JPS62128456A - Molten carbonate type fuel cell - Google Patents

Molten carbonate type fuel cell

Info

Publication number
JPS62128456A
JPS62128456A JP60269637A JP26963785A JPS62128456A JP S62128456 A JPS62128456 A JP S62128456A JP 60269637 A JP60269637 A JP 60269637A JP 26963785 A JP26963785 A JP 26963785A JP S62128456 A JPS62128456 A JP S62128456A
Authority
JP
Japan
Prior art keywords
fuel cell
manifold
molten carbonate
manifolds
spacers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60269637A
Other languages
Japanese (ja)
Other versions
JPH0679492B2 (en
Inventor
Hakaru Ogawa
斗 小川
Kenji Murata
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60269637A priority Critical patent/JPH0679492B2/en
Publication of JPS62128456A publication Critical patent/JPS62128456A/en
Publication of JPH0679492B2 publication Critical patent/JPH0679492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve corrosion resistance and electrical insulating ability, by intervening metal spacers of which surfaces are covered with alumina insulating films formed by a thermal treatment, between the sides of fuel cell body and surfaces which define wet seal portions on the surfaces of manifolds and between them and the sides of the fuel cell body. CONSTITUTION:Metal spacers of which surfaces are covered with alumina insulating films formed by a thermal treatment are intervened, between the sides of a fuel cell body 1 and surfaces which define wet seal portions on the surfaces of manifolds 9a-9d and between them and the sides of the fuel cell body. The spacers 8a-8d are, for example, formed by Fe-Cr-Al alloy which contains no less than 5w% of Al and is treated on 1,100 deg.C in the air not less than 5hr, and the gaps between the spacers 8a-8d and so-called flange portions of the manifolds 9a-9d are sealed by metallic O rings 10 in which there are coil springs. Thus, the corrosion of the manifolds can be prevented, and the corrosion resistance of the spacers themselves becomes favorable.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は経時的な特性劣化を抑制するようにした溶融炭
酸塩型燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a molten carbonate fuel cell that suppresses deterioration of characteristics over time.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、次世代の燃料電池として溶融炭酸塩型燃料電池の
開発が進められている。溶融炭酸塩型燃料電池は、炭酸
塩からなる電解質を高温下で溶融状態にし、電橋反応を
起こさせるもので、リン酸型、固体電解質型等の他の燃
料電池に比べてM極反応が起こり易く、発電熱効率が高
いうえ、高価な貴金属触媒を必要としない等の特長を有
している。
In recent years, molten carbonate fuel cells have been developed as next-generation fuel cells. A molten carbonate fuel cell is one in which an electrolyte made of carbonate is molten at high temperatures to cause an electric bridge reaction, and compared to other fuel cells such as phosphoric acid and solid electrolyte types, the M-pole reaction is faster. It has features such as easy generation, high heat generation efficiency, and no need for expensive precious metal catalysts.

ところで、このような溶融炭酸塩型燃料電池で高出力の
発電プラントを構成するには、複数の単位電池を直列に
積層して燃料電池本体を構成し、各単位電池の加算出力
を得るようにしなければならない。このため、この種の
燃料電池は、通常、次のように構成される。
By the way, in order to construct a high-output power generation plant using such a molten carbonate fuel cell, it is necessary to construct a fuel cell main body by stacking multiple unit cells in series and obtain the added output of each unit cell. There must be. For this reason, this type of fuel cell is usually configured as follows.

すなわち、各単位電池は、一対の多孔質電極板と、これ
らの間に介在させたアルカリ炭酸塩からなる電解質板と
から構成される。セパレータは、各単位電池間の電気的
な接続機能と、各電極板への互いに直交する反応ガスの
通路を形成する機能とを兼ね備えたものである。
That is, each unit cell is composed of a pair of porous electrode plates and an electrolyte plate made of an alkali carbonate interposed between them. The separator has both the function of electrical connection between each unit cell and the function of forming mutually perpendicular reaction gas paths to each electrode plate.

