかけ、粉化コークスを分離する。粉化コー
クスは導管24を経て石炭焚きボイラー2に戻し
(この経路は図示せず)、燃焼させる。粉化コーク
スを除去した後の半成コークスは導管25を経て
タンク26に至る。タンク26では次工程への流
出量を調整する。半成コークスは導管14と導管
27とに分かれて次工程に流れる。導管14を経
た半成コークスは脱硫塔4に戻し、再利用に供す
る。導管27を経た半成コークスは前記の転換塔
22に至り、ここで導管21から供給される脱離
時発生ガスと接触する。接触条件は800から1000
℃(望ましくは800から900℃)である。ここで半
成コークスとガスとは(3)式の反応の他に次の(4)式
及び(5)式の反応を生ずる。
C+H 2 O→CO+H 2 (3) Excess gas is extracted from the conduit 12, and the activated carbon is extracted from the conduit 13 with the particle size adjusted to 5 to 10 mm.
The activated carbon passes through conduit 13, conduit 14, and conduit 15 to the desulfurization tower 4, where it is heated at a temperature of approximately 150°C.
The reaction of formula (1) occurs, and the desulfurization reaction progresses. The desulfurized gas is extracted through conduit 16 and sent to a subsequent process, such as an electrostatic precipitator (this system is not shown).
In this process, the activated carbon becomes semi-formed coke in which the active sites are covered with adsorbents. On the other hand, the used semi-formed coke is extracted from the bottom of the desulfurization tower 4 and passed through a vibrating sieve 17 to separate the pulverized coke. The pulverized coke is returned to the coal-fired boiler 2 via a conduit 18 and burned. The semi-formed coke from which the pulverized coke has been removed is sent via a conduit 19 to a desorption tower 20 which is a moving bed reaction tower. The desorption tower 20 is maintained at a temperature of 350 to 500°C to allow the reaction of formula (2) to proceed. In this process, in addition to the two reactions, water saturatedly adsorbed by sulfuric acid is also released at the same time. The generated gas, which is mainly composed of water vapor and also contains sulfur dioxide and carbon dioxide, passes through the conduit 21 and reaches the conversion tower 22, which is a moving bed reaction tower. On the other hand, the semiformed coke that has been desorbed is extracted from the bottom of the desorption tower 20 and passed through a vibrating sieve 23 to separate the pulverized coke. The pulverized coke is returned to the coal-fired boiler 2 via conduit 24 (this route is not shown) and is combusted. After removing the pulverized coke, the semi-formed coke passes through a conduit 25 and reaches a tank 26 . The tank 26 adjusts the flow rate to the next process. The semi-formed coke is divided into conduit 14 and conduit 27 and flows to the next process. The semi-formed coke that has passed through the conduit 14 is returned to the desulfurization tower 4 for reuse. The semi-formed coke that has passed through the conduit 27 reaches the conversion tower 22, where it comes into contact with the gas generated during desorption supplied from the conduit 21. Contact condition is 800 to 1000
℃ (preferably 800 to 900℃). Here, in addition to the reaction of equation (3), the reactions of the following equations (4) and (5) occur between the semi-formed coke and the gas.

C+SO2→CO2+S (4) C+CO2→1/2CO (5) (3)式、(4)式、(5)式の反応により、半成コークス
の表面のカーボンはガス化され、細孔が生じ、半
成コークスは吸着活性が復活する。これと同時に
(4)式の還元反応によりSO2は単体イオウ(S)と
なる。賦活炭は転換塔22の底部から抜き出して
振動ふるい28にかけ、粉化コークスを分離す
る。粉化コークスは灰分リツチの状態となつてお
り、導管2を経て石炭焚きボイラー2に戻すか、
別の処理工程に導く(この経路は図示せず)。粉
化コークスを除去した後の賦活炭は導管30を経
て前記のタンク26からの脱離炭と合流し、導管
14、導管15を経て脱硫塔4に戻し、再利用に
供する。一方、転換塔22で副生されるSは(3)式
や(5)式の反応生成物であるCOやCO2等と共に導
管31を経て凝縮器32に至り、Sは導管33か
ら、Sを除去した後のガスは導管34から抜き出
す。
C+SO 2 →CO 2 +S (4) C+CO 2 →1/2CO (5) Through the reactions of equations (3), (4), and (5), carbon on the surface of semi-formed coke is gasified and the pores are occurs, and the adsorption activity of semi-formed coke is restored. At the same time as this
SO 2 becomes elemental sulfur (S) through the reduction reaction of equation (4). The activated carbon is taken out from the bottom of the conversion tower 22 and passed through a vibrating sieve 28 to separate the pulverized coke. The pulverized coke is in an ash-rich state and is either returned to the coal-fired boiler 2 via the conduit 2 or
leading to another processing step (this path is not shown). The activated carbon from which the pulverized coke has been removed passes through a conduit 30 and joins with the desorbed coal from the tank 26, and is returned to the desulfurization tower 4 through conduits 14 and 15 for reuse. On the other hand, S produced as a by-product in the conversion tower 22 reaches the condenser 32 through a conduit 31 together with CO, CO 2 , etc., which are reaction products of formulas (3) and (5); The gas after removal is extracted from conduit 34.

