JPS62126777A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS62126777A
JPS62126777A JP60266974A JP26697485A JPS62126777A JP S62126777 A JPS62126777 A JP S62126777A JP 60266974 A JP60266974 A JP 60266974A JP 26697485 A JP26697485 A JP 26697485A JP S62126777 A JPS62126777 A JP S62126777A
Authority
JP
Japan
Prior art keywords
light
solid
state
optical
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60266974A
Other languages
Japanese (ja)
Inventor
Takahiro Nakamura
隆広 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba AVE Co Ltd
Original Assignee
Toshiba Corp
Toshiba Audio Video Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Audio Video Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP60266974A priority Critical patent/JPS62126777A/en
Publication of JPS62126777A publication Critical patent/JPS62126777A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a resolution without increasing the number of picture elements by moving in parallel a part of incident light on by every prescribed field with a positive optical element, and increasing spuriously the number of picture elements of a solid-state image pickup element. CONSTITUTION:Reflected light from an object D, after it is polarized in a prescribed direction at a polarization plate 12 through an objective lens 11, is made incident on a TN type liquid crystal 13. On the liquid crystal 13, the impression/non-impression of an AC driving voltage Vc is applied at every field period from a driving control circuit 16, and when impressed, only the ordinary ray of incident polarization light is transmitted, and in a non-impression time, a 90 deg. rotatory characteristic is generated, and only the extraordinary ray of the incident polarization light is transmitted. And on a solid-state image pickup element 15, an optical image moved with a 1/2 of picture element at every field is image-formed. At the element 15, a horizontal read pulse delayed by period of 1/2 of picture element is outputted from the circuit 16, and an image is controlled so as to be always positioned at the same position.

Description

【発明の詳細な説明】 [発明の技術分野] この発明はCOD、MOS等の固体me水素子用いた固
体系像装置に係り、特にその^解像度化に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a solid-state image device such as COD or MOS using solid me hydrogen atoms, and particularly to resolution improvement thereof.

[発明の技術的背景とその問題点] 近年、撮@装置にあっては、撮像管に代わって固体me
表装置多く採用されつつある。ところが、この固体ac
!i1g置に用いられるCCD、MO8Wの固体11i
i像素子は従来の撮像管に比して寿命が長く、焼付きや
残像が少ない等の長所を有しているものの、映像信号を
離散的にとらえるため、画素のサンプリング周期に応じ
たナイキスト限界を越える信号が低い周波数に折返して
妨害信号となり、高い解像度を得ることが難しいという
欠点を有する。この欠点は画素数を多くすることによっ
て解消できるが、半導体素子の高密度化にも当然限界が
あり、現在までに製造されている固体撮像素子ではその
画素数は充分であるとはいえない。
[Technical background of the invention and its problems] In recent years, solid-state cameras have been used instead of image pickup tubes in imaging devices.
Table devices are increasingly being adopted. However, this solid ac
! CCD used for i1g, MO8W solid 11i
Although i-image elements have advantages over conventional image pickup tubes, such as a longer lifespan and less burn-in and afterimages, they capture video signals discretely, so they are subject to the Nyquist limit depending on the pixel sampling period. This has the drawback that signals exceeding 200 nm are reflected back to lower frequencies and become interfering signals, making it difficult to obtain high resolution. This drawback can be overcome by increasing the number of pixels, but of course there is a limit to increasing the density of semiconductor elements, and it cannot be said that the number of pixels of the solid-state image sensors manufactured to date is sufficient.

そこで、従来より固体1lil像素子の画素数を同一に
したまま解像度を向上させる方法が種々考えられている
。その一つの方法として、第6図に示すように、対物レ
ンズAによって感光面上に被写体像が結合される固体W
i像素子Bを圧電素子Cで1フイールド毎に画素ピッチ
の1/2ずつ図中矢印の方向に移動させることによって
前述した折返し信号を1フイールド毎に反転させ、2フ
イ一ルド間の和の信号を求めて擬似的に画素数を2倍と
することによって解像度を向上させようとする方式が提
案されている。しかしながら、この方式では電気的に結
合された固体踊flA素子Bを機械的に震動させなくな
でならないので、充分な信頼性、耐久性を得ることがで
きないばかりでなく、外部からの震動に弱く、マイクロ
フォン一体式のカメラでは撮像素子Bの震動が雑音とな
ってマイクロフォンに拾われてしまう等の欠点により、
あまり実用的ではない。
Therefore, various methods have been considered to improve the resolution while keeping the number of pixels of a solid-state 1 liter image element the same. As one method, as shown in FIG.
By moving the i-image element B by 1/2 of the pixel pitch for each field in the direction of the arrow in the figure using the piezoelectric element C, the folded signal described above is inverted for each field, and the sum of the two fields is A method has been proposed in which the resolution is improved by calculating the signal and pseudo-doubling the number of pixels. However, in this method, it is necessary to mechanically vibrate the electrically coupled solid-state dancing flA element B, which not only fails to provide sufficient reliability and durability, but also makes it vulnerable to external vibrations. , cameras with an integrated microphone have drawbacks such as the vibration of the image sensor B becoming noise that is picked up by the microphone.
Not very practical.

また、他の方法として、結像光学系内にプリズム状の電
気光学素子を配して1フイールド毎に光学像を移動させ
、結果的に第6図に示した方式と同楊に高解像度化を図
った方式がある。しかしながら、この方式では結像光学
系と撮像素子との間にプリズム状の電気光学素子を配し
ているため、光学像の移動に伴って結像面の角度も変化
してしまうので、2フイ一ルド間の空間周波数特性が異
なってしまって上記折返し信号が完全には反転せず、こ
れによって十分な高解像度化の効果は青られない。この
方式において、空間周波数特性を変化させずに光学像を
移動させるためには、電気光学素子を結像光学系のフー
リエ面に配ざなければならないので、特殊な対物レンズ
しか用いることができない。
In addition, as another method, a prism-shaped electro-optical element is placed in the imaging optical system to move the optical image for each field, resulting in high resolution similar to the method shown in Figure 6. There is a method that aims to achieve this. However, since this method uses a prism-shaped electro-optic element between the imaging optical system and the image sensor, the angle of the imaging plane changes as the optical image moves. Since the spatial frequency characteristics between the two leads are different, the above-mentioned folded signal is not completely inverted, and as a result, the effect of increasing the resolution sufficiently is not diminished. In this method, in order to move the optical image without changing the spatial frequency characteristics, the electro-optic element must be placed on the Fourier plane of the imaging optical system, so only a special objective lens can be used.

「発明の目的」 この発明は上記のような問題を改善するためになされた
もので、簡易な構成でかつ結像光学系の種類を選ぶこと
なく、固体′@像素子の画素数を増加せずに解像度を向
上させることのできる固体系像装置を提供することを目
的とする。
"Purpose of the Invention" This invention was made to improve the above-mentioned problems, and it is possible to increase the number of pixels of a solid-state image element with a simple configuration and without selecting the type of imaging optical system. It is an object of the present invention to provide a solid-state image device that can improve resolution without reducing image quality.

[発明の概要] すなわち、この発明に係る固体銀像装置は、固体’am
素子と結像光学系との間に配設した能動光学素子により
、入射光の少なくとも一部を所定フィールド毎に平行移
動させ、光学像の空間周波数特性を変化させることなく
光学像を移動させることにより、疑似的に固体顕像素子
の画素数を増加させ、これによって撮像素子の画素数を
増加させることなく高解像度化を施したことを特徴とす
るものである。
[Summary of the Invention] That is, the solid silver image device according to the present invention is a solid silver image device according to the present invention.
An active optical element disposed between the element and an imaging optical system moves at least a portion of the incident light in parallel for each predetermined field, and moves the optical image without changing the spatial frequency characteristics of the optical image. Accordingly, the number of pixels of the solid-state imaging device is increased in a pseudo manner, thereby achieving high resolution without increasing the number of pixels of the imaging device.

[発明の実施例1 以下、第1図及び第2図を参照してこの発明の一実施例
を詳細に説明する。
[Embodiment 1 of the Invention Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2.

第1図はその構成を示すもので、図中11は対物レンズ
、12は喝光板、13はTN型液晶、14は複屈折板、
15は固体撮像素子である。これらはそれぞれ直線(光
軸)Cに対して垂直に所定間隔を置いて配置されており
、対物レンズ11で集光された入射光は偏光板12、T
N型液晶13、複屈折板14を介して固体娠@素子15
の受光面に照射されるようになっている。また16は駆
動制御回路で、この駆動制御回路16は上記TN型液晶
14に交流駆動電圧VCを送ると共に固体11a像素子
15に水平及び垂直読出しパルスPh、Pvを生成出力
するものである。上記水平及び垂直読出しパルスPh 
、Pvで順次読み出された固体擾@素子15の映像信号
はバッファ17を介して出力端子18より取出されるよ
うになっている。
Figure 1 shows its configuration, in which 11 is an objective lens, 12 is a light plate, 13 is a TN type liquid crystal, 14 is a birefringent plate,
15 is a solid-state image sensor. These are each arranged at a predetermined interval perpendicular to a straight line (optical axis) C, and the incident light focused by the objective lens 11 is directed to the polarizing plate 12, T
N-type liquid crystal 13, solid state element 15 via birefringent plate 14
The light is irradiated onto the light-receiving surface of the Reference numeral 16 denotes a drive control circuit which sends an AC drive voltage VC to the TN type liquid crystal 14 and generates and outputs horizontal and vertical readout pulses Ph and Pv to the solid-state image element 11a. Above horizontal and vertical read pulse Ph
, Pv, the video signals of the solid-state waveform element 15 are taken out from the output terminal 18 via the buffer 17.

ここで、上記偏光板12は対物レンズ11からの入射光
を所定方向に嬬光するものである。上記T\型液晶13
は、交流の駆動電圧VCが印加されるとき非旋光特性と
なって入射偏光の常光のみを透過し、交流の駆動電圧V
Cが印加されないとき90°旋光特性となって入射偏光
の異常光のみを透過するものである。上記複屈折板14
は受光面に対して傾いた光学軸mを持っており、TN型
液晶13を通過した光を偏光方向に応じて、固体路像素
子15の画素の水平繰返しピッチの1./2の幅で、常
光と異常光の互いに平行な2光東に2分するものである
。つまり、TN型液晶13に駆動電圧が印加されるとき
は常光のみが複屈折板14を透過し、駆動電圧無印加時
には異常光のみ複屈折板14を透過するようになってい
る。
Here, the polarizing plate 12 deflects the incident light from the objective lens 11 in a predetermined direction. Above T\ type liquid crystal 13
has a non-optical rotation characteristic when an AC driving voltage VC is applied, and transmits only the ordinary incident polarized light, and the AC driving voltage V
When C is not applied, it has a 90° optical rotation characteristic and only the extraordinary light of the incident polarization is transmitted. The birefringent plate 14
has an optical axis m inclined with respect to the light-receiving surface, and the light passing through the TN liquid crystal 13 is divided into 1. /2 width, it divides the light into two parallel east lights: the ordinary light and the extraordinary light. That is, when a driving voltage is applied to the TN liquid crystal 13, only ordinary light passes through the birefringent plate 14, and when no driving voltage is applied, only extraordinary light passes through the birefringent plate 14.

すなわち、上記構成において駆動制御回路16は、TN
型液晶13に対して1フイ一ルド期間毎に交流駆vJ’
FR圧VCの印加、無印加を切換えており、また固体1
al11素子15に対する水平読出しパルスphの出力
タイミングを1フイ一ルド期間毎に1/2画素分の期間
分だけ遅f、するように切換えている。
That is, in the above configuration, the drive control circuit 16
AC drive vJ' for each field period for type liquid crystal 13
Application of FR pressure VC is switched between application and non-application, and solid 1
The output timing of the horizontal readout pulse ph to the al11 element 15 is switched to be delayed by a period corresponding to 1/2 pixel every field period.

ここで、例えば図中りで示す被写体からの反射光は、T
N型液晶13に交流駆動電圧VCが印加されているとき
常光のみ液晶13を通過するため、複屈折tlii14
に照射された光は図中実線で示す光路をとり、無印加時
には異常光のみ液晶13を通過するため、複屈折板14
に照射された光は点線で示す光路をとることになる。つ
まり、固体ill素子15に結像される光学像は1フイ
ールド毎に1/2画素ピッチで移動させられると共に、
読出しのタイミングも1/2画素分の期間分だけずれて
いるため、賊像素子15からの映像出力の画像において
は像が常に同一の位置にくることになる。この出力画像
の上に固体wi@索子15の画素の位置をあてはめてみ
ると、第2図に示すように、奇数フィールドでは実線で
示す位@aで、偶数フィールドではFli線で示す位1
bで一致することがわかる。
Here, for example, the reflected light from the subject shown in the figure is T
When the AC drive voltage VC is applied to the N-type liquid crystal 13, only ordinary light passes through the liquid crystal 13, so birefringence tlii14
The light irradiated on takes the optical path shown by the solid line in the figure, and when no voltage is applied, only the extraordinary light passes through the liquid crystal 13, so the birefringent plate 14
The light irradiated on will take the optical path shown by the dotted line. In other words, the optical image formed on the solid-state ill element 15 is moved at a 1/2 pixel pitch for each field, and
Since the readout timing is also shifted by a period corresponding to 1/2 pixel, the image of the image output from the image element 15 is always at the same position. When we apply the pixel positions of the solid wi@filter 15 to this output image, as shown in Fig. 2, in the odd field, the position @a is indicated by the solid line, and in the even field, the position 1 is indicated by the Fli line.
It can be seen that b matches.

したがって、上記の構成によれば、偶数フィールドと奇
数フィールドではそれぞれ画素の位置を補間するように
信号を捕えるため、画素の繰返し周期近くの周波数信号
による折返し信号は反転され、2フイ一ルド分を加算し
た画像ではこの折返し信号が消えて2倍の画素数によっ
て捕えた場合と同じ高解象の画素が得られる。また、2
フイ一ルド分の加降を行なわない場合でも、折返し信号
はフリッカ−状態となるため、人間の目に捕えられ雌く
なり、ここに高解像度化の効果が得られる。
Therefore, according to the above configuration, since signals are captured in such a way as to interpolate the pixel position in each of the even and odd fields, the folded signal due to the frequency signal near the pixel repetition period is inverted, and the signal corresponding to two fields is inverted. In the added image, this aliasing signal disappears, and pixels with the same high resolution as captured with twice the number of pixels are obtained. Also, 2
Even if the signal is not raised or lowered by one field, the return signal will be in a flickering state, which will be caught by the human eye and will be noticeable, thereby providing the effect of higher resolution.

ざらに、第3図乃至第5図を参照してこの発明に係る他
の実施例について説明する。但し、第3図乃至第5図に
おいて、それぞれ第1閏と同一部分には同一符号を付し
て示し、ここでは異なる部分についてのみ述べる。
Another embodiment of the present invention will be briefly described with reference to FIGS. 3 to 5. However, in FIGS. 3 to 5, the same parts as the first leap are given the same reference numerals, and only the different parts will be described here.

第3図は上記偏光板12に代わって喝光ハーフミラーを
用いた場合の構成を示すものである。すなわち、前記対
物レンズ11に入射された光は複屈折板12及びTN型
液晶13を介して偏光ハーフミラ−19の受光面に照射
される。この偏光ハーフミラ−19は入射光を光軸2に
沿って第1の固体ml像素子15aに導くと共に、一部
を反a1させて反射光軸Q−に治って第2の固体比@素
子15bに導くものである。上記TN型液晶13は前記
駆動制御回路16からの交流駆8電圧VCによって1フ
イールド毎に切換υIIされ、第1及び第2の固体11
i1 (1素子15a 、 15bは、光軸λ及び反!
II、l光軸λ−について17′4画素ピッチだけずら
せて設けられており、それぞれ駆動制御回路16からの
垂直及び水平読出しパルスPv1. Phl、P v2
. P h2によって読出し制御される。第1及び第2
の固体’iA@索子15a。
FIG. 3 shows a configuration in which an optical half mirror is used in place of the polarizing plate 12. That is, the light incident on the objective lens 11 is irradiated onto the light receiving surface of the polarizing half mirror 19 via the birefringent plate 12 and the TN type liquid crystal 13. This polarizing half mirror 19 guides the incident light along the optical axis 2 to the first solid-state ML image element 15a, and also deflects a part of the light into the reflected optical axis Q- to the second solid-state image element 15b. It leads to The TN type liquid crystal 13 is switched υII for each field by the AC drive voltage VC from the drive control circuit 16, and the first and second solid state 11
i1 (1 element 15a, 15b has optical axis λ and anti!
II, l are provided to be shifted by 17'4 pixel pitch with respect to the optical axis λ-, and the vertical and horizontal read pulses Pv1. Phl, P v2
.. Reading is controlled by Ph2. 1st and 2nd
The solid 'iA @ Choko 15a.

15bからそれぞれ読み出された映像信号は加算器20
によってカ0算された後、前記バッファ17を介して出
力端子18から導出される。
The video signals read out from 15b are sent to adder 20.
After being incremented by 0, the signal is output from the output terminal 18 via the buffer 17.

づなわら、上記構成において、対物レンズ11の入射光
は複屈折板14によって上記第1及び第2の固体11i
i像素子15a 、 15bの水平画素ピッチの1/4
の幅だけ離れた平行な2光束、つまり常光と異常光に分
離される。このとき、TN型液晶13は1フイールド毎
に交流駆動電圧VCが印加、無印加されている。このた
め、複屈折板14からの常光及び異常光はTN型液晶1
3及び偏光ハーフミラ−19により1フイールド毎に第
1及び第2の固体@酸素子15a 、 15bに交互に
導かれる。このとき、偏光ハーフミラ−19の透過光と
反射光では1/4画素ピッチだけ像の位置がずれており
、その位置も1フイールド毎に入替わる。また、第1及
び第2の固体撮像素子15a 、 15bも光軸e、ρ
−に対して1/4画素ピッチずらしであるので、1フイ
ールド内では1/2画素ピッチずれて補間された形で結
像され、さらに1フイールド毎に1/4画素ピッチずつ
ずれて補間される。
In other words, in the above configuration, the incident light of the objective lens 11 is directed to the first and second solid bodies 11i by the birefringence plate 14.
1/4 of the horizontal pixel pitch of i-image elements 15a and 15b
The beam is separated into two parallel beams separated by a width of , that is, an ordinary beam and an extraordinary beam. At this time, the AC drive voltage VC is applied or not applied to the TN type liquid crystal 13 for each field. Therefore, the ordinary light and extraordinary light from the birefringent plate 14 are transmitted to the TN type liquid crystal 1.
3 and a polarizing half mirror 19, they are alternately guided to the first and second solid @oxygen atoms 15a and 15b every field. At this time, the image positions of the transmitted light and the reflected light of the polarizing half mirror 19 are shifted by 1/4 pixel pitch, and the positions are also switched every field. Further, the first and second solid-state image sensors 15a and 15b also have optical axes e and ρ.
Since it is shifted by 1/4 pixel pitch relative to -, the image is formed with interpolation shifted by 1/2 pixel pitch within one field, and further interpolated by shifted by 1/4 pixel pitch for each field. .

したがって、上記構成によれば、第1及び第2の固体撮
像素子15a 、 15bに対して光学像の位置が全て
一致するように読出しパルスPvl、 Pt+1、Pv
2. Ph2の出力タイミングをずらすことにより、1
つの撮像素子の画素数の4倍の画素数に対応する画像が
得られる。
Therefore, according to the above configuration, the readout pulses Pvl, Pt+1, Pv are applied so that the positions of the optical images are all aligned with respect to the first and second solid-state image sensors 15a and 15b.
2. By shifting the output timing of Ph2, 1
An image corresponding to four times the number of pixels of one image sensor is obtained.

第4図は2つの傾斜配向された液晶素子を用いた場合の
構成を示すもので、前記対物レンズ11からの入射光は
互いに異なる方向に傾斜配向された第1及び第2の液晶
素子21.22を介して前記固体撮像索子15に照射さ
れるようになっている。上記液晶素子21.22は駆動
電圧Vc無印加の状態では入射光を常光と異常光の平行
な2光束に2分し、駆8電圧Vc印加状態では入射光の
全成分を上記常光の光路で透過させる。ここで、上記第
1及び第2の液晶素子21.22は駆動電圧VC印加時
における常光と異常光の分離方向が逆であり、分離距離
はどちらも1/2画素ピッチである。そして、陽像素子
15の奇数フィールドに対応でる期間には第1の液晶索
子21に駆動電圧Vcが印加され、第2の液晶素子22
は無印加状態となる。逆に、偶数フィールドに対応する
期間には第2の液晶素子22に駆動電圧が印加され、第
1の液晶素子21は無印加状態となる。
FIG. 4 shows a configuration using two liquid crystal elements oriented at an angle, and the incident light from the objective lens 11 is transmitted to the first and second liquid crystal elements 21. The solid-state imaging probe 15 is irradiated with the light through the solid-state imaging probe 22 . When the driving voltage Vc is not applied, the liquid crystal elements 21 and 22 divide the incident light into two parallel beams of ordinary light and extraordinary light, and when the driving voltage Vc is applied, all the components of the incident light are transmitted along the optical path of the ordinary light. Transmit. Here, in the first and second liquid crystal elements 21 and 22, the separation directions of ordinary light and extraordinary light are opposite when driving voltage VC is applied, and the separation distance is 1/2 pixel pitch in both cases. During the period corresponding to the odd field of the positive image element 15, the driving voltage Vc is applied to the first liquid crystal element 21, and the driving voltage Vc is applied to the second liquid crystal element 22.
is in an unapplied state. Conversely, during periods corresponding to even fields, the drive voltage is applied to the second liquid crystal element 22, and the first liquid crystal element 21 is in a non-applied state.

すなわち、上記構成において、奇数フィールドでは、入
射光は第1の液晶素子21を透過して第2の液晶素子2
2で常光と異常光に分離される。このとき、常光は図中
実線で示す光路で、異常光は図中破線で示す光路でそれ
ぞれ固体撮像素子15に結像される。また、偶数フィー
ルドでは、入射光は第1の液晶素子21で常光と異常光
に分離され、常光は図中実線で示す光路で、異常光は図
中一点鎖線で示す光路でそれぞれ第2の液晶索子22を
介して固体撮像素子15に結像される。どちらのフィー
ルドにおいても、本来一点に結@されるべき入射光が1
7′2画素ピッチだ1プ離れた2点に結像される。
That is, in the above configuration, in an odd field, the incident light passes through the first liquid crystal element 21 and passes through the second liquid crystal element 2.
2, it is separated into ordinary light and extraordinary light. At this time, the ordinary light is imaged on the solid-state image sensor 15 along the optical path shown by the solid line in the figure, and the extraordinary light is imaged on the optical path shown by the broken line in the figure. In the even field, the incident light is separated into ordinary light and extraordinary light by the first liquid crystal element 21, and the ordinary light goes through the optical path shown by the solid line in the figure, and the extraordinary light goes through the optical path shown by the dashed-dotted line in the figure, respectively. An image is formed on the solid-state image sensor 15 via the probe 22 . In both fields, the incident light that should originally be focused at one point is
The image is formed at two points 1 pixel apart with a pitch of 7'2 pixels.

したがって、上記構成によれば、同じ空間周波数特性を
持った光学像を1/2画素ピッチだけフィールド毎に移
動させることができ、また2点に結像させることによっ
て光学式なローパスフィルタとしての役割を同時に果た
すことができる。
Therefore, according to the above configuration, an optical image having the same spatial frequency characteristic can be moved by 1/2 pixel pitch for each field, and by forming the image at two points, it can function as an optical low-pass filter. can be fulfilled at the same time.

第5図は第4図における第1の液晶素子21に代わって
水平画素ピッチの1/2の分離幅を持つた複屈折板を用
いた場合の構成を示すもので、図中23が複屈折板であ
る。前記傾斜配向された液晶索子22には、奇数フィー
ルドで駆動電圧VCが印加され、偶数フィールドでは無
印加状態に設定される。すなわち、前記対物レンズ11
からの入射光は複屈折板23によって図中実線及び破線
で示すように常光と異常光の平行な2光束に2分される
。その分離距離は1/2画素ピッチである。そして、耐
@索子15の奇数フィールドに対応する期間には液晶素
子22に駆動電圧Vcが印加されているため、複屈折板
23で分離された常光及び異常光はそれぞれ液晶索子2
2を透過して固体’81像素子15に結像される。また
、偶数フィールドに対応する期間では入射光は複屈折板
23で常光と異常光に分離された後、駆動電圧Vc無印
加状態の液晶素子22によって常光は図中実線で示す光
路で、異常光は図中一点鎖線で示す光路でそれぞれ固体
撮像装置15に結像される。どちらのフィールドにおい
ても、本来一点に結像されるべき入射光が1/2画素ピ
ッチだけ離れた2点に結像される。したがって、上記構
成によれば、第4図に示した装置と同様な効果が得られ
る。
FIG. 5 shows a configuration in which a birefringent plate having a separation width of 1/2 of the horizontal pixel pitch is used in place of the first liquid crystal element 21 in FIG. It is a board. A drive voltage VC is applied to the tilted liquid crystal probe 22 in odd fields, and is set to a non-applied state in even fields. That is, the objective lens 11
The incident light is split by the birefringent plate 23 into two parallel beams of ordinary light and extraordinary light, as shown by solid lines and broken lines in the figure. The separation distance is 1/2 pixel pitch. Since the drive voltage Vc is applied to the liquid crystal element 22 during the period corresponding to the odd field of the resistor 15, the ordinary light and the extraordinary light separated by the birefringence plate 23 are respectively transmitted to the liquid crystal element 22.
2 and is imaged on the solid-state '81 imaging element 15. In addition, in the period corresponding to the even field, the incident light is separated into ordinary light and extraordinary light by the birefringent plate 23, and then the ordinary light is separated by the optical path shown by the solid line in the figure by the liquid crystal element 22 in the state where the driving voltage Vc is not applied, and the extraordinary light is are respectively imaged on the solid-state imaging device 15 along optical paths indicated by dashed-dotted lines in the figure. In either field, incident light that should originally be focused on one point is focused on two points separated by a 1/2 pixel pitch. Therefore, according to the above configuration, effects similar to those of the device shown in FIG. 4 can be obtained.

尚、上記実施例では全て水平画素を補間する場合につい
て述べたが、これは垂直方向あるいは斜めの方向であっ
ても同様に実施可能である。また、上記液晶に代わって
、電気光学特性を有する結晶あるいはセラミックスを用
いるようにしてもよい。
In the above embodiments, all horizontal pixels are interpolated, but this can be similarly performed in the vertical direction or in the diagonal direction. Furthermore, instead of the liquid crystal described above, a crystal or ceramic having electro-optical properties may be used.

ざらには、上記実施例を組合わせ、1つのは1フイール
ド毎に、1つは2フイールド珀にに切換えるようにすれ
ば、ざらに高解像度化を図ることができる。
Roughly speaking, by combining the above embodiments and switching one field for each field and one field for every two fields, it is possible to achieve a much higher resolution.

[発明の効果] 以上この発明によれば、簡易な構成でかつ結像光学系の
種類を選ぶことなく、固体lii像素子の画素数を増加
せずに解像度を向上させることのできる固体撮像装置を
提供することができる。
[Effects of the Invention] According to the present invention, there is provided a solid-state imaging device that has a simple configuration, can improve resolution without selecting the type of imaging optical system, and without increasing the number of pixels of the solid-state II image element. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る固体wiIl装置の一実施例を
示す構成図、第2図は同実施例の動作を説明するための
図、第3図乃至第5図はそれぞれこの発明に係る他の実
施例を示す構成図、第6図は従来の固体撮像装置の構成
を示す図である。 11・・・対物レンズ、12・・・偏光板、13・・・
TN型液晶、14・・・複屈折板、15・・・固体l!
11@素子、16・・・駆動制御回路、11・・・バッ
ファ、18・・・出力端子、19・・・偏光ハーフミラ
−120・・・加篩器、21.22・・・液晶素子、2
3・・・複屈折板。 出願人代理人  弁理士 鈴江武彦 第4図 第5図 第6 図
FIG. 1 is a block diagram showing an embodiment of the solid-state wIl device according to the present invention, FIG. 2 is a diagram for explaining the operation of the same embodiment, and FIGS. FIG. 6 is a diagram showing the configuration of a conventional solid-state imaging device. 11... Objective lens, 12... Polarizing plate, 13...
TN type liquid crystal, 14...birefringence plate, 15...solid l!
11@Element, 16... Drive control circuit, 11... Buffer, 18... Output terminal, 19... Polarizing half mirror 120... Screener, 21.22... Liquid crystal element, 2
3... Birefringent plate. Applicant's agent Patent attorney Takehiko Suzue Figure 4 Figure 5 Figure 6

Claims (5)

【特許請求の範囲】[Claims] (1)固体撮像素子部と、この固体撮像素子部上に光学
像を結像させる光学系と、前記固体撮像素子部と前記光
学系との間に配設され駆動信号が供給されることによっ
て前記光学系からの入射光の少なくとも一部を平行移動
させることにより光学像の空間周波数特性を一定に保ち
ながら光学像の位置を変化させて前記固体撮像素子部へ
導く能動光学素子部と、この能動光学素子部に対する駆
動信号を所定フィールド毎に切換導出する制御手段とを
具備したことを特徴とする固体撮像装置。
(1) A solid-state image sensor section, an optical system that forms an optical image on the solid-state image sensor section, and a driving signal provided between the solid-state image sensor section and the optical system; an active optical element section that changes the position of the optical image while keeping the spatial frequency characteristics of the optical image constant by moving at least a part of the incident light from the optical system in parallel, and guides the optical image to the solid-state image sensor section; What is claimed is: 1. A solid-state imaging device comprising: control means for switching and deriving a drive signal for an active optical element section for each predetermined field.
(2)前記能動光学素子部は、前記光学系からの入射光
を偏光方向に応じて常光及び異常光の一定幅だけ離れた
平行な2光束に分離する複屈折板と、前記常光及び異常
光のどちらか一方のみを透過する偏光板と、前記複屈折
板と偏光板との間に配設され前記駆動信号に応じて90
°旋光と非旋光に変化する旋光素子とを備えることを特
徴とする特許請求の範囲第1項記載の固体撮像装置。
(2) The active optical element section includes a birefringent plate that separates the incident light from the optical system into two parallel beams of light separated by a certain width of ordinary light and extraordinary light according to the polarization direction, and a polarizing plate that transmits only either one of the birefringent plate and the polarizing plate, and a polarizing plate that transmits only one of the birefringent light and the polarizing plate that transmits the
2. The solid-state imaging device according to claim 1, further comprising an optical rotation element that changes between optical rotation and non-optical rotation.
(3)前記能動光学素子部は、前記光学系からの入射光
を偏光方向に応じて常光及び異常光の一定幅だけ離れた
平行な2光束に分離する複屈折板と、前記常光と異常光
のうち一方を透過し他方を所定方向に反射させる偏光ハ
ーフミラーと、この偏光ハーフミラーと前記複屈折板と
の間に配設され前記駆動信号に応じて90°旋光と非旋
光に変化する旋光素子とを備え、前記固体撮像素子部は
第1及び第2の固体撮像素子からなり、前記第1の固体
撮像素子を前記偏光ハーフミラーの透過光の結像位置に
配設し、前記第2の固体撮像素子を前記偏光ハーフミラ
ーの反射光の結像位置に配設するようにしたことを特徴
とする特許請求の範囲第1項記載の固体撮像装置。
(3) The active optical element section includes a birefringent plate that separates the incident light from the optical system into two parallel light beams separated by a certain width, an ordinary light and an extraordinary light, according to the polarization direction, and a birefringent plate that separates the incident light from the optical system into two parallel light beams separated by a certain width, a polarizing half mirror that transmits one of them and reflects the other in a predetermined direction; and an optically rotating mirror that is disposed between the polarizing half mirror and the birefringent plate and that changes between 90° optical rotation and non-optical rotation according to the drive signal. the solid-state image sensor section includes a first and a second solid-state image sensor, the first solid-state image sensor is disposed at an imaging position of the transmitted light of the polarizing half mirror, 2. The solid-state imaging device according to claim 1, wherein the solid-state imaging device is disposed at a position where the reflected light of the polarizing half mirror is imaged.
(4)前記能動光学素子部は、駆動信号に応じて入射光
を偏光方向に常光と異常光の一定距離だけ離れた2光束
に分離する第1の状態と、全偏光成分を前記常光と同じ
光路で透過させる第2の状態とに切換えられる第1及び
第2の電気光学素子を備え、前記第1及び第2の電気光
学素子の常光と異常光の分離方向を互いに逆方向にする
と共に分離距離を互いに等しくし、前記制御手段は前記
第1の電気光学素子が第1の状態のとき前記第2の電気
光学素子が第2の状態となり、前記第1の電気光学素子
が第2の状態のとき前記第2の電気光学素子が第1の状
態となるように前記駆動信号を切換出力するようにした
ことを特徴とする特許請求の範囲第1項記載の固体撮像
装置。
(4) The active optical element section has a first state in which the incident light is separated into two light beams separated by a certain distance in the polarization direction, an ordinary light and an extraordinary light, according to a drive signal, and a first state in which all polarization components are the same as the ordinary light. comprising first and second electro-optical elements that are switched to a second state in which the light is transmitted through the optical path; The distances are made equal to each other, and the control means is configured such that when the first electro-optical element is in the first state, the second electro-optical element is in the second state, and the first electro-optical element is in the second state. 2. The solid-state imaging device according to claim 1, wherein the drive signal is switched and outputted so that the second electro-optical element is in the first state when the second electro-optical element is in the first state.
(5)前記能動光学素子部は、前記光学系からの入射光
を常光及び異常光の第1の方向に第1の距離だけ離れた
2光束に分離する複屈折板と、前記制御手段からの駆動
信号に応じて入射光を常光と異常光の前記第1の方向と
同一または逆方向に前記第1の距離の2倍の距離だけ離
れた2光束に分離する第1の状態と入射光の全成分を前
記第1の状態における常光の光路で透過させる第2の状
態とに切換えられる電気光学素子とを備えるようにした
ことを特徴とする特許請求の範囲第1項記載の固体撮像
装置。
(5) The active optical element section includes a birefringent plate that separates the incident light from the optical system into two light beams separated by a first distance in a first direction of ordinary light and extraordinary light; a first state in which the incident light is separated into two beams of ordinary light and extraordinary light separated by a distance twice the first distance in the same or opposite direction to the first direction; 2. The solid-state imaging device according to claim 1, further comprising an electro-optical element that can be switched to a second state in which all components are transmitted through the optical path of ordinary light in the first state.
JP60266974A 1985-11-27 1985-11-27 Solid-state image pickup device Pending JPS62126777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60266974A JPS62126777A (en) 1985-11-27 1985-11-27 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60266974A JPS62126777A (en) 1985-11-27 1985-11-27 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS62126777A true JPS62126777A (en) 1987-06-09

Family

ID=17438295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60266974A Pending JPS62126777A (en) 1985-11-27 1985-11-27 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS62126777A (en)

Similar Documents

Publication Publication Date Title
JP3380913B2 (en) Solid-state imaging device
JP3547015B2 (en) Image display device and method for improving resolution of image display device
JPS62157482A (en) Image pickup device
JPH0516569B2 (en)
JP3184409B2 (en) Three-dimensional imaging device, camera, and microscope
JP2749817B2 (en) Imaging system
JPS62291292A (en) Image pickup device
JPS62126777A (en) Solid-state image pickup device
JP2952491B2 (en) Imaging device
JP4428734B2 (en) Imaging device
JPH0595517A (en) High resolution image pick-up device
JPH0378378A (en) Solid state image pickup device
JPH0463074A (en) Image shift type image pickup device
JPS61270973A (en) Picture image input device using solid-state image pickup element
JPH04115786A (en) Image shift type image pickup device
JPH08211423A (en) Deflector and image shift type image pickup device formed by using the same
JPH06141242A (en) Image pickup device
JPH10191185A (en) Image signal processing unit
JP3364951B2 (en) Solid-state imaging device
JPS61267462A (en) Image pickup device
JPS5933978A (en) Image pickup mechanism of video camera
JPH11341367A (en) Line sensor camera
JPH0350967A (en) Image pickup device
WO2012053136A1 (en) Stereoscopic image processing circuit and stereoscopic image capturing device
JPS6226984A (en) Image pickup device