JPS62123073A - Method of burning ceramic material - Google Patents

Method of burning ceramic material

Info

Publication number
JPS62123073A
JPS62123073A JP60262160A JP26216085A JPS62123073A JP S62123073 A JPS62123073 A JP S62123073A JP 60262160 A JP60262160 A JP 60262160A JP 26216085 A JP26216085 A JP 26216085A JP S62123073 A JPS62123073 A JP S62123073A
Authority
JP
Japan
Prior art keywords
lead
firing
pod
ceramic
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60262160A
Other languages
Japanese (ja)
Inventor
高垣 正美
洋 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60262160A priority Critical patent/JPS62123073A/en
Publication of JPS62123073A publication Critical patent/JPS62123073A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、鉛を含有したチタン酸バリウムを主体とする
セラミック材料の焼成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for firing a ceramic material mainly composed of lead-containing barium titanate.

従来の技術 従来よりチタン酸バリウムを主体とするセラミック材料
は、チタニウムの原子半径に近い5価の元素、あるいは
、バリウムの原子半径に近い3価の元素をドーグするこ
とにより半導体化することが可能であり、そのキュリ一
点付近で抵抗値の異常増加が生じる正特性サーミヌタ半
導体として知られている。この正特性サーミスタは自己
温度制御機能により一定温度で発熱する特徴を利用して
、発熱体としての応用がなされてきた。近年、発熱体材
料として高温発熱体の需要が高まってきた。
Conventional technology Traditionally, ceramic materials mainly made of barium titanate can be made into semiconductors by doping with a pentavalent element close to the atomic radius of titanium or a trivalent element close to the atomic radius of barium. It is known as a positive temperature coefficient therminuta semiconductor in which the resistance value abnormally increases near the Curie point. This positive temperature coefficient thermistor has been applied as a heating element by utilizing its characteristic of generating heat at a constant temperature due to its self-temperature control function. In recent years, demand for high-temperature heating elements as heating element materials has increased.

一方、正特性サーミスタを高温で動作させるには、キュ
リ一点を高温側に移動させなければならず、そのために
はチタン酸バリウム中のバリウム原子を一部、鉛に置換
する必要がある。
On the other hand, in order to operate a positive temperature coefficient thermistor at a high temperature, the Curie point must be moved to the high temperature side, and in order to do so, it is necessary to replace some of the barium atoms in barium titanate with lead.

従来、この種の鉛含有材料の焼成は、第2図及び第3図
にそれぞれ示すようなたて積み及び横並びの配置による
サヤ詰め方法において行われていた。すなわち、第2図
及び第3図においてfi+はセラミック材料の成形体、
(2)はマグネシア質のサヤ、(3)はマグネシア質サ
ヤ蓋である。以上のようなサヤ詰め方法によって、12
00℃〜1400℃の温度でセラミック材料を焼成して
いた。
Hitherto, firing of lead-containing materials of this type has been carried out in pod methods using vertical and side-by-side arrangements as shown in FIGS. 2 and 3, respectively. That is, in FIGS. 2 and 3, fi+ is a molded body of ceramic material,
(2) is a magnesia pod, and (3) is a magnesia pod lid. By the above-mentioned pod packing method, 12
Ceramic materials were fired at temperatures ranging from 00°C to 1400°C.