本実施例によれば次の効果がある。 This embodiment has the following effects.

(1) 脱離時に発生するガスは水蒸気を主成分と
し、他に二酸化イオウや二酸化炭素を含んでい
る。いずれのガスも炭素質固体の表面上に細孔
をあけるのに有利であり、特に水蒸気と炭素と
の反応性は高い。従つてこのガスを用いれば、
脱離によつて二酸化イオウと共に活性点が消失
しても賦活により再び細孔を作り出すことがで
きる。よつて炭素質固体の寿命を維持すること
ができ、しかもプロセス内で発生するガスを利
用する為に再生にかかる用役費を低減すること
が可能である。尚、プラントの副次的効果とし
て、脱離ガス中の酸化イオウを還元して回収容
易な単体イオウにすることも挙げることができ
る。
(1) The gas generated during desorption is mainly composed of water vapor and also contains sulfur dioxide and carbon dioxide. Both gases are advantageous for forming pores on the surface of carbonaceous solids, and the reactivity of water vapor and carbon is particularly high. Therefore, using this gas,
Even if the active sites disappear together with sulfur dioxide due to desorption, pores can be created again by activation. Therefore, the life of the carbonaceous solid can be maintained, and since the gas generated during the process is used, the utility costs for regeneration can be reduced. Incidentally, as a side effect of the plant, oxidized sulfur in the desorbed gas is reduced to easily recoverable elemental sulfur.

(2) 炭素質吸着剤としてボイラー燃料と同一の石
炭を原料とする半成コークスを使用するので、
脱硫プロセス全体のランニングコストを低減す
ることができる。
(2) Since semi-formed coke, which is made from the same coal as the boiler fuel, is used as the carbonaceous adsorbent,
The running cost of the entire desulfurization process can be reduced.

(3) 脱離塔も転換塔も移動層式反応器を使用した
ので、半成コークスの粉化を抑制することがで
きる。
(3) Since moving bed reactors were used for both the desorption tower and the conversion tower, pulverization of semi-formed coke could be suppressed.

尚、上記プラントでは脱離塔を経た半成コーク
スは、直接脱硫塔に返却する部分と、本実施例を
用いた転換塔を介して脱硫塔に返却する部分とに
分けてあるが、これは転換塔において脱離塔で発
生するガス量に見合つた分だけ完全賦活を行う為
に行つている。従つて、脱離後、全量を転換塔に
導入してもかまわない。移動層式反応器は向流式
その他の方式であつてもかまわない。また、強度
の保証された炭素質固体を再生するならば、脱離
(ガス化)と賦活とを1つの流動層式反応器内で
行つても差しつかえない。
In addition, in the above plant, the semi-formed coke that has passed through the desorption tower is divided into a part that is returned directly to the desulfurization tower and a part that is returned to the desulfurization tower via the conversion tower using this example. This is done to completely activate the conversion tower in proportion to the amount of gas generated in the desorption tower. Therefore, after desorption, the entire amount may be introduced into the conversion column. The moving bed reactor may be of a countercurrent type or other type. Furthermore, if a carbonaceous solid with guaranteed strength is to be regenerated, desorption (gasification) and activation may be performed in one fluidized bed reactor.

次に本発明者が行つた実験の結果を示す。 Next, the results of experiments conducted by the present inventor will be shown.