燃料電池の4つの側面には、反応ガスの分配・回収機能
を有するマニホールドが当てがわれており、これらマニ
ホールドのうちの一つに酸化剤ガスを供給するとともに
、隣接するマニホールドに燃料ガスを供給し、燃料電池
本体で両ガスを直交通流させて反応させ、直流出力を得
た後、それぞれの対向するマニホールドからガスを排出
するようにしている。
Manifolds with the function of distributing and collecting reactive gases are placed on the four sides of the fuel cell, and one of these manifolds is supplied with oxidizing gas, while the adjacent manifold is supplied with fuel gas. The two gases are caused to flow crosswise through the fuel cell body, causing a reaction, and after obtaining a direct current output, the gases are discharged from the respective manifolds facing each other.

ところが、このような構造の燃料電池には、次のような
問題があった。
However, the fuel cell having such a structure has the following problems.

上記燃料電池は、マニホールドと、燃料電池本体側面と
の間に、例えば多孔質のジルコニアフェルトを介在させ
、このジルコニアフェルトに溶融炭酸塩を含浸させて燃
料電池本体とマニホールドとの間にウェットシール部を
形成するようにしている。ところが、炭酸塩は作a濡度
で溶融すると腐蝕性を有するため、マニホールドと炭酸
塩との接触部位の耐食性が問題となる。そこで、従来は
、マニホールドの上記部位にアルミナ、ジルコニア等の
酸化物セラミック粉末をプラズマ溶射して耐食層を形成
していた。
The above-mentioned fuel cell has a porous zirconia felt interposed between the manifold and the side surface of the fuel cell main body, and the zirconia felt is impregnated with molten carbonate to form a wet seal between the fuel cell main body and the manifold. We are trying to form a However, since carbonate is corrosive when melted at a wetness level, corrosion resistance of the contact area between the manifold and the carbonate becomes a problem. Therefore, conventionally, a corrosion-resistant layer was formed by plasma spraying oxide ceramic powder such as alumina or zirconia on the above-mentioned portion of the manifold.

しかしながら、上記の方法で形成された耐食層には、微
細な孔が多数存在し、この微細孔に溶融炭酸塩が浸透し
て母材を腐蝕させてしまうという問題があった。このよ
うに母材が腐蝕すると、耐食層が母材から剥離し、微小
間隙を介して炭酸塩が移動逸散してしまうことになる。
However, the corrosion-resistant layer formed by the above method has a problem in that there are many fine pores, and molten carbonate penetrates into these fine pores and corrodes the base material. When the base material corrodes in this way, the corrosion-resistant layer peels off from the base material, and carbonate moves and escapes through minute gaps.

また、酸化物セラミック被膜が剥離すると、マニホール
ドの母材と炭酸塩との間の電気的絶縁性が損われること
にもなる。このような点から、従来の溶融炭酸塩型燃料
電池は、経時的な劣化を免れ得ないという問題があった
Also, if the oxide ceramic coating peels off, the electrical insulation between the manifold base material and the carbonate will be compromised. From this point of view, conventional molten carbonate fuel cells have had the problem of being subject to deterioration over time.

(発明の目的〕 本発明は、上述した問題点に鑑みなされたもので、その
目的とするところは、マニホールドのウェットシールを
形成する面の耐食性と電気絶縁性の向上化を図り、もっ
て経時的劣化の少ない溶融炭酸塩型燃料電池を提供する
ことにある。
(Object of the Invention) The present invention has been made in view of the above-mentioned problems, and its purpose is to improve the corrosion resistance and electrical insulation of the surface that forms the wet seal of the manifold, and thereby An object of the present invention is to provide a molten carbonate fuel cell with little deterioration.

