JPS62128180A - Manufacture of mesa type semiconductor device - Google Patents

Manufacture of mesa type semiconductor device

Info

Publication number
JPS62128180A
JPS62128180A JP26725385A JP26725385A JPS62128180A JP S62128180 A JPS62128180 A JP S62128180A JP 26725385 A JP26725385 A JP 26725385A JP 26725385 A JP26725385 A JP 26725385A JP S62128180 A JPS62128180 A JP S62128180A
Authority
JP
Japan
Prior art keywords
region
mesa
substrate
channel stopper
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26725385A
Other languages
Japanese (ja)
Other versions
JPH0518470B2 (en
Inventor
Shigeru Hasegawa
滋 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26725385A priority Critical patent/JPS62128180A/en
Publication of JPS62128180A publication Critical patent/JPS62128180A/en
Publication of JPH0518470B2 publication Critical patent/JPH0518470B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Weting (AREA)

Abstract

PURPOSE:To form channel stopper regions at the correct positions on the bottoms of the mesa grooves in high concentration and also, in a controlled state as well as to contrive the reduction in the total process time by a method wherein the channel stopper regions are provided in the main surface of the semiconductor substrate on one side at the positions that are to be used as the bottom parts of the mesa grooves, the semiconductor substrate on the other side is bonded to the channel stopper regions and such mesa grooves as expose the channel stoppers on the bottoms of the mesa grooves are formed. CONSTITUTION:A donor impurity is diffused in an N<-> Si substrate 34 to form an N<-> high-concentration layer 33, while an acceptor impurity is selectively diffused in another P-type Si substrate 32 to provide channel stopper P<+> regions 36, and at the same time, an acceptor impurity is diffused from the whole surface of the lower surface as well to provide a contact P<+> region 38. After then, the N<-> region 34 of the first substrate and the side of the channel stopper P<+> regions 36 of the second substrate are bonded in such a way as to come into contact interposing an adhesive surface 37 between them. Lastly, when mesa grooves 35 are dug and are formed in such a way that th P<+> regions 36 are positioned at the bottom parts of the mesa grooves 35, the P<+> regions 36 are turned into channel stoppers.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、半導体装置の製造方法に関し、特にチャネル
ストッパーを有する高逆耐圧メサ型半導体装置について
の改良された製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to an improved method for manufacturing a high reverse breakdown voltage mesa type semiconductor device having a channel stopper.

[発明の技術的背景] メサ型半導体装置においては、素子の特性の安定化や信
頼性向上のため、その表面を保護膜で被覆することが行
われており、そのうちの一方法として熱酸化膜による表
面保護方法がある。 熱酸化膜は、安定した表面が得ら
れ、量産性もよいが、酸化膜中には正の可動イオンが存
在し、これが信頼性、特に高温逆バイアス特性に悪影響
を及ぼす。
[Technical Background of the Invention] In mesa-type semiconductor devices, the surface of the device is coated with a protective film in order to stabilize the characteristics of the device and improve reliability. One of the methods is to coat the surface with a protective film. There are surface protection methods. The thermal oxide film provides a stable surface and is suitable for mass production, but positive mobile ions exist in the oxide film, which adversely affects reliability, particularly high-temperature reverse bias characteristics.

従来、例えば、N” −N−−P構造のメサ型ダイオー
ドでは、第2図に示すように、チャネルストッパー6と
してメサ溝底部付近に1019cm−3以上のアクセプ
タ不純物濃度を有するP+領域を設け、高温逆バイアス
印加時に酸化膜9中の正電荷によりP領域2の表面に反
転層が生ずるのを防ぐ構造が採られている。 なお、1
0は電極、5は電極取出し用P+領域である。
Conventionally, for example, in a mesa diode having an N''-N--P structure, a P+ region having an acceptor impurity concentration of 1019 cm-3 or more is provided near the bottom of the mesa groove as a channel stopper 6, as shown in FIG. A structure is adopted to prevent the formation of an inversion layer on the surface of the P region 2 due to positive charges in the oxide film 9 when a high temperature reverse bias is applied.
0 is an electrode, and 5 is a P+ region for taking out the electrode.

