JPS62127682A - Method and device for plane position detection using laser - Google Patents

Method and device for plane position detection using laser

Info

Publication number
JPS62127682A
JPS62127682A JP26748185A JP26748185A JPS62127682A JP S62127682 A JPS62127682 A JP S62127682A JP 26748185 A JP26748185 A JP 26748185A JP 26748185 A JP26748185 A JP 26748185A JP S62127682 A JPS62127682 A JP S62127682A
Authority
JP
Japan
Prior art keywords
laser
measurement
angle
measurement point
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26748185A
Other languages
Japanese (ja)
Other versions
JPH0411806B2 (en
Inventor
Tatsuyuki Ochi
越智 達之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP26748185A priority Critical patent/JPS62127682A/en
Publication of JPS62127682A publication Critical patent/JPS62127682A/en
Publication of JPH0411806B2 publication Critical patent/JPH0411806B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To eliminate the need for a radio device at a measurement position and to evade an error in measurement due to the malfunction of radio by using laser lighthouses which irradiate two light beams. CONSTITUTION:The laser lighthouses 1A and 1B are swiveled at a uniform swivel speed to irradiate laser light beams comega and ccomega, which are detected by photodiodes 31 of sensors 3A and 3B at measurement points. Then, the detection output is supplied to a direction decision circuit 33 through an amplifying and shaping circuit 32 to judge the sign of angle conversion and photodetection interval measuring circuits 4A and 4B measure the time interval until the two light beams comega and ccomega. A time and angle converting function 51 finds a reference line (axis of linear symmetry about the laser light beams comega and ccomega) the angle between the measurement points A and B from the photodetection time interval. Then, a coordinate calculation function 53 calculates the coordinates of the measurement point C by a coordinate calculating function 53 from said value and a reference point distance inputted to a reference point distance input function 52 and also displays them on a display function 54.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は三角測量の原理ににっで51測地点の座標を求
めるに際し、レーザーを用いるようにした平面位置検出
方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a planar position detection method and apparatus that use a laser when determining the coordinates of 51 survey points based on the principle of triangulation.

[従来の技術] 三角測量によって平面位置を求める従来の方法はトラン
シットを用いて行うのが21通ぐあり、1〜ランジツト
による場合はトランシットを操作する測量士1名とボー
ルをもつ作業員の少なくとも2名の人口を必要とし、ま
た作業時間もかかるものであった。
[Prior Art] The conventional method of determining a planar position by triangulation is to use a transit, and in the case of 1 to 21 transits, at least one surveyor operating the transit and a worker holding a ball are required. This required two people and was time consuming.

そこで本出願人はレーザーを用いて測■を行う方法につ
いて先に特許出願を行った(特願昭60−189688
号)。この方法によれば格別な熟練を要せずして迅速に
測量を行うことができ、かつデータの自動記録や」ンビ
ュータへの入力が可能となり、優れた測量方法であるが
、基準点と副側点間での通信(実用的には無線)が必要
であり、無線の誤作動等による測量誤差の危険性があっ
た。
Therefore, the present applicant previously filed a patent application for a method of measuring using a laser (Japanese Patent Application No. 189688-1988).
issue). This method is an excellent surveying method, as it allows for rapid surveying without requiring special skill, and allows for automatic recording of data and input into a monitor. Communication (in practical terms, wireless) was required between side points, and there was a risk of survey errors due to wireless malfunctions.

[発明が解決しようとする問題魚] 本発明はレーザーを用いた測量方法の長所をそのまま生
かし、基準点ど計測点間での通信に用いる無線装置の誤
作動等による測量誤差を生じることのないレーザーを用
いた測量方法および装置を提供引べく i>されΔ=も
のである。
[Problems to be solved by the invention] The present invention makes full use of the advantages of the surveying method using lasers, and eliminates surveying errors caused by malfunctions of wireless devices used for communication between reference points and measurement points. In order to provide a surveying method and apparatus using a laser, i>and Δ=.

[問題点を解決Jる。lめの手段] (−のため本発明によれば、三角測量の原理によつCI
ll測地点の座標を求めるに際し、2箇所の基準点に線
対象な2光線をむらのない旋回速疫で旋回照射するレー
ザ一燈台を設け、その対象軸を各々他方の基準点の方向
に61!、−・h1訓器側点にはレーザー光を検知りる
センサーおよび正確な時間測定装置を説り−で、レーザ
一燈台により照射される線対象な2光線を検知づる時間
間隙をtl制し、これを演筒装冒に入力して泪測魚と1
ノーリ゛−光線の線対象軸どのなり角度に変換し、イの
角度とあらかじめ計測されている基へ1点間の距離どか
ら訓測地点の座標を筒用する1ノーIF−を用いた平面
4i1置検出方法が提供される。
[Solve the problem.] 1st means]
When determining the coordinates of a survey point, a laser lighthouse is installed at two reference points that irradiates two line-symmetrical beams with an even rotation speed, and each axis of interest is 61 degrees in the direction of the other reference point. ! , - A sensor that detects laser light and an accurate time measurement device are installed at the H1 training station - to control the time gap between detecting two symmetrical beams emitted by a single laser lighthouse. , enter this into the enzutsu installation and read the song as 1
A plane using 1-no-IF- which converts the symmetrical axis of the ray into an angle, and calculates the coordinates of the training point from the angle of A and the distance between one point to the base measured in advance. A 4i1 position detection method is provided.