〔発明の概要〕[Summary of the invention]

本発明は、単位電池を複数積層してなる燃料電池本体と
、この燃料電池本体の各側面に当てがわれ前記各単位電
池のガス流路に反応ガスを通流させるマニホールドとを
備えた溶融炭酸塩型燃料電池において、前記マニホール
ドの表面でかつ前記燃料電池本体の側面との間でウェッ
トシール部を形成する面と、前記燃料電池本体の側面と
の間に、表面にアルミナ絶縁被膜を熱処理により形成し
てなる金属スペーサを介在させたことを特徴としている
The present invention provides a fuel cell main body formed by stacking a plurality of unit cells, and a molten carbon dioxide comprising a fuel cell main body formed by stacking a plurality of unit cells, and a manifold that is applied to each side of the fuel cell main body and allows a reactant gas to flow through the gas flow path of each of the unit cells. In the salt-type fuel cell, an alumina insulating coating is applied to the surface between the surface of the manifold and the side surface of the fuel cell body forming a wet seal portion and the side surface of the fuel cell body by heat treatment. It is characterized by the interposition of a metal spacer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、マニホールドと燃料電池本体の側面と
の間にスペーサを介在させているので、マニホールドが
溶融炭酸塩と直接接触することがない。このため、マニ
ホールドが腐蝕するのを効果的に防止することができる
。しかも、上記スペーサの表面には、熱処理によってア
ルミナ絶縁被膜が形成されており、この被膜は非常にち
密なので、スペーサ自体の耐食性も良好である。
According to the present invention, since the spacer is interposed between the manifold and the side surface of the fuel cell main body, the manifold does not come into direct contact with the molten carbonate. Therefore, corrosion of the manifold can be effectively prevented. Furthermore, an alumina insulating film is formed on the surface of the spacer by heat treatment, and this film is very dense, so that the spacer itself has good corrosion resistance.

したがって、本発明によれば、経時的劣化の少ない溶融
炭酸塩型燃料電池のを提供することができる。
Therefore, according to the present invention, it is possible to provide a molten carbonate fuel cell that exhibits less deterioration over time.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照しながら、本発明の一実施例について
説明する。
An embodiment of the present invention will be described below with reference to the drawings.

第1図において、燃料電池本体二は、エンドプレート2
a、2bの間に、複数の単位電池3−をセパレータ4を
介して積層して構成されている。単位電池工は、一対の
多孔質電極板5a、5bの間に電解質板6を介装してな
るものである。電解質板6は、例えば、 L 12CO3/に2 Coヨ=62/38 (モル比
)の混合炭酸塩粉末と、γ−リチウムアルミネートの保
持材との混合物をホットプレスして形成される。セパレ
ータ4には、その両面に互いに直交する方向に延びる複
数のガス通流溝4a、4bが形成されている。
In FIG. 1, the fuel cell main body 2 includes an end plate 2
A plurality of unit batteries 3- are stacked between a and 2b with a separator 4 in between. The unit battery is constructed by interposing an electrolyte plate 6 between a pair of porous electrode plates 5a and 5b. The electrolyte plate 6 is formed, for example, by hot pressing a mixture of a mixed carbonate powder having a molar ratio of L 12 CO3 to 2 Co = 62/38 and a holding material of γ-lithium aluminate. A plurality of gas flow grooves 4a and 4b are formed on both surfaces of the separator 4 and extend in directions perpendicular to each other.

このように構成された燃料電池本体1の各側面には、そ
れぞれ角形環状のジルコニアフェルト7a、7b、7c
、7d、iよびスペーサ8a。
Square annular zirconia felts 7a, 7b, 7c are provided on each side of the fuel cell main body 1 constructed in this way.
, 7d, i and spacer 8a.

8b、8c、8dを介してマニホールド9a。Manifold 9a via 8b, 8c, 8d.

9b、9cy9dが重合され、これらマニホールド9a
〜9dが図示しない手段によって締付は固定されている
。ジルコニアフェルト7a〜7dは、溶融炭酸塩を含浸
させてスペーサ8a〜8dとの間でウェットシールを構
成する機能を有する。スペーサ8a〜8dは、例えばA
Rを5W%以上含有するFe!−Cr−Affi合金を
1100℃で5時間1ス上空気中で処理したもので形成
されている。
9b, 9cy9d are polymerized, and these manifolds 9a
-9d are fixedly tightened by means not shown. The zirconia felts 7a to 7d have the function of impregnating them with molten carbonate and forming a wet seal with the spacers 8a to 8d. The spacers 8a to 8d are, for example, A
Fe containing 5W% or more of R! -Cr-Affi alloy treated at 1100° C. for 5 hours in 1 breath of air.

