JPS62123692A - Reflective field light emiiting device - Google Patents

Reflective field light emiiting device

Info

Publication number
JPS62123692A
JPS62123692A JP60263435A JP26343585A JPS62123692A JP S62123692 A JPS62123692 A JP S62123692A JP 60263435 A JP60263435 A JP 60263435A JP 26343585 A JP26343585 A JP 26343585A JP S62123692 A JPS62123692 A JP S62123692A
Authority
JP
Japan
Prior art keywords
phosphor layer
phosphor
reflective
electroluminescent device
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60263435A
Other languages
Japanese (ja)
Inventor
五十嵐 正美
加藤 義徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP60263435A priority Critical patent/JPS62123692A/en
Publication of JPS62123692A publication Critical patent/JPS62123692A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、螢光体層に電場を印加して発光させる電場発
光素子に関し、特には、透明電極と対向電極の間に螢光
体層を設けて、外光または、螢光体層からの発光を対向
電極で反射させて透明電極側から放出する反射型電場発
光素子に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an electroluminescent device that emits light by applying an electric field to a phosphor layer, and particularly relates to an electroluminescent device that emits light by applying an electric field to a phosphor layer. The present invention relates to a reflection type electroluminescent device which reflects external light or light emitted from a phosphor layer by a counter electrode and emits it from a transparent electrode side.

[従来の技術] 従来から、銅やマンガンを拡散した硫化亜鉛等の蛍光体
に電場を印加することにより生ずる発光現象は、■レフ
トロルミネセンス(以下ELと略す。)として知られ、
電場発光素子に利用されている。
[Prior Art] Conventionally, the luminescence phenomenon that occurs when an electric field is applied to a phosphor such as zinc sulfide in which copper or manganese is diffused is known as left luminescence (hereinafter abbreviated as EL).
Used in electroluminescent devices.

ELを利用した従来の電場発光素子を第3図により説明
する。1は、透明絶縁基板であり、ガラス、プラスチッ
クフィルムなどからなる。
A conventional electroluminescent device using EL will be explained with reference to FIG. 1 is a transparent insulating substrate made of glass, plastic film, or the like.

2は透明絶縁基板1の内側に形成された透明電極であり
、酸化インジウムや酸化スズ等の金属酸化物の薄膜、金
、パラジウム等の薄膜または小さな網目状の穴を形成し
たアルミニウム、銅等の余興の薄膜からなる面積抵抗が
数に07口以下の層である。7は透明電極と対向して設
けられた対向電極でおり、例えば銀等の金属粉を有機高
分子や無機質の結着剤中に分散させたものや、アルミニ
ウム、銅等の金属箔または金属薄膜からなる。3は、透
明電極2と対向電極7との間に設けられた蛍光体層であ
り、硫化亜鉛に銅やマンガン等の活性剤とアルミニウム
、塩素等の付活性剤とをドープして蛍光体粉末を有機高
分子や無機質の結着剤中に分散させてなる層である。蛍
光体層3に用いられる蛍光体粉末は、一般的に、硫化亜
鉛の活性剤と付活性剤とを添加して、800℃〜120
0℃で窒素や硫化水素等の雰囲気中で焼成し、硫化亜鉛
の粒子を成長させることによって作製される。蛍光体粉
末としては、硫化亜鉛以外にも、希土類元素、二価金属
や遷移金属等を用いたものもある。6は、同じく透明電
極2と対向電極7との間に設けられた絶縁体層であり、
酸化チタンやヂタン酸バリウム等の高誘電率粉末を有機
高分子結着剤中に分散させてなる。これらの層は、全体
を三フッ化塩化エチレンやエポキシ樹脂等からなる防湿
保護フィルム5で覆われている。そして透明電極2と対
向電極7との間に交流電圧を印加すると、その電肚や周
波数に応じた電場が蛍光体層3に加わり発光するように
なっている。更に、防湿保護フィルム5の内部の湿度を
低く保つために、ナイロン6、ナイロン6.6等の吸湿
性フィルムやゼオライト、シリカゲル、酸化カルシウム
等の無機系の屹燥剤等により形成された捕水層を設けた
電場発光素子もス1られている。
2 is a transparent electrode formed inside the transparent insulating substrate 1, and is made of a thin film of metal oxide such as indium oxide or tin oxide, a thin film of gold, palladium, etc., or a thin film of aluminum, copper, etc. with small mesh holes formed therein. The layer is made of a thin film for entertainment and has a sheet resistance of 0.07 or less. 7 is a counter electrode provided facing the transparent electrode, and is made of, for example, metal powder such as silver dispersed in an organic polymer or inorganic binder, or metal foil or metal thin film of aluminum, copper, etc. Consisting of 3 is a phosphor layer provided between the transparent electrode 2 and the counter electrode 7, which is made by doping zinc sulfide with an activator such as copper or manganese and an activator such as aluminum or chlorine to form a phosphor powder. This is a layer made by dispersing silica in an organic polymer or inorganic binder. The phosphor powder used for the phosphor layer 3 is generally heated at 800°C to 120°C by adding a zinc sulfide activator and an activator.
It is produced by firing in an atmosphere of nitrogen, hydrogen sulfide, etc. at 0° C. to grow zinc sulfide particles. In addition to zinc sulfide, phosphor powders include those using rare earth elements, divalent metals, transition metals, and the like. 6 is an insulating layer similarly provided between the transparent electrode 2 and the counter electrode 7,
It is made by dispersing high dielectric constant powder such as titanium oxide or barium ditanate in an organic polymer binder. These layers are entirely covered with a moisture-proof protective film 5 made of trifluorochloroethylene, epoxy resin, or the like. When an alternating current voltage is applied between the transparent electrode 2 and the counter electrode 7, an electric field corresponding to the voltage and frequency is applied to the phosphor layer 3, causing it to emit light. Furthermore, in order to keep the humidity inside the moisture-proof protective film 5 low, a water-trapping film made of a hygroscopic film such as nylon 6 or nylon 6.6 or an inorganic desiccant agent such as zeolite, silica gel, or calcium oxide is used. Layered electroluminescent devices have also been used.

第3図の6.7のそれぞれの位置に透明電極2、透明絶
縁基板1を配置した構造、もしくは対向電極7の両面に
第3図に示した1、2.3と6を積層した構造の両面発
光の電場発光素子も知られている。
A structure in which a transparent electrode 2 and a transparent insulating substrate 1 are arranged at each position of 6.7 in FIG. 3, or a structure in which 1, 2.3 and 6 shown in FIG. Double-sided light-emitting electroluminescent devices are also known.

[発明が解決しようとする問題点] しかしながら、従来の電場発光素子で使用されでている
蛍光体粉末は、20〜30μmの平均粒径のものであり
、この中には35μm以上の粒径の大きな粉末も多く含
まれている。この為、第1図に示された蛍光体層3と絶
縁層6の厚みは40μm〜60μmのものが一般的であ
る。しかしながら、膜厚が厚くなると蛍光体粉末に加わ
る電場が弱くなり、発光輝度も低くなる。そこで、蛍光
体層3の蛍光体粉末の比率を大きく(約80%以上)し
て、発光輝度を実用レベルに保っている。また、蛍光体
粉末の表面は、第4図に示すように、凹凸が多数存在し
ており、光を散乱しやすくなっている。そのために、蛍
光体粉末自体の光の透過率が低くなっている。以上の理
由により、蛍光体層3の光の透過率は、極端に低(10
%以下になってしまう。よって第3図の絶縁層6を省略
し、蛍光体層3を透明電極2と対向電極7で挟み、外光
や蛍光体層の発光を対向電極で反射させ透明電極2側よ
り放出させる構造の反射型電場発光素子において、蛍光
体層3にこのような従来の蛍光体粉末を用いた場合には
、蛍光体層3の透過率が低いため反射光の光量が極端に
小さく、反射型にする効果がなく、実用に供し得ない。
[Problems to be Solved by the Invention] However, the phosphor powders used in conventional electroluminescent devices have an average particle size of 20 to 30 μm, and some of them have a particle size of 35 μm or more. It also contains many large particles. For this reason, the thickness of the phosphor layer 3 and the insulating layer 6 shown in FIG. 1 is generally 40 μm to 60 μm. However, as the film thickness increases, the electric field applied to the phosphor powder becomes weaker, and the luminance of the emitted light also becomes lower. Therefore, the ratio of the phosphor powder in the phosphor layer 3 is increased (approximately 80% or more) to maintain the luminance at a practical level. Furthermore, as shown in FIG. 4, the surface of the phosphor powder has many irregularities, making it easy to scatter light. Therefore, the light transmittance of the phosphor powder itself is low. For the above reasons, the light transmittance of the phosphor layer 3 is extremely low (10
% or less. Therefore, the insulating layer 6 in FIG. 3 is omitted, the phosphor layer 3 is sandwiched between the transparent electrode 2 and the counter electrode 7, and the external light and the light emitted from the phosphor layer are reflected by the counter electrode and emitted from the transparent electrode 2 side. In a reflective electroluminescent device, when such a conventional phosphor powder is used for the phosphor layer 3, the amount of reflected light is extremely small because the transmittance of the phosphor layer 3 is low, so the reflective type is used. It is ineffective and cannot be put to practical use.

それ故、このような反射型の電場発光素子は、末だ実用
化されず、蛍光体層3にかかる電場を増大させる等の為
に絶縁体層6を入れた第3図の如き構造を有する電場発
光素子が一般的であった。
Therefore, such a reflective electroluminescent device has not yet been put into practical use, and has a structure as shown in FIG. 3 in which an insulating layer 6 is inserted to increase the electric field applied to the phosphor layer 3. Electroluminescent devices were common.

[発明が解決しようとする問題点] 従って、本発明は従来の技術では成し得なかった反射型
電場発光素子を実用化することで必リ、特には、蛍光体
層の透過率を増大させ、外光や蛍光体層の発光を対向電
極で反射させて透明電極側から放出させる構造の高輝度
反射型電場発光素子を提供することである。
[Problems to be Solved by the Invention] Therefore, the present invention is essential by putting a reflective electroluminescent device into practical use, which has not been possible with conventional techniques, and in particular, by increasing the transmittance of the phosphor layer. Another object of the present invention is to provide a high-brightness reflective electroluminescent element having a structure in which external light or light emitted from a phosphor layer is reflected by a counter electrode and emitted from a transparent electrode side.

[問題点を解決するための手段」 本発明は、透明電極と対向電極との間に蛍光体層が設け
られている電場発光素子において、該蛍光体層が20μ
m以下の粒径で且つ平滑な結晶面を有する蛍光体粉末を
含有し、外光または該蛍光体層の発光を前記対向電極で
反射して透明電極側より放出することを特徴とする反射
型電場発光素子である。
[Means for Solving the Problems] The present invention provides an electroluminescent element in which a phosphor layer is provided between a transparent electrode and a counter electrode, in which the phosphor layer has a thickness of 20 μm.
A reflective type comprising a phosphor powder having a particle size of m or less and a smooth crystal face, and characterized in that external light or light emitted from the phosphor layer is reflected by the counter electrode and emitted from the transparent electrode side. It is an electroluminescent device.

本発明による反射型電場発光素子は透明絶縁基板上に形
成された透明電極と、光の反射板となる対向電極との間
に蛍光体粉末を有機高分子結着剤中に分散した蛍光体層
のみで構成されており、従来の如き絶縁層は設けられて
いない。
The reflective electroluminescent device according to the present invention has a phosphor layer in which phosphor powder is dispersed in an organic polymer binder between a transparent electrode formed on a transparent insulating substrate and a counter electrode that serves as a light reflecting plate. The conventional insulating layer is not provided.

本発明の蛍光体層中に用いられる蛍光体粉末は、二段階
の焼成方法により結晶面の成長を促進させた、平滑な表
面を有する20μm以下の小粒径粉末であり、本発明の
反射型電場発光素子は、この様な結晶面の成長した平滑
な表面を有する小粒径蛍光体粉末が得られたことにより
可能となったものである。
The phosphor powder used in the phosphor layer of the present invention is a small particle size powder of 20 μm or less with a smooth surface, which has a two-step firing method to promote the growth of crystal planes. The electroluminescent device was made possible by obtaining a small-particle phosphor powder having a smooth surface on which such crystal planes have grown.

[実施例] 本発明の好ましい実施態様を第1図並びに第2図を参照
してより詳細に説明する。
[Example] A preferred embodiment of the present invention will be described in more detail with reference to FIGS. 1 and 2.

本発明の蛍光体粉末は、活性剤と付活性剤を添加した硫
化亜鉛の粉末を不活性ガスまたは硫化水素等の雰囲気中
で300℃〜600℃の予備焼成した後、aoo’c〜
1200℃の本焼成を行なうという二段階の焼成方法で
処理することにより得られる。このようにすることによ
り、結晶面が十分に成長し且つ平滑な表面を有する蛍光
体粉末が得られる。予備焼成は、5〜24時間、好まし
くは10〜15時間で、本焼成は10時間以内、好まし
くは1〜5時間行なうのがよい。予備焼成と本焼成は、
連続的に行なうことも、また別々に、即ち、予備焼成後
、一度冷却し、再度焼成(本焼成)を行なうこともでき
る。いずれの場合も同様の効果が得られる。そして、こ
の効果は活性剤、付活性剤の種類や量に基本的には影響
されない。第2図は、窒素雰囲気中で500℃、12時
間予備焼成した後、900℃で4時間本焼成を行って得
られた銅と塩素とをドープした硫化亜鉛の蛍光体粉末の
電子顕微鏡写真である。第2図と第4図を比較すると明
らかなように、第2図の本発明の蛍光体粉末は表面が平
滑で小粒径である。又、蛍光体粉末自体の透過率も大ぎ
くなっている。該蛍光体粉末は、焼成後、洗浄、分級等
の工程を通り、20μm以下の粒径の蛍光体粉末のみを
以下に説明する反射型電場発光素子に用いた。有機高分
子結着剤としては、誘電率が15のフッ素ラバーを用い
た。
The phosphor powder of the present invention is produced by pre-calcining zinc sulfide powder to which an activator and an activator have been added in an atmosphere of inert gas or hydrogen sulfide at 300°C to 600°C, and then
It is obtained by a two-step firing method including main firing at 1200°C. By doing so, a phosphor powder with sufficiently grown crystal planes and a smooth surface can be obtained. Preliminary firing is performed for 5 to 24 hours, preferably 10 to 15 hours, and main firing is performed for less than 10 hours, preferably 1 to 5 hours. Pre-firing and main firing are
It can be carried out continuously or separately, that is, after preliminary firing, it can be cooled once and fired again (main firing). Similar effects can be obtained in either case. This effect is basically not affected by the type or amount of the activator or activator. Figure 2 is an electron micrograph of zinc sulfide phosphor powder doped with copper and chlorine obtained by pre-firing at 500°C for 12 hours in a nitrogen atmosphere and then main firing at 900°C for 4 hours. be. As is clear from a comparison between FIG. 2 and FIG. 4, the phosphor powder of the present invention shown in FIG. 2 has a smooth surface and a small particle size. Furthermore, the transmittance of the phosphor powder itself has also increased. After firing, the phosphor powder was subjected to steps such as washing and classification, and only phosphor powder with a particle size of 20 μm or less was used in the reflective electroluminescent device described below. Fluorine rubber having a dielectric constant of 15 was used as the organic polymer binder.

第1図は本発明による反射型電場発光素子の側断面図で
あり、以下の様にして作成された。
FIG. 1 is a side sectional view of a reflective electroluminescent device according to the present invention, which was produced as follows.

なお、反射型とするために、第3図に示した絶縁体層6
は形成されてない。
Note that in order to make it a reflective type, the insulator layer 6 shown in FIG.
is not formed.

透明絶縁基板1の片面に蒸着、塗布等の従来より公知の
適宜な手段により透明電極2を形成する。透明電極2の
上にフッ素ラバー中に蛍光体粉末が60%(実施例1 
) 、40%(実施例2)の比率になるように混合した
ペーストを塗布、乾燥して、蛍光体層3(厚み20〜2
5μm)を形成する。次いで金属光沢を有するアルミニ
ウム箔からなる対向電極4を熱圧着により蛍光体層3と
接着させる。この後、電圧印加用の端子を配線し、防湿
保護フィルム5で全体を覆い、反射型電場発光素子を形
成する。
A transparent electrode 2 is formed on one side of a transparent insulating substrate 1 by a conventionally known appropriate means such as vapor deposition or coating. 60% phosphor powder in fluorine rubber was placed on transparent electrode 2 (Example 1)
), 40% (Example 2), a mixed paste was applied and dried to form a phosphor layer 3 (thickness: 20-20%).
5 μm). Next, a counter electrode 4 made of aluminum foil with metallic luster is bonded to the phosphor layer 3 by thermocompression bonding. Thereafter, terminals for voltage application are wired, and the entire structure is covered with a moisture-proof protective film 5 to form a reflective electroluminescent element.

[従来例] 第3図に示される従来の電場発光素子の構造とし、第4
図の蛍光体粉末を用い、蛍光体層3における比率を80
%とし、蛍光体層3と絶縁体層6との厚みを35〜40
μmとして比較量を作成した。
[Conventional Example] The structure of the conventional electroluminescent device shown in FIG.
Using the phosphor powder shown in the figure, the ratio in phosphor layer 3 is 80.
%, and the thickness of the phosphor layer 3 and the insulator layer 6 is 35 to 40%.
A comparative amount was prepared in μm.

実施例1,2及び従来例の蛍光体層3の透過率と発光輝
度を(相対値)を次の表に示した。
The transmittance and luminance (relative values) of the phosphor layer 3 of Examples 1 and 2 and the conventional example are shown in the following table.

反射構造を有する対向電極4として、実施例では、アル
ミニウム箔を用いたが、これ以外のものでも使用可能で
あり、例えば、金、アルミニウム、銅等の金属箔や金属
薄膜またはこれらの金属薄膜を形成した絶縁基板などで
も同様の結果が得られる。
In the embodiment, aluminum foil was used as the counter electrode 4 having a reflective structure, but other materials may also be used. For example, metal foils or thin films of gold, aluminum, copper, etc., or thin films of these metals may be used. Similar results can be obtained with the formed insulating substrate.

[発明の効果] 以上説明したように本発明によれば、蛍光体層中に表面
が平滑な小粒径の蛍光体を用いたことにより、そして対
向電極による反射により従来の電場発光素子に比較□し
て蛍光体層の膜厚が薄くでき、透過率、発光輝度が著し
く高められ〒4.。□34え、。3カ1.ヨ。。438
6示のバックライト用として配置すると、日中の外光が
液晶表示素子、及び蛍光体層3を通して入射し、反射構
造を有する対向電極4により反射されて後液晶表示素子
の外へと光が放出されて液晶表示を十分に認識できた。
[Effects of the Invention] As explained above, according to the present invention, the use of a small-sized phosphor with a smooth surface in the phosphor layer, and the reflection by the counter electrode, make it more effective than conventional electroluminescent devices. □As a result, the thickness of the phosphor layer can be reduced, and the transmittance and luminance are significantly increased. . □34 Eh. 3 Ka1. Yo. . 438
When arranged as a backlight as shown in Fig. 6, outside light during the day enters through the liquid crystal display element and the phosphor layer 3, is reflected by the counter electrode 4 having a reflective structure, and then the light goes out of the liquid crystal display element. The light was emitted and the liquid crystal display was fully visible.

うまり、本発明の反射型電場発光素子は、バックライト
のみならず、液晶表示素子の反射板としても使用できる
In fact, the reflective electroluminescent device of the present invention can be used not only as a backlight but also as a reflector for a liquid crystal display device.

このように本発明の反射型電場発光素子は1、透過率、
発光輝度の増大のみならず、電場発光素子の用途の拡大
をもたらし、その実用的価値は極めて大である。
In this way, the reflective electroluminescent device of the present invention has 1, transmittance,
This not only increases the luminance of light emission but also expands the uses of electroluminescent devices, and its practical value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の好ましい実施態様を示した反射型電
場発光素子の側断面図であり、第2図は、本発明の反射
型電場発光体に使用された蛍光体粉末′の電子顕微鏡写
真であり、第3図は、従来の電場発光素子の構造を示す
側断面図であり、 第4図は、従来の電場発光素子に使用されている蛍光体
粉末の電子顕微鏡写真である。 119.透明絶縁基板、2.1.透明電極、391.蛍
光体層、 4111反射構造を有する対向電極、 53.、防湿保護フィルム、681.絶縁体層、711
.対向電極、 第1図 オ 2 口 丁 3 図 74 図 手続補正書(自利 昭和61年2月12日
FIG. 1 is a side sectional view of a reflective electroluminescent device showing a preferred embodiment of the present invention, and FIG. 2 is an electron micrograph of the phosphor powder used in the reflective electroluminescent material of the present invention. 3 is a side sectional view showing the structure of a conventional electroluminescent device, and FIG. 4 is an electron micrograph of phosphor powder used in the conventional electroluminescent device. 119. Transparent insulating substrate, 2.1. Transparent electrode, 391. Phosphor layer, counter electrode with 4111 reflection structure, 53. , moisture-proof protective film, 681. Insulator layer, 711
.. Counter electrode, Figure 1 O 2 Mouth 3 Figure 74 Figure procedure amendment (JRI February 12, 1986)

Claims (1)

【特許請求の範囲】[Claims]  透明電極と対向電極との間に螢光体層が設けられてい
る電場発光素子において、該螢光体層が20μm以下の
粒径で且つ平滑な結晶面を有する螢光体粉末を含有し、
外光または該螢光体層の発光を前記対向電極で反射して
透明電極側より放出することを特徴とする反射型電場発
光素子。
In an electroluminescent device in which a phosphor layer is provided between a transparent electrode and a counter electrode, the phosphor layer contains a phosphor powder having a particle size of 20 μm or less and a smooth crystal face,
A reflective electroluminescent device characterized in that external light or light emitted from the phosphor layer is reflected by the counter electrode and emitted from the transparent electrode side.
JP60263435A 1985-11-22 1985-11-22 Reflective field light emiiting device Pending JPS62123692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60263435A JPS62123692A (en) 1985-11-22 1985-11-22 Reflective field light emiiting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60263435A JPS62123692A (en) 1985-11-22 1985-11-22 Reflective field light emiiting device

Publications (1)

Publication Number Publication Date
JPS62123692A true JPS62123692A (en) 1987-06-04

Family

ID=17389464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60263435A Pending JPS62123692A (en) 1985-11-22 1985-11-22 Reflective field light emiiting device

Country Status (1)

Country Link
JP (1) JPS62123692A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443596U (en) * 1987-09-11 1989-03-15
JPH0337993A (en) * 1989-07-04 1991-02-19 Nichia Chem Ind Ltd El lamp having alumite layer
US5912649A (en) * 1996-02-13 1999-06-15 Denso Corporation Electro-luminescent display apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443596U (en) * 1987-09-11 1989-03-15
JPH0337993A (en) * 1989-07-04 1991-02-19 Nichia Chem Ind Ltd El lamp having alumite layer
US5912649A (en) * 1996-02-13 1999-06-15 Denso Corporation Electro-luminescent display apparatus

Similar Documents

Publication Publication Date Title
JPS59146192A (en) El element
JPS62123692A (en) Reflective field light emiiting device
JPS6319796A (en) Electric field light emmision device emitting white light
JPH06310279A (en) Electroluminescence lamp
JPH04298989A (en) Organic thin film type electroluminescence element
JPS60264095A (en) Electric field light emitting lamp
JPH0547474A (en) Electroluminescence element
JPS6041437B2 (en) electroluminescent device
JP2000100571A (en) Distributed type electroluminescent device
JPS59149607A (en) Transparent electrode
JPH03219591A (en) Distributed electroluminescence device
JPS60143594A (en) Electroluminescence light emitting element
JP2001176671A (en) Electroluminescent element and its manufacturing method
JPS63283934A (en) Optically diffusive and electrically conductive film
JPH0119360Y2 (en)
JPS6019636B2 (en) electroluminescent device
JPH01200593A (en) Manufacture of electroluminescence display element
JPH012297A (en) Manufacturing method of electroluminescent device
JPH04282244A (en) Electric field light-emitting element
JPS62154596A (en) Thin film el device
JPS61161691A (en) Field light emitting lamp
JPS617593A (en) Electroluminescent light emitting element
JPS59146191A (en) Thin film electric field light emitting element
JPH0778683A (en) Electroluminescence element and manufacture of phosphor
JPS63116391A (en) Manufacture of electroluminescence device