また前記方法を実MO−=Jるため本発明によれば、基
準点でレーザー光線を水平面内に回転照射し線対象・知
2光線を照Q4する1ノ一ザ一燈台2式と、基準点で他
方のレーザ一燈台の対象軸方向を検出する対象軸検知セ
ン1ノ一2式と、器側点で17−リ゛−光を検知づる4
測点用センリー2式と、レーザー光を受光する時間間隙
を測定Jる時間測定装置2戊と、レーザー光の受光時間
間隙から基へt線とh1測点とのなす角度を求めその値
と基準点間の距離かIう旧制地点の座標を演算し表示1
−る座標演算表示装置1式とからなるレーザーを用いた
W面位置検出装置が提供される。
Further, in order to implement the above method, according to the present invention, there are provided two sets of one lighthouse and one lighthouse, each of which rotates and irradiates a laser beam in a horizontal plane at a reference point to illuminate the line target and the two light beams, and the reference point. Object axis detection sensor 1-2 for detecting the direction of the object axis of the other laser lighthouse, and 4 for detecting the 17-ray light at the side point.
Measurement point sensor 2, time measuring device 2 to measure the time gap for receiving the laser beam, calculate the angle between the t line and the h1 measurement point from the laser beam reception time gap, and calculate the value. Calculate the distance between the reference points or the coordinates of the old system point and display 1
A W-plane position detection device using a laser is provided, which includes a coordinate calculation display device and a coordinate calculation display device.

1実施例] 以下、図面を参照し−C本発明の実施例につき説明する
1 Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず本発明の測量方法を実施でるに際して使用する装置
について説明すると、基準点でレーザー光線を水平面に
むらのない旋回速麿(パ回転照射し線対象な2光線を照
射するレーザ一燈台2式と、基準点で他方のレーザ一燈
台の対象軸方向を検出−りる対9軸検知センリーー2式
と、泪測点でし/ −、−+f−光を検知〕する泪測点
用センυ−?式と、レーザー光を受光する時間間隙を測
定する時間測定装置(受光間隙測定回路)2式と、レー
ザー光の受光時間間隙から基準線(レーザー光線の線対
象軸)と計測点とのなJ角度を求めその値と基準点間の
距離から器側地点の座標を演算し表示する座標演算表示
具■(マイク1」]ンピ」−タ)とを用いる。
First, to explain the equipment used when carrying out the surveying method of the present invention, there are two types of laser lighthouses that emit a laser beam at a reference point on a horizontal plane at an even rotational speed and emit two rays that are symmetrical. Two sets of paired 9-axis detection sensors detect the target axis direction of the other laser lighthouse at the reference point, and a sensor for the light measurement point υ-? which detects the light at the light measurement point. Equation, two time measuring devices (receiving gap measuring circuits) that measure the time gap for receiving laser light, and the J angle between the reference line (axis of symmetry of the laser beam) and the measurement point from the time gap for laser beam reception. A coordinate calculation display device (microphone 1) is used to calculate and display the coordinates of the instrument side point from that value and the distance between the reference points.

第1図および第2図に前記各機器の配置関係をrB L
ノ、Aおよび13は基準点、Cは■測地鉱(であり、基
準点Aには前述のレーザ一燈台1△と他方のレーザ一燈
台113の対象軸方向を検知づる対象軸検知センリーー
ーー2八が設置され、31、た基準点13にはレーデ−
灯台1(3と他方のレーザ一燈台1Aの対象軸方向を検
知46対象軸検知センリ−−2Bが設置され、また計測
地点Cにはレー(アー灯台1Aおよびレーザ一燈台1B
のレーザー光を検知する計測点用センサー3が設置され
、さらに泪測点Cには前述の時間測定装置(受光間隙測
定回路)4および座標演算表示装置(マイクロゴ1ンピ
l−タ)5が設けられる。aは基準点Aと基準点8間の
距離であり、あらかじめh1測づ−る。
Figures 1 and 2 show the arrangement of each of the above devices.
No., A and 13 are reference points, and C is a geodetic stone. At reference point A, there is an object axis detection sensor 28 that detects the direction of the object axis of the aforementioned laser lighthouse 1△ and the other laser lighthouse 113. A radar was installed at reference point 13.
A 46 target axis detection sensor 2B is installed to detect the target axis direction of the lighthouse 1 (3) and the other laser lighthouse 1A.
A measuring point sensor 3 for detecting the laser beam is installed, and the above-mentioned time measuring device (light receiving gap measuring circuit) 4 and coordinate calculating and displaying device (micrometer printer) 5 are installed at the measuring point C. It will be done. a is the distance between reference point A and reference point 8, and h1 is measured in advance.

計測地点Cにお(J61ノーザー光受光時間間隙ど角度
の関係を第3図および第4図を参照し説明覆ると、計測
地点Oで観測可能な値は時間間隙t11.12、↑3・
・・ひある、、基i1+一方向と計測点のなり一角度θ
はθ−(tl−t2 )/ (+ 1:1−t21)x
L1/(ti +t2)x180°で表わせる。
At the measurement point C (explaining the relationship between the J61 norther light reception time interval and angle with reference to Figures 3 and 4, the value observable at the measurement point O is the time interval t11.12, ↑3.
・Hiaru, base i1 + one direction and one angle θ of the measurement point
is θ-(tl-t2)/(+1:1-t21)x
It can be expressed as L1/(ti + t2) x 180°.

ただし11はC60(基準方向に対して反時五1回りレ
ーザー光線)→Cω(基準方向にえjし・て時泪回りレ
ーザー光線)の時間間隙、1−2はCω−C60の時間
間隙C゛ある。
However, 11 is a time gap of C60 (laser beam rotating counterclockwise with respect to the reference direction) → Cω (laser beam rotating counterclockwise with respect to the reference direction), and 1-2 is a time gap C' of Cω-C60. .

第;)図d3よび第6図に1ノ一ザ一燈台1の詳細を示
し、レーザ一燈台1は前述のようにレーザー光線を水平
面内に回転照射し線対象な2光線を照射するもので、レ
ーサー・発振器11と、レーザー発振器11からのレー
ザー光線を線対象な2光線Cω、C60としC照射する
ための固定ミラー12と、レーザー発振器と固定ミラー
が設けられていてむらのない旋回速度で旋回でる回転体
13とからなっている。
Fig. d3 and Fig. 6 show the details of the single laser lighthouse 1, and as mentioned above, the laser lighthouse 1 rotates and irradiates a laser beam in a horizontal plane to irradiate two line-symmetrical beams. A racer/oscillator 11, a fixed mirror 12 for irradiating the laser beam from the laser oscillator 11 as two symmetrical beams Cω and C60, and a laser oscillator and a fixed mirror are provided so that it can rotate at an even rotation speed. It consists of a rotating body 13.