発明が解決しようとする問題点 しかしながら、酸化鉛の匈点は、880°C1蒸気圧は
100OKで4.5 X 1O−1Pa であるため、
上記のような方法で焼成すると、鉛が飛散しやすくなる
。また、素子周辺部の高温による空気対流ため、鉛が蒸
発しやすくなり、第4図に示すような成分パターンを有
するセラミック焼結体になる。すなわち、第4図におい
て素子周辺部(5)は鉛が蒸発し絶縁体化する。それに
対し素子中央部(6)は、青みがかって、半導体化し、
不均質なセラミック焼結体となる。この現象は正特性サ
ーミスタの比抵抗のバラツキの原因となり、歩留が悪く
なると共に、素子耐電圧を低下させ製品の耐久性が劣化
するという問題点があった。
Problems to be Solved by the Invention However, the peak point of lead oxide is 4.5 x 1O-1Pa at 880°C1, and the vapor pressure is 100OK.
When fired using the method described above, lead tends to scatter. Further, due to the air convection caused by the high temperature around the element, lead easily evaporates, resulting in a ceramic sintered body having a component pattern as shown in FIG. That is, in FIG. 4, lead evaporates in the device peripheral area (5) and becomes an insulator. On the other hand, the central part of the element (6) is bluish and semiconducting.
This results in a non-uniform ceramic sintered body. This phenomenon causes variations in the specific resistance of the positive temperature coefficient thermistor, resulting in problems such as poor yield, lowering the element withstand voltage, and deteriorating the durability of the product.

本発明は上記問題点に鑑み、鉛の蒸発を抑制することが
できるセラミック材料の焼成方法を提供する゛ことを目
的とするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a method for firing a ceramic material that can suppress lead evaporation.

問題点を解決するための手段 この目的を達成するために本発明は、多数個を整列状に
積上げた成形体列の上端と下端にこの成形体よりも直径
が約3工以上大きな同材質の一対の成形体を配置して、
前記成形体の垂直列を上下から挾む形においてマグネシ
ア質のサヤ中で焼成することを特徴とするセラミック材
料の焼成方法である。但し、焼成対象の成形体の直径は
約2071tJl程度以下とする。
Means for Solving the Problems In order to achieve this object, the present invention provides a molded product having a diameter of about 3 mm or more larger than that of the molded product at the upper and lower ends of a row of molded products stacked in an array. Place a pair of molded bodies,
This method of firing a ceramic material is characterized in that the vertical rows of the molded bodies are fired in a magnesia pod sandwiching them from above and below. However, the diameter of the molded body to be fired is approximately 2071 tJl or less.

作用 このような構成によって焼成を行うと、積み上げ列の上
端及び下端に位置する形状の大きい成形体から鉛が蒸発
する為、焼成しようとしている成形体の外周囲がかなシ
の鉛雰囲気になり、焼成対象の成形体からの鉛の蒸発が
抑制される。
Effect: When firing is performed with this configuration, lead evaporates from the large shaped bodies located at the top and bottom ends of the stacked rows, resulting in a solid lead atmosphere around the outside of the shaped bodies to be fired. Evaporation of lead from the molded body to be fired is suppressed.

また、形状の大きい上下の成形体が空気対流を防止し、
サヤ内の空気対流による鉛蒸気の上方への飛散が抑制さ
れる。そのため、成形体の極端な鉛飛散が抑制される。
In addition, the large-shaped upper and lower molded bodies prevent air convection,
The upward scattering of lead vapor due to air convection within the pod is suppressed. Therefore, extreme lead scattering from the molded body is suppressed.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。第1図は本発明の一実施例であるセラミック焼
成方法のサヤ内の状態を示した断面図である。第1図に
おいて、(1)は直径11117mのセラミック成形体
、(2)はマグネシア質のサヤ、(3)はマグネシア質
のサヤ蓋、(4)は直径20212j11の同様なセラ
ミック材料からなる保護成形体である。
EXAMPLE An example of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing the state inside the pod of a ceramic firing method according to an embodiment of the present invention. In Figure 1, (1) is a ceramic molded body with a diameter of 11117 m, (2) is a magnesia pod, (3) is a magnesia pod lid, and (4) is a protective mold made of a similar ceramic material with a diameter of 20212j11. It is the body.

ここで、成形体(1)は、(Ba□、6B pbo、3
2)T’io3+o、。
Here, the molded body (1) is (Ba□, 6B pbo, 3
2) T'io3+o,.

01Y203+0.001Mn02の組成になるように
秤量した原料を、ボールミル し、次I27ノnilで仮焼g/次に1100’Cで仮
焼しボールミル 後、直径17朋、厚さ3.○」の円板状に成形されたも
のである。次に第1図に示すマグネシア質サヤ(3)内
に、成形体(1)と同様に作られた直径約20M厚さ3
,O rIljlの保護成形体(4)を置き、この上に
多数の成形体(1)を積み上げ、その上端に第2の保護
成形体(4)を置く。この状態で電気炉中にサヤを入れ
、1250°C〜1300°Cで焼成する。このように
して作成した焼結体fi+にはオーミック製銀電極を付
与してその電気特性を測定する。
The raw material weighed to have a composition of 01Y203+0.001Mn02 was ball milled, then calcined at 127g/nil, then calcined at 1100'C, and after ball milling, the diameter was 17 mm and the thickness was 3 mm. It is shaped like a circular disk. Next, in a magnesia sheath (3) shown in Fig. 1, a molded body 3 with a diameter of about 20M and a thickness made in the same manner as the molded body (1) is placed.
, OrIljl is placed, a large number of molded bodies (1) are stacked on top of this, and a second protective molded body (4) is placed on top of it. In this state, the pods are placed in an electric furnace and fired at 1250°C to 1300°C. The sintered body fi+ thus produced was provided with an ohmic silver electrode and its electrical properties were measured.

本発明の効果を確認するためには、電気特性値とともに
、鉛飛散状態の直接の目安として、成形体と焼結体の重
量差を調べる。このようにして得られた本実施例による
セラミック素子と従来方法による素子の、正特性サーミ
スタ特性及びセラミック換地特性の比較を下表に示す。
In order to confirm the effects of the present invention, the weight difference between the molded body and the sintered body is examined as a direct indicator of the state of lead scattering in addition to the electrical property values. The table below shows a comparison of the positive temperature coefficient thermistor characteristics and ceramic replacement characteristics of the ceramic element according to this example thus obtained and the element according to the conventional method.

また、上下成形体の直径が197IIJ11以下の場合
は、従来方法に似た鉛飛散があった。
Further, when the diameter of the upper and lower molded bodies was 197IIJ11 or less, lead scattering similar to that in the conventional method occurred.

以上のように本実施例によれば、鉛蒸発を抑制すること
が可能となp、従来方法よりかなりち密で均質なセラミ
ツ・り素子を得ることができる。このことにより前であ
げた問題点も解決し、比抵抗のバラツキが小さくなり、
附電圧及び正特性サーミスタの電気特性が向上した。
As described above, according to this embodiment, it is possible to suppress lead evaporation, and it is possible to obtain a ceramic element which is considerably denser and more homogeneous than the conventional method. This solves the problem mentioned earlier, and reduces the variation in resistivity.
The applied voltage and the electrical characteristics of the positive temperature coefficient thermistor have been improved.

発明の効果 以上のように本発明は焼成時の鉛蒸発を抑制することが
可能になり、従来方法よりち密で均質なセラミック焼結
体が得られ正特性サーミスタの電気特性を向上すること
ができる。
Effects of the Invention As described above, the present invention makes it possible to suppress lead evaporation during firing, yield a denser and more homogeneous ceramic sintered body than conventional methods, and improve the electrical characteristics of positive temperature coefficient thermistors. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるセラミック焼成方法の
状態を示すサヤ内断面図、第2図、第3図は従来の焼成
方法の状態を示すサヤ内断面図、第4図は従来方法で得
られたセラミック素子を示す図である。 (1)・φ・・・セラミック成形体(直径17U)(2
)・・・・・マグネシア質サヤ (3)・・・・・マグネシア質サヤ蓋 (4)・・・・・セラミック成形体(直径20vIjl
)特許出願人  松下電器産業株式会社 代  理  人   新  実  健  部(外1名) 第1図 J /°゛′ヒラミlり八;芭1クド 4・・セラSツ7KTf9ノ4に 第4図
Fig. 1 is a sectional view inside the pod showing the state of the ceramic firing method according to an embodiment of the present invention, Figs. 2 and 3 are sectional views inside the pod showing the state of the conventional firing method, and Fig. 4 is the conventional method. FIG. 3 is a diagram showing a ceramic element obtained in FIG. (1)・φ... Ceramic molded body (diameter 17U) (2
)...Magnesia pod (3)...Magnesia pod lid (4)...Ceramic molded body (diameter 20vIjl)
) Patent applicant: Matsushita Electric Industrial Co., Ltd. Agent: Kenbe Niimi (1 other person) figure

Claims (1)

【特許請求の範囲】[Claims]  マグネシア質のサヤ内において、鉛を含有したチタン
酸バリウムを主体とする直径約20mm以下のディスク
状成形体を焼成するにあたり、これらの成形体を多数1
列に積み上げ、その積み上げ列の上端面及び下端面に重
なるように、直径がこれらの成形体よりも約3mm以上
大きな同材質の一対のディスク状成形体を配置した状態
で加熱焼成することを特徴とするセラミック材料の焼成
方法。
When firing a disc-shaped compact with a diameter of about 20 mm or less, which is mainly made of lead-containing barium titanate, in a magnesia pod, a large number of these compacts are fired.
It is characterized by stacking in rows and heating and firing with a pair of disc-shaped molded bodies made of the same material having a diameter of about 3 mm or more larger than these molded bodies arranged so as to overlap the upper and lower end surfaces of the stacked rows. A method for firing ceramic materials.
JP60262160A 1985-11-20 1985-11-20 Method of burning ceramic material Pending JPS62123073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60262160A JPS62123073A (en) 1985-11-20 1985-11-20 Method of burning ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262160A JPS62123073A (en) 1985-11-20 1985-11-20 Method of burning ceramic material

Publications (1)

Publication Number Publication Date
JPS62123073A true JPS62123073A (en) 1987-06-04

Family

ID=17371894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262160A Pending JPS62123073A (en) 1985-11-20 1985-11-20 Method of burning ceramic material

Country Status (1)

Country Link
JP (1) JPS62123073A (en)

Similar Documents

Publication Publication Date Title
US2976505A (en) Thermistors
Whatmore et al. Pyroelectric ceramics in the lead zirconate-lead titanate-lead iron niobate system
US3044968A (en) Positive temperature coefficient thermistor materials
EP0338522B1 (en) High temperature SiC thin film thermistor
USH415H (en) Multilayer PTCR thermistor
JPS62123073A (en) Method of burning ceramic material
US3274467A (en) Ceramic capacitor
JPH0226775B2 (en)
US5350551A (en) Method of firing ceramic moldings containing a diffusible metallic oxide
JPS604561B2 (en) Ceramic electrical resistor with non-linear voltage dependent characteristics and its manufacturing method
JPS6255281B2 (en)
JPS62256761A (en) Method of burning ceramic material
JP3049937B2 (en) Ceramic firing sagger
JP2808758B2 (en) Method for firing barium titanate-based semiconductor porcelain
US3295090A (en) Electrical resistor having a core element with high heat dissipating properties
JPS62256760A (en) Method of burning ceramic material
JP2864731B2 (en) Positive characteristic thermistor and manufacturing method thereof
JP3000781B2 (en) Method of firing ceramic compact containing high vapor pressure oxide
Kuwabara et al. Instability of the Characteristics of the Positive Temperature Coefficient of Resistivity in High‐Curie‐Point Barium‐Lead Titanate Ceramics and Their Grain Structures
JPS6045149B2 (en) Method for manufacturing barium titanate semiconductor porcelain
KR0147960B1 (en) A ceramic composite for ptc thermister
JPS6077402A (en) Method of producing varistor
JP2612247B2 (en) Manufacturing method of NTC thermistor
JP2586486B2 (en) Positive resistance temperature coefficient heating element
KR920001162B1 (en) Barium titanate-baseo semi-conductor porcelain