JPS62126533A - High speed valve - Google Patents

High speed valve

Info

Publication number
JPS62126533A
JPS62126533A JP26767785A JP26767785A JPS62126533A JP S62126533 A JPS62126533 A JP S62126533A JP 26767785 A JP26767785 A JP 26767785A JP 26767785 A JP26767785 A JP 26767785A JP S62126533 A JPS62126533 A JP S62126533A
Authority
JP
Japan
Prior art keywords
air
coil
core
coils
speed valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26767785A
Other languages
Japanese (ja)
Inventor
Yoshitaka Kitamura
北村 芳隆
Masaki Yamabe
山部 正樹
Yasuo Furukawa
古川 泰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26767785A priority Critical patent/JPS62126533A/en
Publication of JPS62126533A publication Critical patent/JPS62126533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To make discharge regulation performable with a coil current alone, by installing a pair of air-core coils opposed to each other and also a pair of discs to be operated in producing an eddy current with current-energization to the coil, and constituting them to operate each disc independently. CONSTITUTION:Both first and second air-core coils 12 and 13 are housed in a housing 17 after interconnecting their air-core holes through and setting up a shield 16 between them. And, at the outside of these coils 12 and 13, there are provided with a pair of discs 21 and 22 for pressing both springs 23 and 24 and blocking up these air-core holes. In addition, these elements altogether are housed in an anode electrode 11 having a gas inflow port 11a and a discharge opening 11b, forming a high speed valve to be built in a plasma X-ray source or the like. And, these coils 12 and 13 are excited by drive circuits 25 and 26 via a delay circuit 27, operating these discs 21 and 22, thus plasma material gas is discharged. Therefore, regulation is made performable with a coil current alone, making it performable at a short time.

Description

【発明の詳細な説明】 〔概要〕 流体、特に気体の流通路を高速度に開閉させる高速バル
ブにおいて、 渦電流と磁界の反to作用で流通路を開閉する一対の金
属板を具え、該一対の金属板が独立に動作するように構
成したことにより、 流体の吐出量を従来より容易かつ微細に調整できるよう
にしたものである。
[Detailed Description of the Invention] [Summary] A high-speed valve that opens and closes a flow path for fluid, particularly gas, at high speed, comprising a pair of metal plates that open and close the flow path by the counteraction of an eddy current and a magnetic field. By configuring the metal plates to operate independently, the amount of fluid discharged can be adjusted more easily and finely than before.

〔産業上の利用分野〕[Industrial application field]

本発明は高速度で動作するバルブの改良に関する。 The present invention relates to improvements in valves operating at high speeds.

ガス注入型プラズマX線源は、電子衝撃型XVA源に較
べ10倍以上のX線発生効率を有するため、近来ますま
す高密度化、大容量化および高速化する集積回路パター
ンの転写装置用X線源として注目されるようになった。
Gas injection type plasma X-ray sources have an X-ray generation efficiency that is more than 10 times that of electron impact type XVA sources. It has come to attract attention as a radiation source.

かかるガス注入型プラズマX線源は、アノード電極とカ
ソード電極との対向間にプラズマ材料ガスを注入しプラ
ズマガス柱を形成させる高速バルブを具えている。
Such a gas injection type plasma X-ray source includes a high-speed valve that injects a plasma material gas between an anode electrode and a cathode electrode, forming a plasma gas column.

〔従来の技術〕[Conventional technology]

第4図は渦電流と磁界の反撥作用を利用した従来の高速
バルブの概略を示す側断面図である。
FIG. 4 is a side sectional view schematically showing a conventional high-speed valve that utilizes the repulsion of eddy currents and magnetic fields.

第4図において、プラズマX線源に組み込む高速バルブ
は、ガス流入口1aとガス吐出口1bを具えた筒形状の
アノード電極1と、ハウジング3に収容された空心コイ
ル2と、アノード電極1とハウジング3との間隙を塞ぐ
0リング4と、ハウジング3の上面に挿着したOリング
5と、上下動自在に支持された円板6と、適宜の圧力で
円板6を0リング5に押圧するため適当に支持されたコ
イルばね7と、抵抗器RとスイッチSおよびコンデンサ
C等を介してコイル3に接続した高電圧電源8等を具え
てなる。
In FIG. 4, a high-speed valve incorporated into a plasma X-ray source includes a cylindrical anode electrode 1 having a gas inlet 1a and a gas outlet 1b, an air-core coil 2 housed in a housing 3, and an anode electrode 1. An O-ring 4 that closes the gap with the housing 3, an O-ring 5 inserted into the upper surface of the housing 3, a disc 6 that is supported so as to be able to move up and down, and presses the disc 6 against the O-ring 5 with appropriate pressure. The coil spring 7 is suitably supported for this purpose, and a high voltage power source 8 is connected to the coil 3 via a resistor R, a switch S, a capacitor C, and the like.

このように構成された高速バルブは、ガス流入口1aを
ガス(プラズマ材料ガス)供給源に接続し、アノード電
極1内を真空にしたのちガス供給源のコックを開くと、
ガス吐出口1bの塞がれたアノード電極1内には、プラ
ズマ材料ガスが充満する。
The high-speed valve configured in this manner connects the gas inlet 1a to a gas (plasma material gas) supply source, evacuates the inside of the anode electrode 1, and then opens the cock of the gas supply source.
The inside of the anode electrode 1 with the gas discharge port 1b blocked is filled with plasma material gas.

そこで、高電圧電源8を用いコンデンサCを充電させ、
開状態のスイッチSを閉じてコンデンサCの充電電荷を
放出させると、コイル2にはパルス電流が流れ、円板6
を横切る磁力線が発生する。
Therefore, the capacitor C is charged using the high voltage power supply 8,
When the open switch S is closed to release the charge in the capacitor C, a pulse current flows through the coil 2 and the disk 6
Lines of magnetic field are generated that cross the .

その結果、円板6内には渦電流が生じると共に、コイル
2も円板6を上方に押し上る反撥作用が発生し、円板6
は押し上げられ、ガス吐出口1bからプラズマ材料ガス
が吐出される。
As a result, an eddy current is generated within the disk 6, and a repulsive action is generated in the coil 2 that pushes the disk 6 upward, causing the disk 6 to move upward.
is pushed up, and plasma material gas is discharged from the gas discharge port 1b.

次いで、充電電荷の放出が終わりスイッチSを開くと、
前記渦電流および反撥作用が消滅し、円板6はコイルば
ね7に押下され0リング5に当接し、プラズマ材料ガス
の吐出が停止する。
Next, when the discharge of the charged charge is finished and the switch S is opened,
The eddy current and repulsion disappear, the disk 6 is pushed down by the coil spring 7 and comes into contact with the O-ring 5, and the discharge of the plasma material gas is stopped.

このような高速バルブを組み込んだガス注入型プラズマ
X線露光装置は、ガス吐出口2bに対向するX線透過窓
を有する筒形状のカソード電極が、電気的絶縁体を介し
アノード電極1に装着され、カソード電極とアノード電
極1には、その電極間に放電を起こさせるコンデンサと
スイッチ等を介し電源部が接続される。ベリリュウム等
にてなる前記XwA透過窓は、カソード電極と真空試料
室とを仕切るようになっている。
In a gas injection type plasma X-ray exposure apparatus incorporating such a high-speed valve, a cylindrical cathode electrode having an X-ray transmission window facing the gas discharge port 2b is attached to the anode electrode 1 via an electrical insulator. A power source is connected to the cathode electrode and the anode electrode 1 via a capacitor, a switch, etc. that causes discharge between the electrodes. The XwA transmission window made of beryllium or the like partitions the cathode electrode and the vacuum sample chamber.

そこで、カソード電極とアノード電極1および真空試料
室を所定の真空度にしたのち、高速バルブを介してカソ
ード電極内にプラズマ材料ガスを注入し、プラズマ材料
ガス柱を形成させると同時に、前記電源部のスイッチを
閉じると、該ガス柱にコンデンサの充電電荷が放電し、
ピンチプラズマが生成し発生したX線は、XvA透過窓
から真空試料室に出射される。
Therefore, after the cathode electrode, the anode electrode 1, and the vacuum sample chamber are brought to a predetermined degree of vacuum, plasma material gas is injected into the cathode electrode via a high-speed valve to form a plasma material gas column, and at the same time, the power supply section When the switch is closed, the charge in the capacitor is discharged into the gas column,
X-rays generated by the pinch plasma are emitted from the XvA transmission window into the vacuum sample chamber.

このようなプラズマX線源において、プラズマガス柱は
、高速バルブから吐出するプラズマ材料ガスに依存する
ため、高速バルブの調整によって制御される。
In such a plasma X-ray source, the plasma gas column depends on the plasma material gas discharged from the high speed valve and is therefore controlled by adjusting the high speed valve.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明したように、渦電流と磁界の反撥作用を利用し
た従来の高速バルブは、空心コイル2に流す放電電流と
、円板6を押圧するコイルばね7の押下刃に依存してい
るため、その制御は該放電電流とコイルばね7の一方ま
たは双方を調整する必要があった。
As explained above, the conventional high-speed valve that utilizes the repulsion of eddy current and magnetic field relies on the discharge current flowing through the air-core coil 2 and the pressing blade of the coil spring 7 that presses the disk 6. The control required adjusting one or both of the discharge current and the coil spring 7.

従って、該調整が放電電流のみでよい時は容易に行われ
るものの、コイルばね7の81整(交tA)が非常に煩
わしいと共に、コイルばね7は所定値より弱くするとチ
ャタリングが発生するという問題点があった。
Therefore, although this adjustment is easy when only the discharge current is required, the adjustment of 81 (intersection tA) of the coil spring 7 is very troublesome, and if the coil spring 7 is made weaker than a predetermined value, chattering will occur. was there.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の除去を目的とした本発明は、第1の空心孔
を有する第1の空心コイル(12)と、該第1の空心孔
に連通ずる第2の空冗・孔を有する第2の空心コイル(
13)と、 該第1の空心コイル(12)が形成する磁場と該第2の
空心コイル(13)が形成する磁場との間を磁気的に遮
断する磁性材のシールド体(16,33,34)と、適
宜の押圧力で該第1の空心コイル(12)に対向し該第
1の空心孔を塞ぐ第1の金属板(21)と、適宜の押圧
力で該第2の空心コイル(13)に対向し該第2の空心
孔を塞ぐ第2の金属板(22)と、該第1の空心コイル
に通電する第1の駆動回路(25)と、 該第2の空心コイルに通電する第2の駆動回路(26)
とを具えてなることを特徴とする高速バルブである。
The present invention, which aims to eliminate the above-mentioned problems, provides a first air-core coil (12) having a first air-core hole, and a second air-core coil (12) having a second air-core coil (12) communicating with the first air-core hole. air core coil (
13), and a shield body (16, 33, 34), a first metal plate (21) that faces the first air-core coil (12) and closes the first air-core hole with an appropriate pressing force, and a second air-core coil with an appropriate pressing force. (13), a second metal plate (22) that faces the second air core hole and closes the second air core hole; a first drive circuit (25) that energizes the first air core coil; Second drive circuit (26) energized
This is a high-speed valve characterized by comprising the following.

〔作用〕[Effect]

上記手段によれば、流体の流通路を閉成するに渦電流と
磁気力で動作する一対の金属板を具え、かつ、該一対の
金属板が独立に動作するように構成してなるため、流体
の吐出量の調整は各金属板を動作させるためそれぞれの
コイルに流すパルス電流を制御し実施し、従来の吐出量
調整で必要とした金属板押圧用コイルばねの調整(交換
)が不要であると共に、流体吐出時間を従来より短く設
定できるようになった。
According to the above means, a pair of metal plates operated by eddy current and magnetic force are provided to close the fluid flow path, and the pair of metal plates are configured to operate independently. The fluid discharge rate is adjusted by controlling the pulse current flowing through each coil to operate each metal plate, eliminating the need to adjust (replace) the coil spring for pressing the metal plate, which was required in conventional discharge rate adjustment. At the same time, the fluid ejection time can now be set shorter than before.

〔実施例〕〔Example〕

以下に、図面を用いて本発明の実施例になる高速バルブ
を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A high-speed valve according to an embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例になるバルブの概略を示
す側断面図、第2図は本発明の第2の実施例になるバル
ブの概略を示す側断面図、第3図は本発明になる高速バ
ルブの動作例を示すタイムチャートである。
FIG. 1 is a side sectional view schematically showing a valve according to a first embodiment of the present invention, FIG. 2 is a side sectional view schematically showing a valve according to a second embodiment of the present invention, and FIG. It is a time chart showing an example of the operation of the high-speed valve according to the present invention.

第1図において、11はガス流入口11aとガス吐出口
11bを具えた筒形状のアノード電極、12と13は空
心コイル、14はコイル12の下面と外側面を覆う環状
絶縁体、15はコイル13の上面と外側面を覆う環状絶
縁体、16は絶縁体14と15を収容しコイル12と1
3との対向面および双方の外側面を覆う環状シールド体
、17はシールド体16をアノード電極11内に装着さ
せる絶縁材の環状ハウジング、18はアノード電極11
とハウジング17との間隙を塞ぐOリング、19はハウ
ジング17の上面に挿着したOリング、20はハウジン
グ17の下面に挿着した0リング、21と22は磁性材
にてなる円板、23は適宜の圧力で円板21をOリング
19に押圧するコイルばね、24は適宜の圧力で円板2
1を0リング19に押圧するコイルばねである。
In FIG. 1, 11 is a cylindrical anode electrode equipped with a gas inlet 11a and a gas outlet 11b, 12 and 13 are air-core coils, 14 is an annular insulator that covers the lower and outer surfaces of the coil 12, and 15 is a coil. An annular insulator 16 covers the upper and outer surfaces of 13, and 16 accommodates insulators 14 and 15 and connects coils 12 and 1.
3, an annular shield body that covers the facing surface and both outer surfaces; 17, an annular housing made of an insulating material for mounting the shield body 16 in the anode electrode 11; 18, an anode electrode 11;
19 is an O-ring inserted into the upper surface of the housing 17, 20 is an O-ring inserted into the lower surface of the housing 17, 21 and 22 are disks made of magnetic material, 23 24 is a coil spring that presses the disk 21 against the O-ring 19 with an appropriate pressure, and 24 is a coil spring that presses the disk 21 with an appropriate pressure.
1 is a coil spring that presses O ring 19.

さらに、25は抵抗器R+とスイッチSIおよびコンデ
ンサC1等を介してコイル12に接続した高電圧電源、
26は抵抗器R1とスイッチS2およびコンデンサC2
等を介してコイル12に接続した高電圧電源、27は一
対のスイッチS、と82を連動させる遅延回路である。
Furthermore, 25 is a high voltage power supply connected to the coil 12 via a resistor R+, a switch SI, a capacitor C1, etc.;
26 is resistor R1, switch S2 and capacitor C2
A high voltage power supply is connected to the coil 12 via the coil 12, etc., and 27 is a delay circuit that interlocks a pair of switches S and 82.

このように構成された高速バルブは、ガス流入口11a
をガス(プラズマ材料ガス)供給源に接続し、アノード
電極11内を真空にしたのちガス供給源のコックを開く
と、円板21が0リング19に押圧し円板22が0リン
グ20に押圧されガス吐出口11bの塞がれたアノード
電極11内には、プラズマ材料ガスが充満する。
The high-speed valve configured in this way has a gas inlet 11a.
is connected to a gas (plasma material gas) supply source, the inside of the anode electrode 11 is evacuated, and then the cock of the gas supply source is opened, the disk 21 presses against the O-ring 19 and the disk 22 presses against the O-ring 20. The inside of the anode electrode 11 whose gas discharge port 11b is closed is filled with plasma material gas.

そこで、高電圧電源25と26を用いコンデンサC2お
よびC2を充電し、予め遅延時間の設定した遅延回路2
7を介し開状態のスイッチS、と32を閉じコンデンサ
CIとCtの充電電荷を放出させる。すると、コイル1
2に流れたパルス電流は、円板21を横切る磁力線が発
生し、円板21内に渦電流が生じると共に、コイルばね
23の押圧力に逆らって円板21を押し上げる。そして
、コイル13に流れたパルス電流は、円板22を横切る
磁力線が発生し、円板22内に渦電流が生じると共に、
コイルばね24の押圧力に逆らって円板22を押し下げ
ることになる。
Therefore, the high voltage power supplies 25 and 26 are used to charge the capacitors C2 and C2, and the delay circuit 2 with the preset delay time
The open switches S and 32 are closed via the capacitors 7 and 32 to release the charges in the capacitors CI and Ct. Then, coil 1
The pulse current flowing through the coil spring 2 generates lines of magnetic force that cross the disk 21, generates eddy currents within the disk 21, and pushes the disk 21 up against the pressing force of the coil spring 23. The pulse current flowing through the coil 13 generates magnetic lines of force that cross the disk 22, and eddy currents are generated within the disk 22.
The disk 22 is pushed down against the pressing force of the coil spring 24.

その結果、プラズマ材料ガスの通路が開通し、ガス吐出
口11bからプラズマ材料ガスを吐出するが、スイッチ
S、と32の開閉動作は、予め遅延時間の設定した遅延
回路27により、同時または一方が他方よりも遅延させ
ることができる。
As a result, the passage for the plasma material gas is opened and the plasma material gas is discharged from the gas discharge port 11b, but the opening and closing operations of the switches S and 32 are controlled simultaneously or one of them by a delay circuit 27 with a delay time set in advance. can be delayed more than the other.

次いで、充電電荷の放出が終わりスイッチS、とS2を
開くと、前記渦電流および磁気反撥作用が消滅し、円板
21と22はコイルばね23または24に押されOリン
グ19.20に当接し、プラズマ材料ガスの吐出が停止
する。
Next, when the discharge of the charged charge is finished and the switches S and S2 are opened, the eddy current and magnetic repulsion disappear, and the disks 21 and 22 are pushed by the coil spring 23 or 24 and come into contact with the O-ring 19, 20. , the discharge of plasma material gas is stopped.

第1図と共通部分に同一符号を使用した第2図において
、31はコイル12の下面と外側面および空心面を覆う
環状絶縁体、32はコイル13の上面と外側面および空
心面を覆う環状絶縁体、33は絶縁体31の外側を覆う
環状シールド体、34は絶縁体32の外側を覆う環状シ
ールド体であり、アノード電極11内には絶縁体31.
32とシールド体33.34を挟んで背向する一対のコ
イル12と13を収容した環状ハウジング17が装着し
てあり、ハウジング17の上面に挿着した0リング19
にはコイルばね23の押圧する円板21が当接し、ハウ
ジング17の下面に挿着した0リング20にはコイルば
ね24の押圧する円板22が当接している。
In FIG. 2, in which the same reference numerals are used for parts common to those in FIG. An insulator 33 is an annular shield covering the outside of the insulator 31 , 34 is an annular shield covering the outside of the insulator 32 , and the anode electrode 11 includes the insulator 31 .
An annular housing 17 is installed which accommodates a pair of coils 12 and 13 facing away from each other with shield bodies 33 and 34 in between.
A disc 21 pressed by a coil spring 23 is in contact with the housing 17, and a disc 22 pressed by a coil spring 24 is in contact with an O-ring 20 inserted into the lower surface of the housing 17.

そして第2図の高速バルブは、ガス注入型プラズマX線
源に組み込み、第1図の放電電源25.26およびその
制御回路27等をコイル12および13に接続し動作さ
せたとき、シールド体33.34がコイル12、13の
三方を囲っているため、第1図の高速バルブよりコイル
12.13からの漏洩磁束が少な(、コイル12.13
の磁気効率に優れている。
The high-speed valve shown in FIG. 2 is incorporated into a gas injection type plasma X-ray source, and when the discharge power source 25, 26 and its control circuit 27, etc. shown in FIG. .34 surrounds the coils 12 and 13 on three sides, the leakage magnetic flux from the coil 12.13 is smaller than that of the high-speed valve shown in Fig. 1.
Excellent magnetic efficiency.

第3図は、時間L2〜t、にプラズマ材料ガスを吐出さ
せるコイル12.13の動作特性であり、コイル13は
t2より早いt、に通電(スイッチSIの閉成)しも、
で該通電を停止(スイッチS1の開離)する。他方、遅
延回路27にてスイッチS、より遅延し動作するスイッ
チS2は、t2でコイル12に通電(スイッチS2の閉
成)シt3より遅いL4に該通電を停止(スイッチS2
の開離)することになる。
FIG. 3 shows the operating characteristics of the coils 12 and 13 that discharge the plasma material gas from time L2 to t, and even if the coil 13 is energized (switch SI is closed) at t earlier than t2,
The current supply is stopped (switch S1 is opened). On the other hand, in the delay circuit 27, the switch S2, which operates with a delay longer than the switch S, energizes the coil 12 at t2 (switch S2 is closed) and stops the energization at L4, which is later than t3 (switch S2 is closed).
separation).

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、対向する空心コイル
に通電して渦電流が生じ該コイルの反撥作用を受けて動
作する一対の円板を具え、該一対の円板が独立に動作し
、かつ、適宜の遅延時間で連動可能に構成してなるため
、流体吐出パルスの制御は高速バルブを分解しないで可
能となり、極めて容易になったと共に、従来よりも短時
間の流体吐出を可能ならしめた。
As explained above, the present invention includes a pair of discs that operate in response to the repulsion of the coils when electricity is applied to opposing air-core coils to generate eddy currents, and the pair of discs operate independently. In addition, since it is configured to be able to operate in conjunction with an appropriate delay time, it is possible to control the fluid discharge pulse without disassembling the high-speed valve, making it extremely easy to control, and also making it possible to discharge fluid in a shorter time than before. Ta.

その結果、例えば本発明になる高速バルブをガス注入型
プラズマX線源に使用したとき、発生するX線の制御が
容易となり安定化し得た効果を有する。
As a result, for example, when the high-speed valve of the present invention is used in a gas injection type plasma X-ray source, the generated X-rays can be easily controlled and stabilized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例になるバルブの概略を示
す側断面図、 第2図は本発明の第2の実施例になるバルブの概略を示
す側断面図、 第3図は本発明になる高速バルブの動作例を示すタイム
チャート、 第4図は渦電流と磁界の反ta作用を利用した従来の高
速バルブの概略を示す側断面図、である。 図中において、 12は第1の空心コイル、 13は第2の空心コイル、 16.33.34はシールド体、 21は第1の金属板、 22は第2の金属板、 25は第1の駆動回路、 26は第2の駆動回路、 27は遅延回路、 窮20
FIG. 1 is a side sectional view schematically showing a valve according to a first embodiment of the present invention, FIG. 2 is a side sectional view schematically showing a valve according to a second embodiment of the present invention, and FIG. FIG. 4 is a time chart showing an example of the operation of the high-speed valve according to the present invention. FIG. 4 is a side sectional view schematically showing a conventional high-speed valve that utilizes the anti-ta action of an eddy current and a magnetic field. In the figure, 12 is the first air-core coil, 13 is the second air-core coil, 16, 33, 34 is the shield body, 21 is the first metal plate, 22 is the second metal plate, 25 is the first air-core coil. A drive circuit, 26 is a second drive circuit, 27 is a delay circuit, and 20

Claims (1)

【特許請求の範囲】 第1の空心孔を有する第1の空心コイル(12)と、該
第1の空心孔に連通する第2の空心孔を有する第2の空
心コイル(13)と、 該第1の空心コイル(12)が形成する磁場と該第2の
空心コイル(13)が形成する磁場との間を磁気的に遮
断する磁性材のシールド体(16、33、34)と、適
宜の押圧力で該第1の空心コイル(12)に対向し該第
1の空心孔を塞ぐ第1の金属板(21)と、適宜の押圧
力で該第2の空心コイル(13)に対向し該第2の空心
孔を塞ぐ第2の金属板(22)と、該第1の空心コイル
に通電する第1の駆動回路(25)と、 該第2の空心コイルに通電する第2の駆動回路(26)
とを具えてなることを特徴とする高速バルブ。
[Claims] A first air-core coil (12) having a first air-core hole; a second air-core coil (13) having a second air-core hole communicating with the first air-core hole; A shield body (16, 33, 34) made of a magnetic material that magnetically blocks the magnetic field formed by the first air-core coil (12) and the magnetic field formed by the second air-core coil (13), and a first metal plate (21) that faces the first air-core coil (12) with a pressing force and closes the first air-core hole; and a first metal plate (21) that faces the second air-core coil (13) with an appropriate pressing force. and a second metal plate (22) that closes the second air core hole, a first drive circuit (25) that energizes the first air core coil, and a second drive circuit that energizes the second air core coil. Drive circuit (26)
A high-speed valve characterized by comprising:
JP26767785A 1985-11-28 1985-11-28 High speed valve Pending JPS62126533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26767785A JPS62126533A (en) 1985-11-28 1985-11-28 High speed valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26767785A JPS62126533A (en) 1985-11-28 1985-11-28 High speed valve

Publications (1)

Publication Number Publication Date
JPS62126533A true JPS62126533A (en) 1987-06-08

Family

ID=17447990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26767785A Pending JPS62126533A (en) 1985-11-28 1985-11-28 High speed valve

Country Status (1)

Country Link
JP (1) JPS62126533A (en)

Similar Documents

Publication Publication Date Title
US4299678A (en) Magnetic target plate for use in magnetron sputtering of magnetic films
US4324631A (en) Magnetron sputtering of magnetic materials
US4401539A (en) Sputtering cathode structure for sputtering apparatuses, method of controlling magnetic flux generated by said sputtering cathode structure, and method of forming films by use of said sputtering cathode structure
EP0184812B1 (en) High frequency plasma generation apparatus
WO1989001699A1 (en) Steered arc coating with thick targets
JP5416351B2 (en) Plasma gun deposition apparatus and operation method thereof
ES533528A0 (en) IMPROVEMENTS INTRODUCED IN AN ELECTROMAGNETIC VALVE ARRANGEMENT
US3408283A (en) High current duoplasmatron having an apertured anode positioned in the low pressure region
JPH0211760A (en) Magnetron type sputtering apparatus
JPH05190100A (en) Hollow cathode plasma switch device having magnetic field
CN101709806A (en) Miniature self-locking electromagnetic valve
US2358828A (en) Electromagnetic operator
EP0084971B2 (en) A method for reactive bias sputtering
JPS62126533A (en) High speed valve
KR102172723B1 (en) Ion sources and methods for generating ion beams with controllable ion current density distributions over large treatment areas
US6225747B1 (en) Charged-particle source, control system and process using gating to extract the charged particle beam
JPS6128029B2 (en)
JP3355869B2 (en) Ion source control device
JPS61250948A (en) X-ray generator, x-ray exposing method and charged particle/neutral particle eliminator
JP2765733B2 (en) Flow control valve with closing function
CN211897094U (en) Hardware configuration and system for physical sputtering
JPS63223173A (en) Method and apparatus for forming sputtered film
WO1996026378A1 (en) Magnetically assisted piezo-electric valve actuator
US3283193A (en) Ion source having electrodes of catalytic material
JP2002069631A (en) Sputtering method and equipment therefor