第7図および第8図に基準方向検知センサー2を示し1
、第7図に示4ように基111;h向ではCω、C60
のレーザー光線が同時に受光されるので、これを検出し
、レー量J’−1台1の据付角を微調整する。第8図に
基準プラ向検知ピンーリーーの回路を示し、フーA1ヘ
ダイΔ−ド21、増幅整形回路22、パルス間隙判別回
路23、表示回路2/Iとからなり、レーザー光をフA
トダイA−ドで検出し、Cθ)、C60のシー1アー光
受光時間間隙がrf容時間内であれば表示J−る。
The reference direction detection sensor 2 is shown in FIGS. 7 and 8.
, as shown in FIG. 7, the group 111; in the h direction, Cω, C60
Since these laser beams are received at the same time, this is detected and the installation angle of the laser beam J'-1 is finely adjusted. FIG. 8 shows the circuit of the reference plane direction detection pin, which is composed of a Δ-dead 21 to the fuse A1, an amplification shaping circuit 22, a pulse gap discriminating circuit 23, and a display circuit 2/I.
If the time interval for receiving the SE1A light of C60 is within the rf time, it will be displayed.

第9図に胴側点用センリ−−3を示し、時間計測用、方
向判別用のフAトダイA−ド31.34と、各別の増幅
整形回路32.32と、方向判別回路33とからなって
おり、Cω、CCωC−レーザー光別するために、フ7
II〜ダイオード31.34は平面的に微少距1111
1 !lliれでおり、受光順序により方向判別するよ
うに−する。またレー+f −ffi台1Δ用のセンサ
ーと213用のセンサ−−は高さを変えて区別づるよう
にりる。
Fig. 9 shows the sensor 3 for body side point, which includes a body side point sensor 31, 34 for time measurement and direction discrimination, separate amplification shaping circuits 32, 32, and direction discrimination circuit 33. In order to distinguish between Cω and CCωC-laser beams, a frame 7 is used.
II ~ Diodes 31 and 34 have a small distance 1111 in plan view
1! The direction is determined based on the order in which the light is received. In addition, the sensor for ray+f-ffi stand 1Δ and the sensor for 213 can be distinguished by changing their heights.

第10図に受光時間測定回路4を示し、水晶発振回路4
1、グー1−回路42、カウンター回路43とからなっ
−Cいる。
FIG. 10 shows the light reception time measuring circuit 4, and the crystal oscillation circuit 4
1. It consists of a circuit 42 and a counter circuit 43.

座標演算表示装置5としてはマイク[]」ンビュータを
用いて、直交座標、極座標などに変換し2、座標表示あ
るいは求める座標伯を事前入力することなどにより移動
方向表示などを行う。
As the coordinate calculation/display device 5, a microphone []] converter is used to convert the coordinates into rectangular coordinates, polar coordinates, etc. 2, and display the coordinates or display the direction of movement by inputting the desired coordinates in advance.

第11図に仝体機能図を示し、レーザ一燈台1△、1B
に設けた対象軸検知センサー2A、2Bにより、2光線
Cω、C60の線対象軸が各々他方の基準点A、Bの方
向に合うようにレーザ一燈台1Δ、1Bの据付角を微調
整する。レーザー光線1△、1Bをむらのない旋回速度
で旋回してレーデ−光Cθ)、C60を照射する。レー
ザー光Cω、C60を計測点用センサ−−3A、3Bの
フオトダイオード3L 31でそれぞれ検出し、増幅整
形回路32.32を経て方向判別回路33に人力して角
度変換の符号判断を行い、また受光間隙測定回路4△、
4Bにより2光線Cω、C60を検知する時間間隙を泪
測り−る。そして座標演算表示装置5の時間・角度変換
機能51.51によりレーザー光Cω、C60の受光時
間間隙から基準線(レーザー光Cω、C60の線対象軸
)とR11測A、Bのなす角度を求め、その値と基準点
間距離入力機能52に入力されている基準点間の距離Q
から座標t1算機能53により計測地点Cの座標を計量
し、表示機能57′lで表示する。
Figure 11 shows the body function diagram, and the laser lighthouse 1△, 1B
The installation angles of the laser lighthouses 1Δ and 1B are finely adjusted by the symmetrical axis detection sensors 2A and 2B provided in the laser lighthouses 1Δ and 1B so that the symmetrical axes of the two light beams Cω and C60 align with the directions of the other reference points A and B, respectively. The laser beams 1Δ and 1B are rotated at an even rotation speed to irradiate the laser beams Cθ) and C60. The laser beams Cω and C60 are detected by the photodiodes 3L 31 of the measurement point sensors 3A and 3B, and are manually inputted to the direction determination circuit 33 through the amplification and shaping circuits 32 and 32 to determine the sign of the angle conversion. Light receiving gap measurement circuit 4△,
4B, the time interval for detecting the two light beams Cω and C60 is measured. Then, by using the time/angle conversion function 51.51 of the coordinate calculation display device 5, the angle formed between the reference line (line symmetry axis of the laser beams Cω and C60) and R11 measurements A and B is determined from the reception time interval of the laser beams Cω and C60. , that value and the distance Q between the reference points input to the distance between reference points input function 52
From there, the coordinates of the measurement point C are measured by the coordinate t1 calculation function 53 and displayed by the display function 57'l.