実験 1 前記の脱硫プラントを利用して半成コークス
(脱硫剤)の吸着〜再生繰り返しによる脱硫性能
の変化を検討した。この検討は半成コークスを再
生する毎に抜き出し、熱天秤装置を用いて半成コ
ークス上に吸着されたSO2量を測定することによ
つた。結果を第2図に示す。図中は吸着〜脱離
の繰り返しによるデータであり、は吸着〜脱離
〜賦活の繰り返しによるデータである。各プロツ
トは吸着開始120分経過後の値を示す。この結果
から明らかなように、本発明を採用すれば炭素質
固体の寿命を長く維持できる。
Experiment 1 Using the desulfurization plant described above, changes in desulfurization performance due to repeated adsorption and regeneration of semi-formed coke (desulfurization agent) were investigated. This study was conducted by extracting semi-formed coke every time it was regenerated and measuring the amount of SO 2 adsorbed on the semi-formed coke using a thermobalance device. The results are shown in Figure 2. In the figure, data is obtained by repeating adsorption to desorption, and is data obtained by repeating adsorption to desorption to activation. Each plot shows the value 120 minutes after the start of adsorption. As is clear from these results, if the present invention is employed, the life of the carbonaceous solid can be maintained for a long time.

実験 2 太平洋炭を600℃、窒素ガス(N2)中で乾留し
て作つた半成コークスと水蒸気との反応特性を熱
天秤装置を用いて検討した。結果を第3図に示
す。反応ガスは水蒸気20%のN2である。図中
は反応温度が800℃の時の、は850℃、は900
℃の時の傾向である。半成コークスと水蒸気との
反応速度は800℃以上では充分大きく、反応温度
が高くなるにつれ、急激に大きくなる。
Experiment 2 The reaction characteristics of semi-formed coke produced by carbonizing Pacific coal at 600℃ in nitrogen gas (N 2 ) and steam were investigated using a thermobalance device. The results are shown in Figure 3. The reaction gas is N2 with 20% water vapor. In the figure, when the reaction temperature is 800℃, is 850℃, and is 900℃.
This is the trend at °C. The reaction rate between semi-formed coke and steam is sufficiently high above 800°C, and increases rapidly as the reaction temperature increases.

また同様に太平洋炭を600℃、N2中で乾留して
作つた半成コークスとSO2との反応特性を検討し
た。結果を第3図に示す。反応ガスはSO2を3%
含むN2である。図中は反応温度が800℃の時
の、は850℃、は900℃の時の傾向である。
800℃以上の温度でもSO2は半成コークスと反応
し、SO2は半成コークスの賦活剤として使用可能
であることがわかる。
Similarly, the reaction characteristics of semi-formed coke made by carbonizing Pacific coal at 600℃ in N 2 and SO 2 were investigated. The results are shown in Figure 3. Reaction gas is SO 2 3%
Contains N2 . In the figure, the trends are when the reaction temperature is 800°C, 850°C, and 900°C.
It can be seen that SO 2 reacts with semi-formed coke even at temperatures above 800°C, and that SO 2 can be used as an activator for semi-formed coke.

実験 3 40φの石英製反応管により太平洋炭を乾留して
作つた半成コークスのSO2還元特性を検討した。
結果を第5図に示す。反応ガスはSO2を1%含む
N2であり、S.V.は5000h-1である。800℃以上の温
度でSO2はほぼ90℃以上還元できることがわかつ
た。出口ガスの組成を分析した結果、大部分が二
酸化炭素か一酸化炭素であり、粉質収支から、
SO2がSに還元されていることが明らかである。
Experiment 3 The SO 2 reduction characteristics of semi-formed coke produced by carbonizing Pacific coal in a 40φ quartz reaction tube were investigated.
The results are shown in Figure 5. Reactant gas contains 1% SO2
N2 and SV is 5000h -1 . It was found that SO 2 can be reduced by almost 90°C or more at temperatures above 800°C. As a result of analyzing the composition of the exit gas, it was found that most of it was carbon dioxide or carbon monoxide, and from the powder balance,
It is clear that SO 2 is reduced to S.

実験 4 第1図に示す方法において、石炭焚きボイラー
に供給する石炭量3.8t/hの時、ボイラーからの
排ガス量は3万Nm3/hである。吸着塔150℃、
脱離塔350℃、転換塔850℃で運転し、この時、排
ガス中のイオウ酸化物の除去率は95%であつた。
Experiment 4 In the method shown in Figure 1, when the amount of coal supplied to the coal-fired boiler is 3.8 t/h, the amount of exhaust gas from the boiler is 30,000 Nm 3 /h. Adsorption tower 150℃,
The desorption tower was operated at 350°C and the conversion tower at 850°C, and the removal rate of sulfur oxides in the exhaust gas was 95%.