スペーサ8a〜8dと、マニホールド9a〜9dのいわ
ゆる7ランジ部との間には、例えばヘリコツレックス(
商標名)などのコイルバネを内在する金属製オーリング
10でシールされている。
For example, a helicopterex (
It is sealed with a metal O-ring 10 containing a coil spring (trade name) or the like.

このように構成された燃料電池を650℃に昇温させ、
マニホールド9a側からマニホールド9C側へ酸化剤ガ
スPを通流させるとともに、マニホールド9 b ll
l11からマニホールド9d側へ燃料ガスQを通流させ
、200時間運転した。そのi炎、各マニホールド9a
〜9dを分解してそのフランジ部を調べたところ、フラ
ンジ部の腐蝕は発生せず、気密構造の破壊はなかった。
The fuel cell configured in this way was heated to 650°C,
While passing the oxidizing gas P from the manifold 9a side to the manifold 9C side, the manifold 9 b ll
Fuel gas Q was made to flow from l11 to the manifold 9d side, and the system was operated for 200 hours. Its flame, each manifold 9a
-9d was disassembled and its flange was examined, and no corrosion occurred on the flange, and no destruction of the airtight structure occurred.

ところで、この実施例のように、燃料電池本体1の側面
とマニホールド98〜9dとの間にジルコニアフェルト
7a〜7dを介在させる場合には、従来はジルコニアフ
ェルト7a〜7dの厚みを増して燃料電池本体とマニホ
ールドとの間の電気絶縁を図る必要があった。ところが
、ジルコニアフェルト7a〜7dの厚みを増すと、これ
に含浸される溶融炭酸塩の量も増加するため、この溶融
炭酸塩を介して電解質の移動が起こる。この結果、出力
電圧の低下を招くという問題がある。ところが、本実施
例のように、ジルコニアフェルト7a〜7dとマニホー
ルド9a〜9dとの間に上記のスペーサ8a〜8dを設
けるようにすれば、必要な電気絶縁性は確保されるので
、ジルコニアフェルト7a〜7dの厚さは単にウェット
シールが形成し得るだけの必要最小限の厚さで足りるこ
とになる。したがって、この場合には、ジルコニアフェ
ルト7a〜7dに含浸された溶融炭酸塩を介しての電解
質の移動量を最小限に抑制することができる。
By the way, when the zirconia felts 7a to 7d are interposed between the side surface of the fuel cell main body 1 and the manifolds 98 to 9d as in this embodiment, conventionally, the thickness of the zirconia felts 7a to 7d is increased and the fuel cell It was necessary to provide electrical insulation between the main body and the manifold. However, when the thickness of the zirconia felts 7a to 7d is increased, the amount of molten carbonate impregnated into the zirconia felts also increases, so that electrolyte movement occurs through the molten carbonate. As a result, there is a problem in that the output voltage decreases. However, if the above-mentioned spacers 8a to 8d are provided between the zirconia felts 7a to 7d and the manifolds 9a to 9d as in this embodiment, the necessary electrical insulation is ensured, so the zirconia felt 7a The thickness of ~7d is the minimum thickness necessary to simply form a wet seal. Therefore, in this case, the amount of electrolyte movement via the molten carbonate impregnated into the zirconia felts 7a to 7d can be suppressed to a minimum.