[発明の作用効果1 − 〇 一 本発明による場合は、シー1ア一燈台は線対象な2光線
を照射できるレーザ一燈台を必要としてレーザ一燈台が
やや複雑なしのとなるが、計測地点での無線装置が不要
で全体どしてそれほど]ストアツブにならず、無線の誤
動作によるJ1測誤差を回避することができる3本発明
による利息を挙げれば次のようである。
[Operations and Effects of the Invention 1-〇 In the case of the present invention, one lighthouse in Sea 1A requires one laser lighthouse that can emit two symmetrical beams, so the one laser lighthouse is somewhat complicated, but it is possible to The three advantages of the present invention are as follows: it does not require a wireless device, does not require much storage space overall, and avoids J1 measurement errors due to wireless malfunctions.

■測量が一人で行える。■平面上の任なの位置で計測で
きる。■同時に何点かの位置がR1測できる。■瞬時に
計測できる。■動きながらg1測もiiJ能である。■
取扱いが簡単であって熟練を飲しない。■かなりの精度
で計測できる。■装置は小型、計量で安価に提供できる
。■測量範囲は300m程度まで可能である。■データ
の自動記録やコンピュータへの入力が可能である。
■Surveying can be done by one person. ■Can be measured at any position on a plane. ■R1 measurement of several points can be performed at the same time. ■Can be measured instantly. ■G1 measurement while moving is also iiJ ability. ■
It is easy to handle and does not require skill. ■Can be measured with considerable accuracy. ■The device is small, weighs, and can be provided at low cost. ■The surveying range can be up to about 300m. ■Data can be automatically recorded and input into a computer.

利用分野としては、通常の測量、移動ロボットなどの位
置π1測J3 J:び制御などに用いることができる。
Fields of use include general surveying, position measurement and control of mobile robots, etc.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図および第2図は機
器の配置関係を示す平面図および正面図、第3図および
第4図は計測地点にお(プるレーザー光受光時間間隙と
角度の関係を示づ説明図、第5図および第6図はレーザ
一燈台の正面図および平面図、第7図および第8図は対
象軸検知センサーの配置図および対象軸検知セン4)−
回路図、第9図は計測点用センサー回路図、第10図は
受光間隙測定回路図、第11図は全体機能図である。 IA、1B・・・レーザ一燈台  2A、2B・・・基
準方向検出センサー  3Δ、3B・・・副側点用セン
サー  4A、4B・・・時間測定装置  5・・・座
標演算表示装置 手続補正書 昭和61年12月3日 特許庁長官  黒 1)明 雄 殿 ]、 事件の表示   特願昭6 (、)−26748
1−リ2、 考案の名称 レーザーを用いた角度検出方法および装置3、 補正を
する名 事件との関係  出願人 住 所  東京都港区元赤坂1−Y目2番7月名 称 
 (137)  鹿島建設株式会社代表者  鹿 島 
昭 − 4、代理人〒105 住 所  東京都港区西新橋2T1113番3−づ5、
 補正命令のHイ・1   自発補正6、 補正の対象
     明細再全文7、 補正の内容 (1) 別添全文訂正明細書の通り明a書全文を補正し
まず。 86 添イkJ書類の[」録 (1) 全文訂正明細占      1通全文訂正明細
書 1、発明の名称 レーザーを用いた角度検出方法および装置2、特許請求
の範囲 (1) 基準点に線対象な2光線をむらのない旋回速度
で旋回照射するレー→ノ゛−燈台を設け、その対象軸を
基準線の方向に合せ、一方、計測地点にはレーザー光を
検知するセンサーおよび正確な時間測定装置を設けて、
レーーリ゛−燈台により照射される線対象な2光線を検
知する時間間隙を計測し、これを演算装置に入力して計
測点とレーザー光線の線対象軸とのなす角度に変換する
ことを特徴とするレーザーを用いた角度検出方法。 (2) 基準点でレーザー光線を水平面内に回転照射し
線対象な2光線を照射するレーザ一燈台と、計測点でレ
ーザー光を検知する計測点用センサーと、レーザー光を
受光する時間間隙を測定する時間測定装置と、レーザー
光の受光時間間隙から線対象軸と計測点とのなす角度を
求めその値を表示する角度演算表示装置1式とからなる
ことを特徴とするレーサーを用いた角度検出装置。 3、発明の詳細な説明 [産業上の利用分野] 本発明はレーザーを用いるようにした角度検出方法およ
び装置に関する。 [従来の技術] 三角測量によって角度又は平面位置を求める従来の方法
はトランシットを用いて行うのが普通であり、l−ラン
ジットによる場合は1〜ランシツI・を操作する測量±
1名とボールをもつ作業員の少なくとも2名の人員を必
要とし、また作業時間もかかるものてあった。 そこで本出願人はレーザーを用いて測量を行う方法につ
いて先に特許出願を行った(特願昭60−1.8968
8号)。この方法によれは格別な熟練を要せずして迅速
に測量を行うことができ、かつデータの自動記録やコン
ピュータへの入力が可能となり、優れた測量方法である
か、基準点と計測点間での通信(実用的には無線)が必
要であり、無線の誤作動等による測量誤差の危険性かあ
った。 [発明が解決しようとする問題点] 本発明はレーザーを用いた測量方法の長所をそのまま生
かし、基準点と計測点間での通信に用いる無線装置の誤
作動等による測X誤差を生じることのないレーザーを用
いた測量方法および装置を提供すべくなされたものであ
る。 1問題点を解決するための手段] このため本発明によれば、三角測量の原理によって計測
地点の座標を求めるに際し、2箇所の基準点に線対象な
2光線をむらのない旋回速度で旋回照射するレーザ一燈
台を設け、その対象軸を各々他方の基準点の方向に合せ
、一方、計測地点にはレーサー光を検知するセンサーお
よび正確な時間測定装置を設けて、レーザ一燈台により
照射される線対象な2光線を検知する時間間隙を計測し
、これを演算装置に入力して計測点とレーザー光線の線
対象軸とのなす角度に変換し、その角度とあらかじめ計
測されている基準点間の距離とから計測地点の座標を算
出するレーザーを用いた角度検出方法が提供される。 まな前記方法を実施するなめ本発明による角度検出装置
2台を用いれば、基準点でレーザー光線を水平面内に回
転照射し、線対象な2光線を照射するレーザ一燈台と、
計測点でレーザー光を検知する計測点用センサーと、レ
ーザー光を受光する時間間隙を測定する時間測定装置と
、レーザー光の受光時間間隙から基準線と計測点とのな
す角度を求めその値と基準点間の距離から計測地点の座
標を演算し表示する座標演算表示装置1式とからなるレ
ーザーを用いた角度検出装置が提供される。 [実施例] 以下、図面を参照して本発明の角度検出装置2組を使っ
た実施例につき説明する。 まず本発明の測量方法を実施するに際して使用する装置
について説明すると、基準点でレーサー光線を水平面に
むらのない旋回速度で回転照射し線対象な2光線を照射
するレーザ一燈台と、計測点でレーザー光を検知する計
測点用センサーと、レーザー光を受光する時間間隙を測
定する時間測定装置(受光間隙測定回路)と、レーザー
光の受=  4 − 光時間間隙から基準線(レーザー光線の線対象軸)と計
測点とのなす角度を求めその値と基準点間の距離から計
測地点の座標を演算し表示する座標演算表示装置(マイ
クロコンピュータ)とを用いる。 第1図および第2図に前記各機器の配置関係を示し、A
およびBは基準点、Cは計測地点であり、基準点Aには
前述のレーザ一燈台1人と他方のレーザ一燈台IBの対
象軸方向を検知する対象軸検知センサー2Aが設置され
、また基準点Bにはレーサ一燈台IBと他方のレーザ一
燈台IAの対象軸方向を検知する対象軸検知センサー2
Bか設置され、また計測地点Cにはレーザ一燈台IAお
よびレーザ一燈台1Bのレーザー光を検知する計測点用
センサー3か設置され、さらに計測点Cには前述の時間
測定装置(受光間隙測定回路)4および座標演算表示装
置くマイクロコンピュータ)5が設けられる。gは基準
点Aと基準点3間の距離であり、あらかじめiff測す
る。 計測地点Cにおけるレーサー光受光時間間隙と角度の関
係を第3図および第4図を参照し説明すると、計測地点
Cで観測可能な値は時間間隙t11、 t2 、t3 
・・・である。基準方向と計測点のなす角度θはθ−(
tl −t2 )/(l tl −t2 1 )Xtl
 / (tl +t2 )X180°で表わぜる。 ただしtlはccω(基準方向に対して反時計回りレー
ザー光線)→C(J)(基準方向に対して時計回りレー
ザー光線)の時間間隙、t2はCω−ccωの時間間隙
である。 第5図および第6図にレーザ一燈台1の詳細を示し、レ
ーザ一燈台1は前述のようにレーザー光線を水平面内に
回転照射し線対象な2光線を照射するもので、レーザー
発振器11と、レーザー発振器11からのレーザー光線
を線対象な2光線Cω、COOとして照射するための固
定ミラー12と、レーサー発振器と固定ミラーか設けら
れていてむらのない旋回速度で旋回する回転体13とか
らなっている。 第7図および第8図に基準方向検知センサー2を示し1
、第7図に示すように基準方向ではCω、COOのレー
サー光線が同時に受光されるので、これを検出し、レー
ザ一燈台1の据付角を微調整する。第8図に基準方向検
知センサーの回路を示し、フォトダイオード21、増幅
整形回路22、パルス間隙判別回路23、表示回路24
とからなり、レーザー光をフォトタイオードで検出し、
Cω、COOのレーザー光受光時間間隙か許容時間内で
あれは表示する。 第9図に計測点用センサー3を示し、時間計測用、方向
判別用のフォトダイオード31.34と、各別の増幅整
形口Fl?T32.32と、方向判別回路33とからな
っており、Cω、ccωレーザー光を区別するために、
フ第1・ダイオード31.34は平面的に微少圧#離れ
ており、受光順序により方向判別するようにする。また
レーサ一燈台1人用のセンサーと2B用のセンサーは高
さを変えて区別するようにする。 第10図に受光時間測定回路4を示し、水晶発振回路4
1、ゲート回!I/12、カウンター回路43とからな
っている。 座標演算表示袋W5としてはマイクロコンピュータを用
いて、直交座標、極座標などに変換し、座標表示あるい
は求める座標値を事前入力することなどにより移動方向
表示などを行う。 第11図に全体機能図を示し、レーザ一燈台1人、IB
に設けた対象軸検知センサー2人、2Bにより、2光線
Cω、ccωの線対象軸が各々他方の基準点A、Bの方
向に合うようにレーザ一燈台1A、1Bの据付角を微調
整する。レーザ一燈台IA、1Bをむらのない旋回速度
で旋回してレーザー光Cω、ccωを照射する。レーザ
ー光Cω、ccωを計測点用センサー3A、3Bのフシ
1ヘタイオード31.31でそれぞれ検出し、増幅整形
回路32.32を経て方向判別口#133に入力して角
度変換の符号判断を行い、また受光間隙測定回路4A、
4Bにより2光線C(II)、ccωを検知する時間間
隙を計測する。そして座標演算表示装置5の時間・角度
変換機能51.51によりレーサー光Cω、ccωの受
光時間間隙から基準線(レーザー光Cω、ccωの線対
象軸)と計測点A、Hのなす角度を求め、その値と基準
点間距離入力機能52に入力されている基準点間の距離
Qから座標計算機能53により計測地点Cの座標を計算
し、表示機能54で表示する。 [発明の作用効果] 本発明による場合は、レーザ一燈台は線対象な2光線を
照射できるレーザ一燈台を必要としてレーザ一燈台かや
や複雑なものとなるが、11測地点での無線装置が不要
で全体としてそれはどロス1〜アツプにならず、無線の
誤動作による計測誤差を回避することができる。本発明
による利点を挙げれば次のようである。 ■測量が一人で行える。■平面−1−の任意の位置で計
測できる。■同時に何点かの位置が11測できる。■瞬
時に計測できる。■動きながら計測も可能である。■取
扱いが筒中−であって熟練を要しない。■かなりの精度
で計測できる。■装置は小型、計量で安価に提供できる
。■測量範囲は300m程度まで可能である。■データ
の自動記録やコンビ;、−タへの入力が可能である。 −9= 利用分野としては、逆常の測量、移動ロボッ1〜などの
位置計測および制御などに用いることができる。 4、図面の簡単な説明 図面は本発明の実施例を示し、第1図および第2図は機
器の配置関係を示す平面図および正面図、第3図および
第4図は計測地点におけるレーザー光受光時間間隙と角
度の関係を示す説明図、第5図および第6図はレーザ一
燈台の止面図および平面図、第7図および第8図は対象
軸検知センサーの配置図および対象軸検知センサー回路
図、第9図は計測点用センサー回路図、第10図は受光
間隙測定回路図、第11図は全体機能図である。
The drawings show an embodiment of the present invention, FIGS. 1 and 2 are plan and front views showing the arrangement of equipment, and FIGS. 3 and 4 show the laser beam reception time interval at the measurement point. Figures 5 and 6 are front and plan views of the laser lighthouse, Figures 7 and 8 are layout diagrams of the target axis detection sensor and target axis detection sensor 4). −
FIG. 9 is a circuit diagram of the measurement point sensor, FIG. 10 is a light receiving gap measurement circuit diagram, and FIG. 11 is an overall functional diagram. IA, 1B...Laser lighthouse 2A, 2B...Reference direction detection sensor 3Δ, 3B...Subside point sensor 4A, 4B...Time measuring device 5...Coordinate calculation display device procedure correction form December 3, 1986, Commissioner of the Patent Office Kuro 1) Mr. Akio], Case indication Patent application No. 1983 (,)-26748
1-Li 2. Name of the invention Angle detection method and device using a laser 3. Relationship with the famous case to be corrected Applicant address 1-Y Motoakasaka, Minato-ku, Tokyo, 2nd July Name
(137) Kajima Construction Co., Ltd. Representative Kashima
Sho-4, Agent Address: 1113-3-5, Nishi-Shinbashi 2T, Minato-ku, Tokyo 105
H-1 of the amendment order Voluntary amendment 6, Subject of amendment Restated full text of specification 7, Contents of amendment (1) First, amend the entire text of Form A as per the attached full text corrected specification. 86 Attached kJ document record (1) Full text correction specification 1 full text correction specification 1, title of invention Angle detection method and device using laser 2, claims (1) Line symmetry at reference point A lighthouse is installed that rotates and irradiates two beams of light at an even rotational speed, and its target axis is aligned with the direction of the reference line.Meanwhile, a sensor that detects the laser beam and an accurate time measurement are installed at the measurement point. Set up a device,
It is characterized by measuring the time gap between detecting two symmetrical beams irradiated by a Rayleigh lighthouse, inputting this to a calculation device and converting it into an angle between the measurement point and the symmetrical axis of the laser beam. Angle detection method using laser. (2) A laser lighthouse that rotates a laser beam in a horizontal plane at a reference point and emits two symmetrical beams, a measurement point sensor that detects the laser beam at the measurement point, and measures the time gap between when the laser beam is received. Angle detection using a racer characterized by comprising: a time measuring device for detecting laser beams; and a set of angle calculation and display devices for determining the angle between the line symmetry axis and the measurement point from the reception time gap of the laser beam and displaying the value. Device. 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an angle detection method and apparatus using a laser. [Prior Art] The conventional method of determining an angle or plane position by triangulation is usually carried out using a transit, and in the case of l-rangit, it is a survey that operates from 1 to 1.
It required at least two people, one person and a worker holding the ball, and the work took a long time. Therefore, the present applicant previously filed a patent application for a method of surveying using a laser (Japanese Patent Application No. 1,8968-1983).
No. 8). This method allows for rapid surveying without requiring special skill, and also enables automatic recording of data and input into a computer, making it an excellent surveying method. Communication (in practical terms, wireless) was required between the two, and there was a risk of survey errors due to radio malfunctions. [Problems to be Solved by the Invention] The present invention makes full use of the advantages of the surveying method using a laser, and solves the problem of X measurement errors caused by malfunctions of wireless devices used for communication between reference points and measurement points. The purpose of this work was to provide a surveying method and device using a laser that does not require a conventional method. Means for Solving Problem 1] Therefore, according to the present invention, when determining the coordinates of a measurement point by the principle of triangulation, two light beams that are symmetrical to two reference points are rotated at an even rotation speed. A laser lighthouse for irradiation is provided, and each target axis is aligned with the direction of the other reference point.Meanwhile, a sensor for detecting the laser light and an accurate time measuring device are provided at the measurement point, and the laser lighthouse is used to irradiate the laser beam. The time gap between detecting two line-symmetrical beams is measured, and this is input into a calculation device and converted into an angle between the measurement point and the line-symmetrical axis of the laser beam. An angle detection method using a laser that calculates the coordinates of a measurement point from the distance is provided. If two angle detection devices according to the present invention are used to carry out the method described above, one laser lighthouse that rotates and irradiates a laser beam in a horizontal plane at a reference point and irradiates two symmetrical beams;
A measurement point sensor that detects the laser beam at the measurement point, a time measurement device that measures the time gap in which the laser beam is received, and a time measurement device that measures the angle between the reference line and the measurement point from the laser beam reception time gap and calculates its value. An angle detection device using a laser is provided, which includes a set of coordinate calculation and display devices that calculate and display the coordinates of a measurement point from the distance between reference points. [Example] Hereinafter, an example using two sets of angle detection devices of the present invention will be described with reference to the drawings. First, we will explain the equipment used to carry out the surveying method of the present invention: a single laser lighthouse that rotates and irradiates a racer beam on a horizontal plane at a uniform turning speed at a reference point, and irradiates two symmetrical beams; A measurement point sensor that detects the laser beam, a time measurement device (light reception gap measurement circuit) that measures the time gap in which the laser beam is received, and a reference line from the light time gap (laser beam line target). A coordinate calculation and display device (microcomputer) is used to calculate and display the coordinates of the measurement point from that value and the distance between the reference points. Figures 1 and 2 show the arrangement of each of the above-mentioned devices, and A
, B is a reference point, and C is a measurement point. At the reference point A, an object axis detection sensor 2A is installed to detect the direction of the object axis of one laser lighthouse and the other laser lighthouse IB, and the reference point A is also a reference point. At point B, there is a target axis detection sensor 2 that detects the target axis direction of one laser lighthouse IB and the other laser lighthouse IA.
A measurement point sensor 3 is installed at measurement point C to detect the laser beams from laser lighthouse IA and laser lighthouse 1B, and measurement point C is equipped with the above-mentioned time measurement device (light receiving gap measurement device). A circuit) 4 and a coordinate calculation/display device/microcomputer 5 are provided. g is the distance between the reference point A and the reference point 3, and the IF is measured in advance. The relationship between the laser beam reception time gap and the angle at measurement point C will be explained with reference to FIGS. 3 and 4. The values that can be observed at measurement point C are the time gaps t11, t2, t3.
...is... The angle θ between the reference direction and the measurement point is θ−(
tl −t2 )/(l tl −t2 1 )Xtl
/ (tl + t2) x 180°. However, tl is the time interval of ccω (laser beam counterclockwise with respect to the reference direction)→C(J) (laser beam clockwise with respect to the reference direction), and t2 is the time interval of Cω−ccω. FIGS. 5 and 6 show details of the laser lighthouse 1, which, as described above, rotates a laser beam in a horizontal plane and emits two symmetrical beams, and includes a laser oscillator 11, It consists of a fixed mirror 12 for irradiating the laser beam from a laser oscillator 11 as two symmetrical beams Cω and COO, and a rotating body 13 which is provided with a laser oscillator and a fixed mirror and rotates at an even rotation speed. There is. The reference direction detection sensor 2 is shown in FIGS. 7 and 8.
As shown in FIG. 7, the Cω and COO racer beams are simultaneously received in the reference direction, so this is detected and the installation angle of the laser lighthouse 1 is finely adjusted. FIG. 8 shows the circuit of the reference direction detection sensor, which includes a photodiode 21, an amplification shaping circuit 22, a pulse gap discrimination circuit 23, and a display circuit 24.
The laser beam is detected by a photodiode,
If the laser beam reception time gap of Cω and COO is within the allowable time, it is displayed. FIG. 9 shows the measurement point sensor 3, which includes photodiodes 31 and 34 for time measurement and direction determination, and separate amplification and shaping ports Fl? It consists of T32.32 and a direction discrimination circuit 33, and in order to distinguish between Cω and ccω laser beams,
The first diodes 31 and 34 are spaced apart by a slight pressure # in plane, and the direction is determined based on the order of light reception. Also, the sensor for the single-person laser lighthouse and the sensor for 2B will be differentiated by changing their heights. FIG. 10 shows the light reception time measuring circuit 4, and the crystal oscillation circuit 4
1. Gate time! It consists of an I/12 and a counter circuit 43. As the coordinate calculation display bag W5, a microcomputer is used to convert the coordinates into orthogonal coordinates, polar coordinates, etc., and display the coordinates or display the movement direction by inputting the coordinate values to be obtained in advance. Figure 11 shows the overall functional diagram, one laser lighthouse, one person, IB
Finely adjust the installation angles of the laser lighthouses 1A and 1B so that the line symmetry axes of the two light beams Cω and ccω align with the directions of the other reference points A and B, respectively, using the symmetrical axis detection sensors 2B installed at the . Laser lighthouses IA and 1B are rotated at an even rotation speed to irradiate laser beams Cω and ccω. The laser beams Cω and ccω are respectively detected by the frame 1 head diode 31.31 of the measurement point sensors 3A and 3B, and are inputted to the direction determination port #133 via the amplification and shaping circuit 32.32 to determine the sign of the angle conversion. In addition, the light receiving gap measurement circuit 4A,
4B measures the time interval for detecting the two light beams C(II) and ccω. Then, by using the time/angle conversion function 51.51 of the coordinate calculation display device 5, the angle formed between the reference line (line symmetry axis of the laser beams Cω and ccω) and measurement points A and H is determined from the reception time gap of the laser beams Cω and ccω. , the coordinates of the measurement point C are calculated by the coordinate calculation function 53 from this value and the distance Q between the reference points inputted to the distance between reference points input function 52, and are displayed on the display function 54. [Operations and Effects of the Invention] In the case of the present invention, the single laser lighthouse requires a single laser lighthouse that can emit two symmetrical beams, making it somewhat complicated, but the wireless equipment at the 11 survey points is This is unnecessary and does not result in an increase in loss as a whole, and measurement errors due to wireless malfunction can be avoided. The advantages of the present invention are as follows. ■Surveying can be done by one person. ■Can be measured at any position on plane -1-. ■11 positions can be measured at the same time. ■Can be measured instantly. ■It is also possible to measure while moving. ■Easy to handle, no skill required. ■Can be measured with considerable accuracy. ■The device is small, weighs, and can be provided at low cost. ■The surveying range can be up to about 300m. ■It is possible to automatically record data and input it to combination data. -9= Fields of use include inverse surveying, position measurement and control of mobile robots 1 and the like. 4. Brief description of the drawings The drawings show embodiments of the present invention. Figs. 1 and 2 are plan and front views showing the arrangement of equipment, and Figs. 3 and 4 show the laser beam at the measurement point. An explanatory diagram showing the relationship between the light reception time interval and the angle, Figures 5 and 6 are the top view and top view of the laser lighthouse, and Figures 7 and 8 are the arrangement of the target axis detection sensor and the target axis detection. FIG. 9 is a sensor circuit diagram for measuring points, FIG. 10 is a light receiving gap measurement circuit diagram, and FIG. 11 is an overall functional diagram.

Claims (2)

【特許請求の範囲】[Claims] (1)三角測量の原理によつて計測地点の座標を求める
に際し、2箇所の基準点に線対象な2光線をむらのない
旋回速度で旋回照射するレーザ一燈台を設け、その対象
軸を2箇所の基準点を結ぶ基準線の方向から適当に合せ
、一方、計測地点にはレーザー光を検知するセンサーお
よび正確な時間測定装置を設けて、レーザー燈台により
照射される線対象な2光線を検知する時間間隙を計測し
、これを演算装置に入力して計測点とレーザー光線の線
対象軸とのなす角度に変換し、その角度と各々基準線と
対象軸のなす角度と、あらかじめ計測されている基準点
間の距離とから計測地点の座標を算出することを特徴と
するレーザーを用いた平面位置検出方法。
(1) When determining the coordinates of a measurement point using the principle of triangulation, a laser lighthouse is installed at two reference points that irradiates two line-symmetrical beams at an even rotational speed, and the target axis is set at two points. Align it appropriately from the direction of the reference line connecting the reference points of the location, and on the other hand, install a sensor that detects laser light and an accurate time measurement device at the measurement point to detect the two symmetrical beams emitted by the laser lighthouse. The time gap is measured, and this is input into a calculation device to convert it into an angle between the measurement point and the symmetrical axis of the laser beam. A planar position detection method using a laser, characterized by calculating the coordinates of a measurement point from the distance between reference points.
(2)基準点でレーザー光線を水平面内に回転照射し線
対象な2光線を照射するレーザー燈台2式と、2つの基
準点を結ぶ基準線の方向と他方のレーザー燈台の線対象
軸との角度を検出する基準方向検知センサー2式と、計
測点でレーザー光を検知する計測点用センサー2式と、
レーザー光を受光する時間間隙を測定する時間測定装置
2式と、レーザー光の受光時間間隙から線対象軸と計測
点とのなす角度を求めその値と各々基準線と対象軸との
角度と基準点間の距離から計測地点の座標を演算し表示
する座標演算表示装置1式とからなることを特徴とする
レーザーを用いた平面位置検出装置。
(2) Two types of laser lighthouses that rotate a laser beam in a horizontal plane at a reference point and emit two line-symmetrical beams, and the angle between the direction of the reference line connecting the two reference points and the line-symmetrical axis of the other laser lighthouse. 2 sets of reference direction detection sensors that detect
Two sets of time measurement devices that measure the time gap between receiving laser beams, and the angle between the line target axis and the measurement point are calculated from the laser beam reception time gap, and the angle between the reference line and the target axis and the reference value are calculated. 1. A planar position detection device using a laser, comprising a set of coordinate calculation and display devices that calculate and display coordinates of measurement points from distances between points.
JP26748185A 1985-11-29 1985-11-29 Method and device for plane position detection using laser Granted JPS62127682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26748185A JPS62127682A (en) 1985-11-29 1985-11-29 Method and device for plane position detection using laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26748185A JPS62127682A (en) 1985-11-29 1985-11-29 Method and device for plane position detection using laser