脱離塔及び転換塔は間接加熱方式として、乾留
塔及び賦活塔から発生するガスやタールを燃料と
した。
The desorption tower and conversion tower were heated indirectly, using gas and tar generated from the carbonization tower and activation tower as fuel.

吸着塔と脱離塔の間の半成コークス循環量は
1t/hであつた。脱離塔から抜き出した半成コー
クスのうち、0.5t/hは転換塔に供給し、脱離塔
から発生するSO220%、H2O40%を含むガスと接
触させて、再賦活させた。この際SO2は還元され
て単体イオウとして、4.2Kg/h回収された。こ
の場合、賦活塔から新たに供給する半成コークス
量は0.01t/hであつた。
The amount of semi-formed coke circulating between the adsorption tower and desorption tower is
It was 1t/h. Of the semi-formed coke extracted from the desorption tower, 0.5t/h was supplied to the conversion tower and reactivated by contacting with gas containing 20% SO 2 and 40% H 2 O generated from the desorption tower. . At this time, SO 2 was reduced and recovered as elemental sulfur at 4.2 kg/h. In this case, the amount of semiformed coke newly supplied from the activation tower was 0.01 t/h.

一方、循環使用している半成コークスを転換塔
に移して再賦活しない方法では、賦活塔から新た
に供給する半成コークス量は0.1t/hとなり、本
発明に比べて10倍も供給しなければならなかつ
た。
On the other hand, in a method that does not reactivate semi-formed coke by transferring it to a conversion tower, the amount of semi-formed coke newly supplied from the activation tower is 0.1 t/h, which is 10 times as much as in the present invention. I had to.

このように、本発明を脱硫プロセスに採用すれ
ば、SO2のSへの転換反応と共に、半成コークス
の賦活反応とを同時に行うことができ、新たに供
給する半成コークス量を激減させることが可能で
ある。
As described above, if the present invention is adopted in the desulfurization process, the conversion reaction of SO 2 to S and the activation reaction of semi-formed coke can be performed simultaneously, and the amount of newly supplied semi-formed coke can be drastically reduced. is possible.

以上、本発明によれば、吸着物の脱離時に発生
するガスを有効利用して脱離後の炭素質固体を賦
活するので、炭素質固体の長寿命化と再生コスト
の軽減とを同時に達成できるという効果がある。
As described above, according to the present invention, the carbonaceous solid after desorption is activated by effectively utilizing the gas generated during the desorption of the adsorbate, thereby simultaneously achieving a longer lifespan of the carbonaceous solid and a reduction in regeneration costs. There is an effect that it can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を採用した火力発電
所の乾式脱硫プラントのフロー図、第2図は半成
コークスの吸着〜再生繰り返しによる性能変化を
示す特性図、第3図は半成コークスと水蒸気との
反応特性図、第4図及び第5図は半成コークスと
二酸化イオウとの反応特性図である。 20……脱離塔、22……転換塔、21,2
5,27,30……導管。
Figure 1 is a flow diagram of a dry desulfurization plant for a thermal power plant that employs an embodiment of the present invention, Figure 2 is a characteristic diagram showing performance changes due to repeated adsorption and regeneration of semi-formed coke, and Figure 3 is a flow diagram of a dry desulfurization plant for a thermal power plant that employs an embodiment of the present invention. Figures 4 and 5 are diagrams showing the reaction characteristics between coke and steam, and Figures 4 and 5 are diagrams showing the reaction characteristics between semi-formed coke and sulfur dioxide. 20... Desorption tower, 22... Conversion tower, 21,2
5, 27, 30... conduit.

Claims (1)

【特許請求の範囲】[Claims] 1 排ガス中の酸化イオウを炭素質固体によつて
硫酸として吸着する脱硫塔、前記硫酸を吸着した
炭素質固体を所定の温度に加熱し吸着した硫酸を
二酸化イオウとして脱離する脱離塔、前記硫酸を
二酸化イオウとして脱離した前記炭素質固体を所
定の温度に加熱し、前記脱離した二酸化イオウと
反応させ元素状硫黄を形成する転換塔、及び前記
元素状硫黄を回収する硫黄回収器を備えた乾式脱
硫プラントであつて、前記脱離塔で硫酸を除去し
た前記炭素質固体の一部を前記脱硫塔に供給する
導管を有するとともに前記硫酸を除去した前記炭
素質固体の残部を前記転換塔に供給する導管を有
し、かつ前記転換塔で前記二酸化イオウにさらさ
れた前記炭素質固体を前記脱硫塔に供給する導管
を有することを特徴とする乾式脱硫プラント。
1. A desulfurization tower that adsorbs sulfur oxide in exhaust gas as sulfuric acid by a carbonaceous solid; a desorption tower that heats the carbonaceous solid that has adsorbed the sulfuric acid to a predetermined temperature and desorbs the adsorbed sulfuric acid as sulfur dioxide; A conversion tower that heats the carbonaceous solid from which sulfuric acid has been desorbed as sulfur dioxide to a predetermined temperature and reacts with the desorbed sulfur dioxide to form elemental sulfur, and a sulfur recovery device that recovers the elemental sulfur. A dry desulfurization plant comprising: a conduit for supplying a part of the carbonaceous solid from which sulfuric acid has been removed in the desorption tower to the desulfurization tower, and the remaining part of the carbonaceous solid from which the sulfuric acid has been removed is converted to the A dry desulfurization plant, characterized in that it has a conduit supplying the column and a conduit supplying the carbonaceous solid exposed to the sulfur dioxide in the conversion column to the desulfurization column.
JP9871379A 1979-08-03 1979-08-03 Regeneration of carbonaceous solid for gas desulfurization Granted JPS5624028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9871379A JPS5624028A (en) 1979-08-03 1979-08-03 Regeneration of carbonaceous solid for gas desulfurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9871379A JPS5624028A (en) 1979-08-03 1979-08-03 Regeneration of carbonaceous solid for gas desulfurization

Publications (2)

Publication Number Publication Date
JPS5624028A JPS5624028A (en) 1981-03-07
JPS621284B2 true JPS621284B2 (en) 1987-01-12

Family

ID=14227147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9871379A Granted JPS5624028A (en) 1979-08-03 1979-08-03 Regeneration of carbonaceous solid for gas desulfurization

Country Status (1)

Country Link
JP (1) JPS5624028A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450487A (en) * 1977-09-12 1979-04-20 Foster Wheeler Corp Method and apparatus for removing sulfurous acid gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450487A (en) * 1977-09-12 1979-04-20 Foster Wheeler Corp Method and apparatus for removing sulfurous acid gas

Also Published As

Publication number Publication date
JPS5624028A (en) 1981-03-07

Similar Documents

Publication Publication Date Title
JP4110427B2 (en) Absorber regeneration
WO1999002243A1 (en) SIMULTANEOUS MERCURY, SO2, AND NOx CONTROL BY ADSORPTION ON ACTIVATED CARBON
JP2002540222A (en) Sulfur and hydrogen recovery system from sour gas
JP2012506022A (en) Method for producing energy and method for capturing CO2
GB2046622A (en) Process for dry desulphurization of flue gas
GB2078777A (en) Process for controlling sulphur oxides in coal gasification
CA1104792A (en) Pollution control system and method for the removal of sulfur oxides
KR850001200B1 (en) Process for dry desuifurization of flue gas
CA1207512A (en) Process for preparing a sulfur dioxide containing gas stream for reaction with coal
JPH03238019A (en) Purification of high temperature reductive gas
JPS621284B2 (en)
JP4429404B2 (en) Dry exhaust gas treatment method and treatment apparatus
JPH0776348B2 (en) Refining method for high temperature reducing gas
JPS5864117A (en) Dry stack-gas desulfurization process
PL167513B1 (en) Method of converting sulfur dioxide contained in gaseous mixtures into elementary sulfur
JPS6111653B2 (en)
JPS6261330B2 (en)
JPS55155728A (en) Dry type exhaust gas desulfurizing method
JPS6111656B2 (en)
JPS6137971B2 (en)
JPS57184418A (en) Method for recovering sulfur in dry type flue gas desulfurizing apparatus
JPS6260132B2 (en)
JPS5884026A (en) Regenerating method for soda ash used for soda ash method of dry desulfurization process
JP2004189993A (en) Method for refining gas, gas refiner and coal gasification power generation system using the same
JPS6358605B2 (en)