[背景技栴の問題点] 従来、チャネルストッパーP+領域6を設ける方法とし
ては、例えば第3図(a )〜(d )工程図に示す方
法と第4図<a)〜(d )工程図に示す方法が知られ
ている。
[Problems with Background Technique] Conventionally, methods for providing the channel stopper P+ region 6 include, for example, the method shown in FIGS. 3(a) to (d) process diagrams and the method shown in FIGS. The method shown in is known.

第3図に示す方法は、メサ溝を設けた後に溝底にヂ17
ネルストツパーP+領域の拡散をする方法である。 す
なわら、まず、第3図(a )のN−形シリコン基板1
1の図の下表面全面からアクセプタ不純物を、図の上表
面全面からドナー不純物を、ともに表面濃度が1020
c「3になるように拡散し、それぞれP領域12とN+
領tali13を設ける(第3図(b))。 次に、N
+領ii!t13側表面から、P領域12に達する孔を
掘り、N“領域13、N−領Ij!!14及びP領域1
2に跨がるメサ溝15を設ける(第3図(C))。 し
かる後、メサ溝15の底部にアクセプタ不純物を101
10l9以上導入して、チャネルストッパーのP+領域
16を形成する〈第3図(d))。
The method shown in Fig. 3 is to create a mesa groove with a
This is a method of diffusing the Nelstopper P+ region. That is, first, the N-type silicon substrate 1 shown in FIG.
The acceptor impurity is absorbed from the entire lower surface of the figure 1, and the donor impurity is absorbed from the entire upper surface of the figure, both with a surface concentration of 1020.
c "3, respectively, P region 12 and N +
A territory 13 is established (Fig. 3(b)). Next, N
+ territory ii! A hole is dug from the surface on the t13 side to reach P region 12, and N" region 13, N- region Ij!! 14 and P region 1 are formed.
A mesa groove 15 extending over the two is provided (FIG. 3(C)). After that, an acceptor impurity is added to the bottom of the mesa groove 15.
10l9 or more is introduced to form the P+ region 16 of the channel stopper (FIG. 3(d)).

第4図に示す方法は、深いP+領域を拡散させてからメ
サ溝を形成する方法である。 すなわち、まず、第4図
(a )のN−形シリコン基板21をとり、図の下面で
は全面から、図の上面ではメサ溝を設ける位置から、ア
クセプタ不純物をそれぞれ表面濃度が10”cm=、I
Q” cm−3になるように拡散し、P領域22と、メ
サ溝底部となる位置で10” cra−3以上の濃度を
有するP+領域27を形成する(第4図(b))。 次
に、図の上面からドナー不純物を拡散してN+領域23
を設ける(第4図(C))。 しかる後、メサ溝25を
掘って、P“領域27の底部をチャネルストッパー26
として残し、第3図(d )と同じ第4図(d )の構
造を得る。
The method shown in FIG. 4 is a method in which a deep P+ region is diffused and then a mesa groove is formed. That is, first, the N-type silicon substrate 21 shown in FIG. 4(a) is taken, and acceptor impurities are applied from the entire surface on the lower surface of the figure and from the position where the mesa groove is provided on the upper surface of the figure, respectively, to a surface concentration of 10" cm. I
Q" cm-3, forming a P region 22 and a P+ region 27 having a concentration of 10" cr-3 or more at the bottom of the mesa groove (FIG. 4(b)). Next, donor impurities are diffused from the upper surface of the figure to form the N+ region 23.
(Fig. 4(C)). After that, a mesa groove 25 is dug and the bottom of the P" region 27 is covered with a channel stopper 26.
4(d), which is the same as that in FIG. 3(d).

そして、第3図(d )と第4図(d )の各領域を形
成した基板からは、酸化膜及び電極を形成し、そのメサ
溝25の中心線に沿ってベレットに切断すれば、第2図
の構造のダイオードが得られる。
Then, an oxide film and an electrode are formed on the substrate on which the regions shown in FIGS. 3(d) and 4(d) are formed, and the substrate is cut into pellets along the center line of the mesa groove 25. A diode having the structure shown in Figure 2 is obtained.

しかしながら、第3図に示す従来方法では、メサ溝を設
けた後にその底にP+領域の拡散をするので、拡散位置
を正確に制御することがむずかしく、一方、第4図に示
す従来方法では、メサ溝の深さ以上に深く拡散する必要
があるので、拡散時間が長くなるとともに、チャネルス
トッパー26のP+濃度も拡散表面濃度に比べて著しく
低下するとともに、該P+濃度も制御しにくいというと
いう欠点がある。
However, in the conventional method shown in FIG. 3, since the P+ region is diffused at the bottom of the mesa groove after it is formed, it is difficult to accurately control the diffusion position.On the other hand, in the conventional method shown in FIG. Since it is necessary to diffuse deeper than the depth of the mesa groove, the diffusion time becomes longer and the P+ concentration of the channel stopper 26 is significantly lower than the diffusion surface concentration, and the P+ concentration is also difficult to control. There is.

[発明の目的] この発明の目的は、メサ溝底部のチャネルストッパーを
、上記従来方法に比べて、より正確な位置に、高濃度に
、かつその濃度を制御して、高逆耐圧などの特性をもつ
メサ型半導体装置の製造方法を提供することである。 
また、この発明の別の目的は、チャネルストッパー領域
の拡散時間を短縮して、全工程時間の短縮に寄与するメ
サ型半導体装置の製造方法を提供することである。
[Objective of the Invention] An object of the present invention is to place the channel stopper at the bottom of the mesa groove in a more accurate position, at a higher concentration, and to control the concentration, thereby improving characteristics such as high reverse breakdown voltage. An object of the present invention is to provide a method for manufacturing a mesa-type semiconductor device having the following characteristics.
Another object of the present invention is to provide a method for manufacturing a mesa-type semiconductor device that contributes to shortening the overall process time by shortening the diffusion time of the channel stopper region.

[発明の概要1 この発明は、2枚の半導体基体を、金属や有機物などの
ろう材若しくは接着剤の介在なしに、直接の熱圧着によ
り接着する技術を利用して、チャネルストッパー領域を
形成するものである。 すなわち、一方の半導体基体の
主面には、メサ溝の底部となる位置にチャネルストッパ
ー領域を設けておき、これに他方半導体基体を接着し、
溝底に該チャネルストッパーが現れるようなメサ溝を、
該他方半導体基体に形成する方法である。 この方法の
利点は、チャネルストッパーをメサ溝の底の正確な位置
に、制御された高濃度で、かつ短時間に形成できること
である。
[Summary of the Invention 1 This invention forms a channel stopper region by using a technique of bonding two semiconductor substrates by direct thermocompression bonding without the intervention of a brazing material such as a metal or an organic material or an adhesive. It is something. That is, a channel stopper region is provided on the main surface of one semiconductor substrate at a position that will be the bottom of the mesa groove, and the other semiconductor substrate is bonded to this.
Create a mesa groove in which the channel stopper appears at the bottom of the groove.
This is a method of forming the second semiconductor substrate. The advantage of this method is that the channel stopper can be formed at a precise location at the bottom of the mesa groove, in a controlled high concentration, and in a short time.

[発明の実施例] 以下に、この発明を第1図のメサ型ダイオードの工程図
で具体的に説明する。 第1図(al)〜(a2)は第
1半導体基板にかかる工程、第1図(bl)〜(b2)
は第2半導体基板にチャネルストッパー領域などを設け
る工程、第1図(C)〜(d )は第1及び第2半導体
基板を接着してメサ溝を形成する工程である。
[Embodiments of the Invention] The present invention will be specifically explained below with reference to the process diagram of a mesa diode shown in FIG. Fig. 1 (al) to (a2) are steps related to the first semiconductor substrate, Fig. 1 (bl) to (b2)
1C is a step of providing a channel stopper region and the like on the second semiconductor substrate, and FIGS. 1C to 1D are steps of bonding the first and second semiconductor substrates to form a mesa groove.

第1図(al)に6ける31は、不純物濃度が10” 
cr3のN−型シリコン基板である。 次に、第1図(
a2)のように、このN−型シリコン基板31における
図の上表面の全面から、表面濃度が102°cm=にな
るようにドナー不純物を拡散して、N+型の高a度層3
3を形成する。
31 at 6 in Figure 1 (al) has an impurity concentration of 10''
It is a cr3 N-type silicon substrate. Next, Figure 1 (
As shown in a2), a donor impurity is diffused from the entire upper surface of this N- type silicon substrate 31 in the figure to a surface concentration of 102° cm to form an N+ type high a degree layer 3.
form 3.

一方、第1図(bl〉における32は、不純物濃度が1
011018aである別のP型シリコン基板である。
On the other hand, 32 in FIG. 1 (bl>) has an impurity concentration of 1.
011018a is another P-type silicon substrate.

次に、第1図(b2)のように、このシリコン基板32
における図の上表面のメサ溝の底部に相当する部分に、
選択的にアクセプタ不純物を表面濃度が10”c+n−
’となるように拡散して、チャネルストッパーP+領域
36を設けると同時に、そのシリコン基板32の図の下
表面の全面からも、アクセプタ不純物を拡散してコンタ
クトP+領域38を設ける。
Next, as shown in FIG. 1(b2), this silicon substrate 32
In the part corresponding to the bottom of the mesa groove on the upper surface of the figure,
Selectively absorb acceptor impurities at a surface concentration of 10”c+n-
At the same time, an acceptor impurity is diffused from the entire lower surface of the silicon substrate 32 to form a contact P+ region 38.

しかる後、第1図(C)に示すように、第1図(a2)
の基板と、第1図(b2)の基板とを、第1図(a2)
基板のN−領域34と第1図(b2)14板のチャネル
ストッパーP+領域36側とが、接着面37で接するよ
うに接着する。 この接着には、開基板にミラー面を形
成した後、該ミラー面を清浄化し、金属や有機物などの
ろう材若しくは接着剤を介在させずに、清浄な雰囲気中
でシリコン基板どうしを直接圧着するとともに400℃
以上好ましくは1100℃で数時間熱処理をして接着を
強化する。 この接着により、N−領域34とP領域3
2との間にダイオードPN接合が形成される。
After that, as shown in FIG. 1(C), FIG. 1(a2)
The substrate of FIG. 1(b2) and the substrate of FIG. 1(a2)
The N- region 34 of the substrate and the channel stopper P+ region 36 side of the plate 14 in FIG. For this bonding, after forming a mirror surface on an open substrate, the mirror surface is cleaned, and the silicon substrates are directly pressed together in a clean atmosphere without using a metal or organic brazing material or adhesive. with 400℃
The adhesive is preferably strengthened by heat treatment at 1100° C. for several hours. Due to this adhesion, the N- region 34 and the P region 3
A diode PN junction is formed between the two.

そして最後に、第1図(d )に示すごとく、接着した
基板のN+側表面からメサ溝35を掘り、P+領域36
がメサ溝35の底部に位置づるようにすれば、該P+領
域36がチャネルストッパーとなる構造が形成される。
Finally, as shown in FIG. 1(d), a mesa groove 35 is dug from the N+ side surface of the bonded substrate, and a mesa groove 35 is dug from the P+ region 36.
If the P+ region 36 is positioned at the bottom of the mesa groove 35, a structure is formed in which the P+ region 36 serves as a channel stopper.

チャネルストッパー付きメサ型ダイオードとしては、さ
らに第1図(d )の基板に酸化膜と電極を形成した後
、一点鎖線りに沿ってペレットカットして、第2図の構
造のものを得ることができる。
A mesa diode with a channel stopper can be obtained by forming an oxide film and an electrode on the substrate shown in Fig. 1(d), and then cutting the pellet into a pellet along the dashed line to obtain the structure shown in Fig. 2. can.

第2図において、酸化膜は9、電極は10である。In FIG. 2, 9 is the oxide film and 10 is the electrode.

[発明の効果] 本発明の製造方法によれば、チャネルストッパー領域は
第2半導体基体の平面基板上で選択拡散して形成される
ので、メサ溝形成後溝底にチャネルストッパー領域を形
成する従来方法(第3図の方法)に比べて、チャネルス
トッパー領域をより正確な位置に設けることができる。
[Effects of the Invention] According to the manufacturing method of the present invention, the channel stopper region is formed by selective diffusion on the flat substrate of the second semiconductor substrate, which is different from the conventional method of forming the channel stopper region at the bottom of the trench after forming the mesa trench. Compared to the method (the method of FIG. 3), the channel stopper region can be provided in a more accurate position.

また、本発、明の製造方法によれば、チャネルストッパ
ー領域のための拡散は第2半導体基体上で浅く拡散すれ
ばよいから、メサ溝形成前にメサ溝の深さにチャネルス
トッパー領域の深さを加えた深い拡散が必要であった従
来方法(第4図の方法)に比べて、拡散時間が大幅に短
縮でき、しかもチャネルストッパーとして必要な高濃度
の領域を極めて制御された状態で設けることができる。
Further, according to the manufacturing method of the present invention, since the channel stopper region can be diffused shallowly on the second semiconductor substrate, the depth of the channel stopper region is adjusted to the depth of the mesa trench before forming the mesa trench. Compared to the conventional method (method shown in Figure 4), which requires deep diffusion with additional depth, the diffusion time can be significantly shortened, and the highly concentrated region required as a channel stopper can be created in an extremely controlled manner. be able to.

そのように、チャネルストッパー領域が、溝底の正確な
位置に、高濃度で、かつ制御された状態で形成できると
、高逆耐圧のメサ型半導体装置が実現されるとともに、
拡散時間が短時間ですみ、全工程時間を大幅に短縮する
ことができる。
If the channel stopper region can be formed in a controlled manner at a high concentration at the precise position of the groove bottom, a mesa-type semiconductor device with high reverse breakdown voltage can be realized, and
The diffusion time is short, and the entire process time can be significantly shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例のメサ型半導体装置製造方法の主
要工程を半導体基板断面で説明する工程図、第2図は本
発明が関連するメサ型半導体装置の断面図、第3図及び
第4図は従来製造方法の主要工程を半導体基板断面で説
明する工程図である。 31・・・一導電型の第1半導体基体、 32・・・逆
導電型の第2半導体基体、 33・・・一導電型の高濃
度層、 34・・・第1半導体基体の低濃度層、35・
・・メサ溝、 36・・・逆導電型の高濃度層(チャネ
ルストッパー)、 37・・・接着面、 9・・・酸化
膜。 特許出願人 株式会社 東  芝 (al)                  (bl
)(c)                   (d
)      35   35第1図LL 第2図 (a)                (a)第3図
   第4図
FIG. 1 is a process diagram illustrating the main steps of a method for manufacturing a mesa semiconductor device according to an embodiment of the present invention using a cross section of a semiconductor substrate, FIG. 2 is a sectional view of a mesa semiconductor device to which the present invention relates, and FIGS. FIG. 4 is a process diagram illustrating the main steps of the conventional manufacturing method using a cross section of a semiconductor substrate. 31... First semiconductor substrate of one conductivity type, 32... Second semiconductor substrate of opposite conductivity type, 33... High concentration layer of one conductivity type, 34... Low concentration layer of first semiconductor substrate , 35・
... Mesa groove, 36... High concentration layer of opposite conductivity type (channel stopper), 37... Adhesive surface, 9... Oxide film. Patent applicant Toshiba Corporation (al) (bl
)(c)(d
) 35 35Figure 1 LL Figure 2 (a) (a) Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の第1半導体基体における一主面に、同じ
一導電型の高濃度層を設ける工程と、逆導電型の第2半
導体基体の一主面におけるメサ溝の底部となる位置に、
選択的に逆導電型の高濃度層を設ける工程と、該第1半
導体基体の低濃度層の露出する他主面と該第2半導体基
体の選択的に高濃度層を設けた一主面とを熱圧着により
接着する工程と、接着された基体においてメサ溝を、該
第2半導体基体の選択的に設けた高濃度層がメサ溝底部
に位置するように設ける工程とを含むメサ型半導体装置
の製造方法。
1. A step of providing a high concentration layer of the same conductivity type on one main surface of a first semiconductor substrate of one conductivity type, and a step of providing a high concentration layer of the same conductivity type on one main surface of a second semiconductor substrate of an opposite conductivity type at a position that will be the bottom of the mesa groove,
a step of selectively providing a high concentration layer of opposite conductivity type; and the other exposed main surface of the low concentration layer of the first semiconductor substrate and one main surface of the second semiconductor substrate on which the high concentration layer is selectively provided. A mesa-type semiconductor device comprising the steps of: adhering by thermocompression bonding; and providing a mesa groove in the adhered substrate such that the selectively provided high concentration layer of the second semiconductor substrate is located at the bottom of the mesa groove. manufacturing method.
JP26725385A 1985-11-29 1985-11-29 Manufacture of mesa type semiconductor device Granted JPS62128180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26725385A JPS62128180A (en) 1985-11-29 1985-11-29 Manufacture of mesa type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26725385A JPS62128180A (en) 1985-11-29 1985-11-29 Manufacture of mesa type semiconductor device

Publications (2)

Publication Number Publication Date
JPS62128180A true JPS62128180A (en) 1987-06-10
JPH0518470B2 JPH0518470B2 (en) 1993-03-12

Family

ID=17442263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26725385A Granted JPS62128180A (en) 1985-11-29 1985-11-29 Manufacture of mesa type semiconductor device

Country Status (1)

Country Link
JP (1) JPS62128180A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282892A (en) * 2002-03-08 2003-10-03 Internatl Business Mach Corp <Ibm> Method and structure of low-capacitance esd-resistant diode
JP2007311655A (en) * 2006-05-19 2007-11-29 Shindengen Electric Mfg Co Ltd Method for manufacturing semiconductor device
JP2009541979A (en) * 2006-06-21 2009-11-26 インターナショナル・ビジネス・マシーンズ・コーポレーション Bipolar transistor with dual shallow trench isolation and low base resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282892A (en) * 2002-03-08 2003-10-03 Internatl Business Mach Corp <Ibm> Method and structure of low-capacitance esd-resistant diode
JP2007311655A (en) * 2006-05-19 2007-11-29 Shindengen Electric Mfg Co Ltd Method for manufacturing semiconductor device
KR100962832B1 (en) 2006-05-19 2010-06-09 신덴겐코교 가부시키가이샤 Method for manufacturing semiconductor device
JP2009541979A (en) * 2006-06-21 2009-11-26 インターナショナル・ビジネス・マシーンズ・コーポレーション Bipolar transistor with dual shallow trench isolation and low base resistance

Also Published As

Publication number Publication date
JPH0518470B2 (en) 1993-03-12

Similar Documents

Publication Publication Date Title
JP2995723B2 (en) Vertical current semiconductor device using wafer bonding and method of manufacturing the same
US5068704A (en) Method of manufacturing semiconductor device
JP2002261282A (en) Semiconductor device and its manufacturing method
JPH05347413A (en) Manufacture of semiconductor device
KR950014279B1 (en) Semiconductor device and its making method
JPH01205564A (en) Optical semiconductor device and its manufacture
JP4231387B2 (en) Semiconductor device and manufacturing method thereof
JP3432708B2 (en) Semiconductor devices and semiconductor modules
JPS62128180A (en) Manufacture of mesa type semiconductor device
JPH0473615B2 (en)
JP2006210411A (en) Method of manufacturing semiconductor device
JPS6243167A (en) Mesa type semiconductor device
JPH10150004A (en) Semiconductor device and its manufacture
KR100283808B1 (en) Method for producing a twoside blocking power semiconductor
JP2969669B2 (en) Method for manufacturing semiconductor device
JPS613469A (en) Bi-directional zener diode
JPS62221122A (en) Manufacture of semiconductor device
JP2006086414A (en) Reverse blocking insulated gate semiconductor device and its manufacturing method
JPS5961191A (en) Semiconductor device
JPS62159468A (en) Semiconductor device
JPS6334949A (en) Semiconductor device
JPS6084878A (en) Semiconductor device having negative resistance characteristic and manufacture thereof
JPS613468A (en) Bi-directional zener diode
JPS6294924A (en) Manufacture of semiconductor device
JPS6213033A (en) Manufacture of semiconductor device