なお、本発明は、上述した実施例に限定されるものでは
ない。例えば、第2図に示すように、スペーサ16のジ
ルコニアフェルトとの接触面に長手方向に沿って複数の
突条17a、17bを形成するようにすれば、スペーサ
16とジルコニアフェルト7a〜7bとの圧着結合によ
って上記突条17a、17bがジルコニアフェルト78
〜7dに食込み、両者の間のシール性能がさらに向上す
る。
Note that the present invention is not limited to the embodiments described above. For example, as shown in FIG. 2, if a plurality of protrusions 17a and 17b are formed along the longitudinal direction on the contact surface of the spacer 16 with the zirconia felt, the contact between the spacer 16 and the zirconia felts 7a to 7b can be formed. The protrusions 17a and 17b are bonded by crimping to the zirconia felt 78.
~7d, further improving the sealing performance between the two.

また、上記実施例では、金属スペーサとしてFe−Cr
−A4合金に熱処理したものを用いているが、SUSに
アルミナイズ処理をしても良い。
Further, in the above embodiment, Fe-Cr is used as the metal spacer.
-Although heat-treated A4 alloy is used, SUS may also be aluminized.

また、燃料電池本体に接する側に8203層を設けるよ
うにすれば、炭酸塩を良く弾くようになるので、よりシ
ール性能が向上する。
Furthermore, if the 8203 layer is provided on the side in contact with the fuel cell main body, carbonate will be well repelled, and the sealing performance will be further improved.

さらに、マニホールドと、スペーサとを予めろう付は等
の方法によって固定しておくことにより、組立て性能の
向上化を図ることができる。また、ジルコニアフェルト
中にホウ酸系ガラスを含浸しておくと、さらに炭酸塩の
移動防止効果は向上する。
Furthermore, by fixing the manifold and spacer in advance by brazing or other methods, assembly performance can be improved. Furthermore, if boric acid glass is impregnated into zirconia felt, the effect of preventing carbonate migration is further improved.

このように本発明はその要旨を逸脱しない範囲で種々変
更して実施することができる。
As described above, the present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る溶融炭酸塩型燃料電池
の主要部の構成を示す分解斜視図、第2図は本発明の他
の実施例に係る溶融炭酸塩型燃料電池のスペーサの一部
を示す斜視図である。 1−・・燃料電池本体、2a、2b・・・エンドプレー
ト、3・・・単位電池、4・・・セパレータ、5a、5
b・・・多孔質電極、6・・・電解質板、7a〜7d・
・・ジルコニアフェルト、8a〜8d、16・・・スペ
ーサ、98〜9d・・・マニホールド、10・・・金属
製オーリング、17a、17b・・・突条、P・・・酸
化剤ガス、Q・・・燃料ガス。
FIG. 1 is an exploded perspective view showing the configuration of the main parts of a molten carbonate fuel cell according to an embodiment of the present invention, and FIG. 2 is a spacer of a molten carbonate fuel cell according to another embodiment of the present invention. FIG. 1- Fuel cell main body, 2a, 2b... End plate, 3... Unit cell, 4... Separator, 5a, 5
b... Porous electrode, 6... Electrolyte plate, 7a to 7d.
... Zirconia felt, 8a-8d, 16... Spacer, 98-9d... Manifold, 10... Metal O-ring, 17a, 17b... Projection, P... Oxidizing gas, Q ...Fuel gas.

Claims (3)