Publications (2)

Publication Number Publication Date
JPS62127682A true JPS62127682A (en) 1987-06-09
JPH0411806B2 JPH0411806B2 (en) 1992-03-02

Family

ID=17445444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26748185A Granted JPS62127682A (en) 1985-11-29 1985-11-29 Method and device for plane position detection using laser

Country Status (1)

Country Link
JP (1) JPS62127682A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115689U (en) * 1988-01-29 1989-08-03
JPH0232081U (en) * 1988-08-22 1990-02-28
JP2005265832A (en) * 2004-02-19 2005-09-29 Topcon Corp Coordinate measuring system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56117110A (en) * 1980-02-20 1981-09-14 Kansai Electric Power Co Inc:The Measuring method of position of drifting buoy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56117110A (en) * 1980-02-20 1981-09-14 Kansai Electric Power Co Inc:The Measuring method of position of drifting buoy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115689U (en) * 1988-01-29 1989-08-03
JPH0232081U (en) * 1988-08-22 1990-02-28
JP2005265832A (en) * 2004-02-19 2005-09-29 Topcon Corp Coordinate measuring system

Also Published As

Publication number Publication date
JPH0411806B2 (en) 1992-03-02

Similar Documents

Publication Publication Date Title
ES2819018T3 (en) Coordinate measurement system and method
JP4553573B2 (en) Method and apparatus for calibration of measurement systems
EP0465584B1 (en) An arrangement for performing position determination
US8269984B2 (en) Distance-measuring method for a device projecting a reference line, and such a device
US7285793B2 (en) Coordinate tracking system, apparatus and method of use
US6381006B1 (en) Spatial positioning
US20150346319A1 (en) Method and Device for Determining the Position Coordinates of a Target Object
JPH0455242B2 (en)
US20090279106A1 (en) Method of locating an object in 3-d
JP2009503538A (en) Measuring method and measuring apparatus used in measuring system
US4688937A (en) Methods of, and systems, for monitoring and/or controlling mobile cutting means
CN101010563A (en) Combination laser system and global navigation satellite system
AU2008250667A1 (en) Method for determining position, laser beam detector and detector-reflector device for a system for determining position
CN107255820A (en) A kind of laser ranging system
JP4371406B2 (en) Orbit measurement system and orbit measurement method
CA2357634C (en) Georeferenced testing system
US20200264282A1 (en) Surveying system having a rotating mirror
US5046259A (en) Underwater measuring systems and methods
JP6221197B2 (en) Laser tracker
JPS62127682A (en) Method and device for plane position detection using laser
JP6253932B2 (en) Direction detection device and survey system
JPH10267655A (en) Position-probing device of excavating pipe-jacking machine and method therefor
JP3705863B2 (en) Height measuring device and height measuring method
JPH04309809A (en) Inside tunnel measuring method in tunnel excavation work
JPH05172516A (en) Apparatus and method for automatically measuring position and attitude of moving body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees