JPS62124076A - Ac tig (tungsten inert gas) welding machine - Google Patents
Ac tig (tungsten inert gas) welding machineInfo
- Publication number
- JPS62124076A JPS62124076A JP26130085A JP26130085A JPS62124076A JP S62124076 A JPS62124076 A JP S62124076A JP 26130085 A JP26130085 A JP 26130085A JP 26130085 A JP26130085 A JP 26130085A JP S62124076 A JPS62124076 A JP S62124076A
- Authority
- JP
- Japan
- Prior art keywords
- current
- current power
- constant current
- power supply
- arc load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Arc Welding Control (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕 本発明は、逆極性電流の比率を正
極性電流の比率より非常に小さくできる交流ティグ溶接
機に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an AC TIG welding machine that can make the ratio of reverse polarity current much smaller than the ratio of positive polarity current.
〔発明の背景〕 従来、交流ティグ溶接でクリーニング
作用を得るために流す逆極性電流は全体の平均電流値の
10%程度で十分であり、この程度に逆極性電流の比率
を抑えた方が電極の消耗や溶接性の面で好ましいことは
わかっているが、これを実現するためには溶接機が非常
に大形で高価なものとなり、実用に供し得るものがなか
った。[Background of the Invention] Conventionally, the reverse polarity current applied to obtain a cleaning effect in AC TIG welding is sufficient to be about 10% of the overall average current value, and it is better to suppress the ratio of reverse polarity current to this level. Although it is known that this is preferable in terms of consumption and weldability, in order to realize this, a welding machine would have to be extremely large and expensive, and there was no one that could be put to practical use.
すなわち、第4図に示す従来例は、2つの電源E工、E
2からトランジスタQ工、Q2を介してアーク負荷Rに
対し互に逆方向の電流を流し、一方の電源E2から流す
電流をパルス状に大きくすることにより、第5図に示す
ように正極性電流ISPの通電時間よりも短い短時間の
みアーク負荷Rに逆極性電流IRPを流すようにしたも
のであるが、シリーズレギュレータ方式で電流制御を行
なっているため、トランジスタQ□、Q2の損失が大き
く、使用素子が大形となり、実用性がない。That is, in the conventional example shown in FIG.
2 through transistors Q and Q2 to the arc load R, and by increasing the current flowing from one power source E2 in a pulsed manner, a positive polarity current is generated as shown in FIG. The reverse polarity current IRP is made to flow through the arc load R for a short period of time, which is shorter than the energizing time of the ISP, but since the current is controlled using a series regulator method, the losses in the transistors Q□ and Q2 are large. The elements used are large and are not practical.
第6図に示す従来例は特願昭57−189185号で本
発明者の提案したもので、2つの電源E1、E2からチ
ョッパ制御されるトランジスタQ1、Q2を介してアー
ク負荷Rに正極性電流ISPと逆極性電流rRpを交互
に流し、正極性電流から逆極性電流への転流時には、ト
ランジスタQ、、Q2をオフにしトランジスタQ3、Q
4をオンにして、ダイオードD工、D2と電流平滑用の
直流リアクタしにフライホイール電流を流し、逆極性電
流から正極性電流への転流時にも、同様にダイオードD
工、D2、直流リアクタLにフライホイール電流を流す
ことにより、転流時にトランジスタQ工、Q2を破壊す
るようなスパイク電圧が直流リアクタLに発生すること
を防止している。この従来例では、トランジスタをスイ
ッチングモードで動作させるため、損失は少ないが、大
電流をオンオフするトランジスタが4個必要で、やはり
装置が大形になる。The conventional example shown in FIG. 6 was proposed by the present inventor in Japanese Patent Application No. 57-189185, and a positive polarity current is supplied to the arc load R from two power supplies E1 and E2 through chopper-controlled transistors Q1 and Q2. ISP and reverse polarity current rRp are passed alternately, and when commutation from positive polarity current to reverse polarity current, transistors Q, Q2 are turned off and transistors Q3, Q
4 is turned on, flywheel current is passed through diodes D and D2 and the DC reactor for current smoothing, and diode D is also turned on when commutating from reverse polarity current to positive polarity current.
By passing a flywheel current through the transistors Q and D2 and the DC reactor L, a spike voltage that would destroy the transistors Q and Q2 is prevented from being generated in the DC reactor L during commutation. In this conventional example, since the transistors are operated in a switching mode, the loss is small, but four transistors are required to turn on and off large currents, and the device becomes large.
〔発明の目的〕 本発明の目的は、上記した従来技術の
問題点を解決し、より小形軽量で安価な構成により、前
述のような正極性電流に比べ非常に小さい比率の逆極性
電流を流すことができる交流ティグ溶接機を提供するこ
とにある。[Object of the Invention] An object of the present invention is to solve the problems of the prior art described above, and to flow a reverse polarity current at a much smaller ratio than the positive polarity current as described above, with a smaller, lighter, and cheaper structure. Our goal is to provide an AC TIG welding machine that can.
〔発明の概要〕 上記目的を達成するため本発明は、ア
ーク負荷に正極性電流を供給する第1の定電流電源と、
アーク負荷に逆極性電流を供給する第2の定電流電源を
備え、このうち少なくとも第1の定電流電源は出力側回
路に直流リアクタを有し、第2の定電流電源はさらに出
力側回路をオンオフするスイッチング素子を有しており
、出方側回路にスイッチング素子を持たない第1の定電
流電源からアーク負荷への通電中に、制御回路がらの信
号により前記スイッチング素子を所定時間オン状態にし
て、第2の定電流電源からそれまで流れていた電流より
も大きいパルス状の電流を流すことにより、正極性電流
の通電時間よりも短い短時間だけアーク負荷に逆極性電
流を流すようにしたものである。[Summary of the Invention] In order to achieve the above object, the present invention provides a first constant current power supply that supplies a positive polarity current to an arc load;
A second constant current power supply is provided that supplies reverse polarity current to the arc load, at least the first constant current power supply has a DC reactor in its output side circuit, and the second constant current power supply further has a DC reactor in its output side circuit. The switching element is turned on for a predetermined period of time by a signal from the control circuit while the arc load is being energized from a first constant current power source that has a switching element that turns on and off, and does not have a switching element in the output side circuit. Then, by passing a pulsed current larger than the current that had been flowing from the second constant current power source, the reverse polarity current was made to flow through the arc load for a short period of time, which was shorter than the current flow time of the positive polarity current. It is something.
〔発明の実施例〕 本発明の一実施例を第1図に示す。[Embodiment of the Invention] An embodiment of the present invention is shown in FIG.
本実施例は第1の定電流電源1、第2の定電流電源2を
共に高周波インバータにより電流制御されるスイッチン
グレギュレータ方式とした例であり、交流電源3からの
商用周波数の交流入力電圧は三相全波整流回路4と平滑
コンデンサ5で直流に変換される。6.7は高周波イン
バータで、ドライブ回路8,9により駆動され、平滑コ
ンデンサ5で平滑化された直流電圧を高周波交流(例え
ば20kl(z)に変換して溶接トランス1o、11の
一次側に印加する。12.13は溶接トランス10.1
1の二次電圧を再度直流に変換する出力側整流ダイオー
ド、14.15は出力電流を平滑化する直流リアクタで
、第1の定電流電源1側の直流リアクタ14のインダク
タンス値LSPと、第2の定電流電源2側の直流リアク
タ15のインダクタンス値LRPの関係はLsP>LR
Pに設定されている。16は第2の定電流71iit2
の出力側回路をオンオフするスイッチング素子の例とし
て示したトランジスタで、制御回路17からの信号18
により制御される。第1の定電流電源1は出力側回路に
このようなスイッチング素子を持っていない。19は正
極性電流ISP検出用のシャント抵抗、20は逆極性電
流IRP検出用のシャント抵抗、21はISP設定用の
バタン発生器、22はIRP設定用のバタン発生器であ
り、制御回路17でこれらバタン発生器21.22から
発生するISP設定信号とIRP設定信号の同期をとっ
ている。23.24は比較増幅器で、第1の定電流電源
1では、バタン発生器21からのISP設定信号とシャ
ント抵抗19からのxsp検出信号とを比較増幅した信
号をドライブ回路8に加えることにより高周波インバー
タ6の導通幅を制御して定電流制御を行ない、第2の定
電流電源2では、バタン発生器22からのIRP設定信
号とシャント抵抗20からのIRP検出信号とを比較増
幅した信号をドライブ回路9に加えることにより高周波
インバータ7の導通幅を制御して定電流制御を行なう。This embodiment is an example in which both the first constant current power supply 1 and the second constant current power supply 2 are of a switching regulator type whose current is controlled by a high frequency inverter, and the AC input voltage of the commercial frequency from the AC power supply 3 is three. The phase full-wave rectifier circuit 4 and smoothing capacitor 5 convert the current into direct current. 6.7 is a high frequency inverter, which is driven by drive circuits 8 and 9, converts the DC voltage smoothed by the smoothing capacitor 5 into high frequency AC (for example, 20 kl (z)) and applies it to the primary side of the welding transformers 1o and 11. 12.13 is welding transformer 10.1
1 is an output side rectifier diode that converts the secondary voltage of 1 into DC again, 14.15 is a DC reactor that smoothes the output current, and 14.15 is a DC reactor that smoothes the output current. The relationship between the inductance value LRP of the DC reactor 15 on the constant current power supply 2 side is LsP>LR
It is set to P. 16 is the second constant current 71iit2
A transistor shown as an example of a switching element that turns on and off the output side circuit of the control circuit 17.
controlled by The first constant current power supply 1 does not have such a switching element in its output side circuit. 19 is a shunt resistor for detecting the positive polarity current ISP, 20 is a shunt resistor for detecting the reverse polarity current IRP, 21 is a bang generator for ISP setting, 22 is a bang generator for IRP setting, and the control circuit 17 The ISP setting signal and IRP setting signal generated from these bang generators 21 and 22 are synchronized. Reference numerals 23 and 24 are comparison amplifiers, and in the first constant current power supply 1, the ISP setting signal from the bang generator 21 and the xsp detection signal from the shunt resistor 19 are compared and amplified and a signal is applied to the drive circuit 8 to generate a high frequency signal. The conduction width of the inverter 6 is controlled to perform constant current control, and the second constant current power supply 2 drives a signal obtained by comparing and amplifying the IRP setting signal from the baton generator 22 and the IRP detection signal from the shunt resistor 20. By adding it to the circuit 9, the conduction width of the high frequency inverter 7 is controlled to perform constant current control.
25はアーク負荷で、第1の定電流電源1からの電流と
第2の定電流電源2からの電流が互に逆方向に流れるよ
うに接続されている。Reference numeral 25 denotes an arc load, which is connected so that the current from the first constant current power source 1 and the current from the second constant current power source 2 flow in opposite directions.
次に、溶接時の電流の流れを第2図、第3図により説明
する。Next, the flow of current during welding will be explained with reference to FIGS. 2 and 3.
バタン発生器21.22から発生するISP設定信号お
よびIRP設定信号の波形は第2図に示す通りで、IS
P設定信号は連続波形、IRP設定信号はパルス波形と
なっている。The waveforms of the ISP setting signal and IRP setting signal generated from the button generators 21 and 22 are as shown in Fig.
The P setting signal has a continuous waveform, and the IRP setting signal has a pulse waveform.
溶接時、第1の定電流電源1の出力側回路には第3図の
ISPで示す波形の電流が流れ、第2の定電流電源2の
出力側回路には第3図のIRPで示す波形の電流が流れ
る。During welding, a current with a waveform shown by ISP in FIG. 3 flows through the output side circuit of the first constant current power source 1, and a current with a waveform shown by IRP in FIG. 3 flows through the output side circuit of the second constant current power source 2. current flows.
トランジスタ16がオフ状態にあるときは、第1の定電
流電源1からのISP電流がすべてアーク負荷25を通
って流れており、この第1の定電流電源1からアーク負
荷25への通電中に、制御回路17からの信号18によ
りトランジスタ16を所定時間オン状態にして、それま
で流れていたISP電流よりも大きいパルス状のIRP
電流を第2の定電流電源2から流すことにより、ISP
電流の通電時間よりも短い短時間だけアーク負荷25に
IRP電流を流す。When the transistor 16 is in the off state, all the ISP current from the first constant current power source 1 is flowing through the arc load 25, and while the first constant current power source 1 is energizing the arc load 25, , the transistor 16 is turned on for a predetermined period of time by the signal 18 from the control circuit 17, and a pulse-like IRP that is larger than the ISP current flowing up to that point is generated.
By flowing current from the second constant current power supply 2, the ISP
The IRP current is passed through the arc load 25 for a short time shorter than the current application time.
こうすることにより、アーク負荷25に流れる電流波形
は第3図のIOU↑で示すような交流波形となり、アー
ク負荷25に流れるIRP電流の比率を全体の平均電流
値のlO%程度とすることができる。By doing this, the current waveform flowing through the arc load 25 becomes an AC waveform as shown by IOU↑ in Fig. 3, and the ratio of the IRP current flowing through the arc load 25 can be set to about 10% of the overall average current value. can.
この場合、第3図に示すように、IRP区間に第1の定
電流電源1から流すISP電流をパルス状に減少させる
ように電流制御すれば、クリーニング作用に必要なIR
P電流をアーク負荷に流すため第2の定電流電源2から
供給する電流がより少なくてすみ、電源容量を小さくで
きる。In this case, as shown in FIG. 3, if the current is controlled so that the ISP current flowing from the first constant current power supply 1 during the IRP period is reduced in a pulsed manner, the IR required for the cleaning action can be reduced.
Since the P current is passed through the arc load, less current is required from the second constant current power source 2, and the power source capacity can be reduced.
なお、第3図において、IRP区間にISPおよびIR
P電流が斜線を付して示すように増加しているのは、第
2の定電流電源2から第1の定電流電源1側への回り込
み電流によるものである。In addition, in Figure 3, there are ISP and IR in the IRP section.
The reason why the P current increases as indicated by the diagonal line is due to the loop current flowing from the second constant current power supply 2 to the first constant current power supply 1 side.
一般に2電源からアーク負荷へISP電流とIRP電流
を流す場合1問題となるのは、一方の電源から他方の電
源回路への電流の回り込みと、転流時に電源回路のイン
ダクタンスにより発生するスパイク電圧であるが、本実
施例ではこれらの問題を次のように解決している。Generally, when flowing ISP current and IRP current from two power supplies to an arc load, there are two problems: the current flows from one power supply to the other power supply circuit, and the spike voltage generated by the inductance of the power supply circuit during commutation. However, in this embodiment, these problems are solved as follows.
まず、第1の定電流電源1から第2の定電流電源2側へ
の電流の回り込みは、IRP電流を流すとき以外、第2
の定電流電源2の出力側回路に設けたトランジスタ16
をオフすることで防止している。First, the current loop from the first constant current power supply 1 to the second constant current power supply 2 side is
A transistor 16 provided in the output side circuit of the constant current power supply 2
This can be prevented by turning off the
また、トランジスタ16をオンさせたとき、第2の定電
流電源2から第1の定電流電源1側へ流れる回り込み電
流については、fRp’R流がパルス状でISP電流に
比べ短時間しか流れず、しがも前述のようにLSP>L
RPとしであるので、第1の定電流電源1側には出力側
回路をオンオフするスイッチング素子を設けなくても、
インダクタンスの大きい直流リアクタ14により第2の
定電流電源2から第1の定電流電源1側への回り込み電
流を制限して、アーク負荷25に必要なIRP電流を流
すことができる。Furthermore, when the transistor 16 is turned on, the fRp'R flow is pulsed and flows for a short time compared to the ISP current, with respect to the loop current flowing from the second constant current power supply 2 to the first constant current power supply 1 side. , as mentioned above, LSP>L
Since it is an RP, there is no need to provide a switching element on the first constant current power supply 1 side to turn on and off the output side circuit.
The DC reactor 14 having a large inductance limits the current flowing from the second constant current power source 2 to the first constant current power source 1 side, so that the necessary IRP current can flow through the arc load 25.
一方、直流リアクタ15のインダクタンスは小さく、特
に、本実施例のように第1および第2の定電流電源を共
に高周波インバータにより電流制御されるスイッチング
レギュレータ方式とした場合は、第2の定電流電源2の
出力電流の平滑化に必要な直流リアクタ15のインダク
タンスはサイリスタ制御の場合に比べ数十分の1でよい
ので、トランジスタ16をオフさせたときに発生するス
パイク電圧をトランジスタ16の耐電圧以下の低い値に
抑えることができる。On the other hand, the inductance of the DC reactor 15 is small, and especially when the first and second constant current power supplies are both of the switching regulator type in which the current is controlled by a high frequency inverter as in this embodiment, the second constant current power supply The inductance of the DC reactor 15 required for smoothing the output current of step 2 is several tenths of that of thyristor control, so the spike voltage generated when the transistor 16 is turned off can be kept below the withstand voltage of the transistor 16. can be suppressed to a low value.
第2の定電流電源2は、IRP電流の比率が小さいこと
からシリーズレギュレータ方式により電流制御を行なっ
てもよく、この場合は直流リアクタ15が不要となる。Since the second constant current power supply 2 has a small ratio of IRP current, current control may be performed using a series regulator method, and in this case, the DC reactor 15 is not required.
また、トランジスタ16をオフさせたとき、それまで流
れていた第2の定電流電源2からの回り込み電流により
直流リアクタ14にスパイク電圧が発生しても、IRP
電流からISP電流への転流時であるため、発生したス
パイク電圧はアーク負荷25に印加されて、容易に転流
が行なわれ、トランジスタ16などのスイッチング素子
を破壊するような高電圧を発生することはない。Furthermore, when the transistor 16 is turned off, even if a spike voltage is generated in the DC reactor 14 due to the sneak current from the second constant current power supply 2 that was flowing until then, the IRP
Since this is the time of commutation from the current to the ISP current, the generated spike voltage is applied to the arc load 25 and commutation is easily performed, generating a high voltage that can destroy switching elements such as the transistor 16. Never.
〔発明の効果〕 以上のように本発明では、逆極性電流
を供給する第2の定電流電源にのみ出力側回路をオンオ
フするスイッチング素子を設けて、アーク負荷へパルス
状の電流を流し、正極性電流を供給する第1の定電流電
源の出力側回路に設けた直流リアクタにより第2の定電
流電源から第1の定電流電源側への回り込み電流を制限
する構成としたため、出力側回路をオンオフするスイッ
チング素子は1個のみで、しかも、このスイッチング素
子に流れる逆極性電流は全体の平均電流値の10%程度
であるため、小形で安価なものでよく、また、両電源の
間の回り込み電流や転流時にスイッチング素子にかかる
スパイク電圧も十分に抑制でき、動作の信頼性を確保す
ることができる。[Effects of the Invention] As described above, in the present invention, a switching element that turns on and off the output side circuit is provided only in the second constant current power supply that supplies reverse polarity current, and a pulsed current flows to the arc load, and the positive electrode Because the structure is configured to limit the sneak current from the second constant current power source to the first constant current power source side by a DC reactor installed in the output side circuit of the first constant current power source that supplies constant current, the output side circuit There is only one switching element that turns on and off, and the reverse polarity current flowing through this switching element is about 10% of the overall average current value. The spike voltage applied to the switching element during current and commutation can also be sufficiently suppressed, ensuring operational reliability.
第1図は本発明の一実施例を示す回路図、第2図は本実
施例における電流設定信号の波形図、第3図はその出力
電流波形図、第4図は従来例の回路図、第5図はその出
力電流波形図、第6図は他の従来例の回路図である。
1・・・第1の定電流電源 2・・・第2の定電流電源
6.7・・・高周波インバータ
10.11・・・溶接トランス 14.15・・・直流
リアクタ16・・・スイッチング素子 17・・・制御
回路18・・・制御信号FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a waveform diagram of a current setting signal in this embodiment, FIG. 3 is an output current waveform diagram thereof, and FIG. 4 is a circuit diagram of a conventional example. FIG. 5 is an output current waveform diagram, and FIG. 6 is a circuit diagram of another conventional example. 1... First constant current power supply 2... Second constant current power supply 6.7... High frequency inverter 10.11... Welding transformer 14.15... DC reactor 16... Switching element 17... Control circuit 18... Control signal
Claims (3)
電源と、アーク負荷に逆極性電流を供給する第2の定電
流電源を備え、このうち少なくとも第1の定電流電源は
出力側回路に直流リアクタを有し、第2の定電流電源は
さらに出力側回路をオンオフするスイッチング素子を有
しており、出力側回路にスイッチング素子を持たない第
1の定電流電源からアーク負荷への通電中に、制御回路
からの信号により前記スイッチング素子を所定時間オン
状態にして、第2の定電流電源からそれまで流れていた
電流よりも大きいパルス状の電流を流すことにより、正
極性電流の通電時間よりも短い短時間だけアーク負荷に
逆極性電流を流すようにしたことを特徴とする交流ティ
グ溶接機。(1) A first constant current power supply that supplies a positive polarity current to the arc load and a second constant current power supply that supplies a reverse polarity current to the arc load, of which at least the first constant current power supply is on the output side The second constant current power supply, which has a DC reactor in its circuit, further has a switching element for turning on and off the output circuit, and the first constant current power supply, which does not have a switching element in the output circuit, is connected to the arc load. During energization, the switching element is turned on for a predetermined period of time by a signal from the control circuit, and a pulsed current larger than the current flowing until then is caused to flow from the second constant current power supply, thereby causing a positive current to flow. An AC TIG welding machine characterized by passing a reverse polarity current through an arc load for a short period of time shorter than the energization time.
により出力電流を制御するもので、出力側回路には共に
直流リアクタを有し、このうち第1の定電流電源の有す
る直流リアクタのインダクタンス値は第2の定電流電源
の有する直流リアクタのインダクタンス値よりも大であ
ることを特徴とする特許請求の範囲(1)に記載の交流
ティグ溶接機。(2) The first and second constant current power supplies control the output current using high frequency inverters, and both have DC reactors in their output circuits, and the inductance of the DC reactor of the first constant current power supply is The AC TIG welding machine according to claim 1, wherein the inductance value is larger than the inductance value of the DC reactor included in the second constant current power source.
、第1の定電流電源からアーク負荷へ流す電流を減少さ
せるように電流制御することを特徴とする特許請求の範
囲(1)または(2)に記載の交流ティグ溶接機。(3) When current is supplied from the second constant current power source to the arc load, the current is controlled so as to reduce the current flowing from the first constant current power source to the arc load; The AC TIG welding machine described in (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26130085A JPS62124076A (en) | 1985-11-22 | 1985-11-22 | Ac tig (tungsten inert gas) welding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26130085A JPS62124076A (en) | 1985-11-22 | 1985-11-22 | Ac tig (tungsten inert gas) welding machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62124076A true JPS62124076A (en) | 1987-06-05 |
Family
ID=17359880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26130085A Pending JPS62124076A (en) | 1985-11-22 | 1985-11-22 | Ac tig (tungsten inert gas) welding machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62124076A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022510709A (en) * | 2019-05-29 | 2022-01-27 | 華南理工大学 | High speed frequency pulse TIG welding system |
-
1985
- 1985-11-22 JP JP26130085A patent/JPS62124076A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022510709A (en) * | 2019-05-29 | 2022-01-27 | 華南理工大学 | High speed frequency pulse TIG welding system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4876433A (en) | Inverter controlled-type power source for arc welding | |
JP3429417B2 (en) | Forward type DC-DC converter | |
US9333584B2 (en) | Modified phase shifted gate drive | |
JPS62124076A (en) | Ac tig (tungsten inert gas) welding machine | |
JPS6333386B2 (en) | ||
JP3266389B2 (en) | Series resonant converter | |
JPH1052754A (en) | Power source device for arc working | |
JP3070314B2 (en) | Inverter output voltage compensation circuit | |
JP2628059B2 (en) | DC power supply | |
US20230283200A1 (en) | Variable pwm frequency responsive to power increase event in welding system | |
JP2867069B2 (en) | Switching power supply | |
JP2580108B2 (en) | Power converter | |
JP2685547B2 (en) | Control device for arc welding power supply | |
JP2652251B2 (en) | AC arc welding power supply | |
JPH0611188B2 (en) | Energy converter | |
JP2022190981A (en) | Power supply device | |
JP2605878B2 (en) | Switching regulator control method | |
JPH106003A (en) | Power source equipment for arc working | |
JP3456788B2 (en) | Switching power supply | |
JP2778726B2 (en) | Power supply | |
JP2022177970A (en) | Power supply device | |
JPH072016B2 (en) | Series resonant converter | |
JPS6198160A (en) | Dc power source | |
JPH09149648A (en) | Switching power supply | |
JPH02101960A (en) | Power source equipment |