【特許請求の範囲】[Claims] (1)単位電池を複数積層してなる燃料電池本体と、こ
の燃料電池本体の各側面に当てがわれ前記各単位電池の
ガス流路に反応ガスを通流させるマニホールドとを備え
た溶融炭酸塩型燃料電池において、前記マニホールドの
表面でかつ前記燃料電池本体の側面との間でウェットシ
ール部を形成する面と、前記燃料電池本体の側面との間
に、表面にアルミナ絶縁被膜を熱処理により形成してな
る金属スペーサを介在させたことを特徴とする溶融炭酸
塩型燃料電池。
(1) Molten carbonate comprising a fuel cell main body formed by stacking a plurality of unit cells, and a manifold that is applied to each side of the fuel cell main body and allows reaction gas to flow through the gas flow path of each unit cell. type fuel cell, an alumina insulating film is formed on the surface of the manifold by heat treatment between the surface of the manifold that forms a wet seal portion with the side surface of the fuel cell body and the side surface of the fuel cell body. A molten carbonate fuel cell characterized by having a metal spacer interposed therebetween.
(2)前記金属スペーサと前記マニホールドとの間に、
高温用金属製シールリングを介在させたことを特徴とす
る特許請求の範囲第1項記載の溶融炭酸塩型燃料電池。
(2) between the metal spacer and the manifold;
The molten carbonate fuel cell according to claim 1, characterized in that a high-temperature metal seal ring is interposed.
(3)前記金属スペーサは、前記燃料電池本体の側面と
接する側にボロナイゼーシヨンが施されていることを特
徴とする特許請求の範囲第1項記載の溶融炭酸塩型燃料
電池。
(3) The molten carbonate fuel cell according to claim 1, wherein the metal spacer is boronized on the side that contacts the side surface of the fuel cell main body.
JP60269637A 1985-11-30 1985-11-30 Molten carbonate fuel cell Expired - Fee Related JPH0679492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60269637A JPH0679492B2 (en) 1985-11-30 1985-11-30 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60269637A JPH0679492B2 (en) 1985-11-30 1985-11-30 Molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS62128456A true JPS62128456A (en) 1987-06-10
JPH0679492B2 JPH0679492B2 (en) 1994-10-05

Family

ID=17475120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60269637A Expired - Fee Related JPH0679492B2 (en) 1985-11-30 1985-11-30 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0679492B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235161A (en) * 1988-03-14 1989-09-20 Sanyo Electric Co Ltd Molten carbonate fuel cell
EP0472152A2 (en) * 1990-08-20 1992-02-26 Energy Research Corporation Gasket for a battery of molten carbonate fuel cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235161A (en) * 1988-03-14 1989-09-20 Sanyo Electric Co Ltd Molten carbonate fuel cell
EP0472152A2 (en) * 1990-08-20 1992-02-26 Energy Research Corporation Gasket for a battery of molten carbonate fuel cells

Also Published As

Publication number Publication date
JPH0679492B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
US5328779A (en) Fuel cell battery and solid electrolyte fuel cells therefore
JP2656943B2 (en) Improved solid oxide fuel cell and assembly
US7422819B2 (en) Ceramic coatings for insulating modular fuel cell cassettes in a solid-oxide fuel cell stack
KR100491688B1 (en) Flat High Temperature Fuel Cell Battery
US5942348A (en) Fuel cell with ceramic-coated bipolar plates and a process for producing the fuel cell
JPH06290798A (en) Solid-state electrolytic type fuel cell
EP1293006A2 (en) Fuel cell stack assembly
WO2006077762A1 (en) Flat laminate type fuel cell and fuel cell stack
US20020004155A1 (en) Etched interconnect for fuel cell elements
CA2020641A1 (en) Integral edge seals for phosphoric acid fuel cells
JP2017517837A (en) Electrically insulating three-layer gasket for SFOC unit
US20100066036A1 (en) Compressive composite seals for sofc applications
JPH08279364A (en) Solid electrolyte fuel cell
JPS625569A (en) Molten carbonate type fuel cell stack
JPH1116585A (en) Flat solid electrolyte fuel cell and its layering method
JPS62128456A (en) Molten carbonate type fuel cell
JPH10134828A (en) Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell
JPH1140181A (en) Start-stopage of solid electrolyte type fuel cell, and high temperature holding method during operation or stand-by state
JPH036624B2 (en)
JPH0850911A (en) Platelike solid electrolytic fuel cell
JPH09115530A (en) Solid electrolytic fuel cell having mechanical seal structure
JPH0722058A (en) Flat solid electrolyte fuel cell
JPH07282835A (en) Sealing material for solid electrolyte fuel cell, sealing method for solid electrolyte fuel cell using this material, and solid electrolyte fuel cell
JPH1079258A (en) Current collecting method for flat type solid electrolyte fuel cell
JPH0418433B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees