JPS6212289B2 - - Google Patents

Info

Publication number
JPS6212289B2
JPS6212289B2 JP54078656A JP7865679A JPS6212289B2 JP S6212289 B2 JPS6212289 B2 JP S6212289B2 JP 54078656 A JP54078656 A JP 54078656A JP 7865679 A JP7865679 A JP 7865679A JP S6212289 B2 JPS6212289 B2 JP S6212289B2
Authority
JP
Japan
Prior art keywords
less
aging
stainless steel
strength
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54078656A
Other languages
Japanese (ja)
Other versions
JPS563657A (en
Inventor
Motohiko Arakawa
Hiroyuki Hiramatsu
Hidehiko Sumitomo
Keiichi Obara
Toshio Tagami
Ikuyuki Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7865679A priority Critical patent/JPS563657A/en
Publication of JPS563657A publication Critical patent/JPS563657A/en
Publication of JPS6212289B2 publication Critical patent/JPS6212289B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は時効による材質変化のほとんどない高
強度ステンレス鋼板の製造方法に関するものであ
る。 ステンレス鋼のすぐれた耐食性を利用して、最
近鉄道車輛等交通機関へのステンレス鋼の使用が
増加している。この中で車輛の冷房設備、相互乗
入れによる器材の増加等による車重増加を素材の
高強度により軽減しようとする試みが活発であ
り、省エネルギー的にも車輛の軽量化は時代の要
請に合致し今後、車輛用素材の高強度化、高加工
性化がますます要求されることとなる。今までの
ステンレスメーカーは素材としてSUS304あるい
はSUS301の1/4のハード級が使用されており、未
だ十分な高強度材は使われていない。ところが上
記理由によりステンレス鋼の耐食性を活かしなが
ら、1/2ハード級の材料を使つて車輛をオールス
テンレス化しようとする動きが最近活発化してき
た。 これらの情勢を考慮し、総合特性に優れた車輛
用素材を開発するため、広範囲に亘る研究を行つ
た結果、重量百分率でC:0.04%超〜0.10%、
N:0.05〜0.20%、Si:1.0%以下、Mn:0.3〜2.0
%、Ni:6.5〜8.0%未満、Cr:16.0〜20.0%及び
必要に応じてV:0.50%以下、Nb:0.50%以下、
Ti:0.50%以下、Mo:0.50%以下の1種または
2種以上を含有し、残部はFeおよび製鋼上不可
避の元素からなるステンレス鋼の冷間圧延板を再
結晶焼鈍した後に冷間調質圧延することによつ
て、ハード材としても最も優れた特性を有する非
時効性高強度ステンレス鋼板が得られることを確
かめた。 ステンレス鋼ハード材は高強度であることが先
ず第一の条件であるが、同時に加工性、溶接性、
耐食性にも優れていなければならない。車輛組立
てのため、約6mm厚以下の各種板厚のハード材が
複雑な断面形状に加工され、それらが溶接により
アセンブリーされるからである。加工性に対して
は加工後のスプリングバツク特性からとくに0.2
%耐力(σ0.2)が重要視され、また複雑な加工
形状から素材延性の良好なことが必要となる。溶
接部の特性は強度メンバーとして当然重要な因子
となり、溶接部の鋭敏化は粒界腐食と溶接部割れ
の遠因となるためなるべく避けねばならない。従
つて高強度材ではあるが、あるレベルの加工硬化
特性を有し、(降伏比0.80以下)の溶接部の鋭敏
化特性の優れた材料であることが、この種の素材
に要求される。 さらに問題視される特性として歪時効がある。
従来ステンレス鋼はCr等を多量に含む高合金鋼
であるため、C、N等の拡散係数が小さく、時効
現象を考慮する必要はほとんどなかつた。しかし
高強度化させるステンレス鋼は一般に加工誘起変
態を積極的に利用するため、成分系のオーステナ
イト相が不安定であり、変態したα′マルテンサ
イト中の転位密度が非常に高くなり、所謂歪時効
現象が容易に生じることを見い出した。出荷後の
環境、保存時間を考慮するとσ0.2の上昇量は10
Kg/mm2程度になる場合がある。時効が進行するに
つれて、pre―yieldから上降伏点が現れるように
なり、過時効状態では下降伏点レベルで荷重が推
移し、破断に至る。従つて過時効では加工性が著
しく劣化することになる。 本発明はとくに歪時効を抑制し、同時にハード
材に要求される強度特性、延性等を損うことな
く、溶接性、耐食性等総合特性に優れたハード材
を製造するためその基本成分系を明らかにしたも
のである。 歪時効の進行はσ0.2を上昇させるため、加工
成形後のスプリングバツクを増大させ、さらに加
工硬化を緩慢にすることによつて加工性を劣化さ
せることになる。ステンレスハード材は一般に再
結晶焼鈍後冷間調質圧延により製造されるため、
加工誘起変態に伴なう強度特性の増加、延性の劣
化が生じる。これら特性のバランスがハード材の
変形能を左右するから調質圧延時の材料温度、テ
ンパー圧延率、圧延速度等の制御が、ハード材材
質の調節にとつて重要になる。従つて高強度を得
るための調質圧延は加工素材としての変形能を劣
化させており、歪時効がさらに材質を低下させる
ことは避けねばならない。また歪時効は上述した
加工性劣化の原因になるばかりでなく、加工成形
条件にも影響を与えるため生産性の低下をきた
し、経済的にも大きな問題を提起する。 本発明における各成分元素の限定理由について
述べる。 Si:脱酸剤として製鋼上必要であるが、1.0%
を越えるとフエライト形成能が強くなり、熱間加
工性を劣化させるため1.0%を上限とした。 Mn:オーステナイト形成元素として有効であ
り、0.3%を下廻るとオーステナイト安定度を著
しく不安定にするためこれを下限とした。また
2.0%を超える添加は歪時効抑制効果がうすれる
こと、スケール性から鋼板表面性状にやや問題を
与えることから2.0%を上限と決めた。 Ni:8.0%以上になるとオーステナイト相が安
定に過ぎ、ハード材としての高強度が得られなく
なるため8.0%未満とした。下限の6.5%はオース
テナイト相を維持するためと強度特性のバランス
からみて最低限の必要量である。Niは他の元素
と比較するとオーステナイトバランスをとるのに
最も都合のよい元素であり、上記理由の他にオー
ステナイトバランスをも考慮して含有量の範囲を
決定した。 Cr:オーステナイト安定度に対する影響は非
常に小さいが、耐食性およびフエライト形成に大
きな効果を有する16.0%を下廻ると耐食性が問題
となり20.0%を越えるとフエライト量が著しく増
加し熱間加工性に悪影響を与えるため、その範囲
を16.0〜20.0%とした。 C、N:オーステナイト安定化に対しては両元
素とも同じ役割を果たす。しかし歪時効に対して
は逆の影響を与え、Cの増加が歪時効を促進させ
るのに反してNは抑制する効果がある。強度特性
に対してはC、Nとも同方向の効果を有し、含有
量が増すほど調質圧延後の強度特性は増加し、そ
の度合はCの方がやや大きい。しかしCが0.04%
以下になると調質圧延率に比例するσ0.2の増加
率に対してσBの増加量が小さくなり、加工硬化
能が低下し加工性劣性をきたす。このためCの下
限を0.04%超とした。一方上限は強度特性と歪時
効のバランスから0.10%とした。 Nは強度特性を増加させ、歪時効を抑制するこ
とから多い方が良いが、凝固時のブローホール発
生等製造上の問題から上限を0.20%とした、また
0.05%未満ではオーステナイト相が不安定になり
すぎ歪時効が顕著になるため0.05%を下限値とし
た。 V、Nb、Ti、Mo:歪時効は調質圧延後の2相
組織(γ相とα′相)中、主としてα′相中で生じ
る。γ相の時効も生じるが、α′相に比べて極め
て小さい。α′中の高密度の転位と主にC原子の
反応により歪時効が惹起されるため現象をさらに
抑制するため、Nb、V、Ti、Moの影響を研究し
た結果、これらの元素の1種又は2種以上を添加
することによつてハード材としての総合特性が改
善されることが明らかになつた。V、Nb、Tiの
添加は歪時効抑制に直接的な効果を有するのに対
してMoは強度増加に有効であり、一定の強度特
性をうるための調質圧下率を小さく出来るため、
α′マルテンサイト量が少なくなり間接的に歪時
効を抑制する。さらにMoの場合は耐銹性改善効
果もあり、有益な元素である。これらの元素の添
加量はいずれも0.50%でその効果は十分発揮さ
れ、これ以上加えても効果が飽和しまた経済的に
も賢明でない。 本発明は、このような成分からなるステンレス
鋼の冷間圧延板を再結晶焼鈍した後に冷間調質圧
延するものである。 次に実施例として本発明法により得られたステ
ンレス鋼板の成分および諸特性を従来法により得
られたものと比較して表1および表2に示す。 これらの表の内材質は45Kg鋼塊から公知の冷延
焼鈍により、1.1mm厚の鋼板とした後、圧延温度
60℃で0.8mm厚まで調質圧延した材料について測
定したものである。強度特性は調質圧延直後とそ
れを時効処理(71℃×50hr)した後の2回測定を
行なつた。降伏比と延性(El)は時効前のもの
であり、Δσ0.2は時効前後のσ0.2の差を示して
いる。したがつてΔσ0.2が小さい程時効現象が
抑制されていることになる。 表1および表2から本発明例は時効変化が小さ
く強度特性のバランスもよく変形能に優れている
ことがわかる。これに対して比較例は時効変化が
非常に大きいかまたは時効変化が小さいときは降
伏比が大きく加工性に劣つている。 以上実施例に見られるように本発明法により得
られたステンレス鋼板は歪時効が小さく、ハード
材製造後の材質変化がほとんど生じないため、例
えば加工条件は一度設定すればロツトが変わつて
も調整する必要がなくなる等、その加工生産性に
与える利点は大きい。
The present invention relates to a method for producing a high-strength stainless steel sheet that undergoes almost no material change due to aging. Due to the excellent corrosion resistance of stainless steel, the use of stainless steel in transportation systems such as railway vehicles has recently increased. Under these circumstances, there are active attempts to reduce the increase in vehicle weight due to the increase in vehicle cooling equipment and equipment due to mutual access, etc., by using high strength materials, and reducing the weight of vehicles is also in line with the demands of the times in terms of energy conservation. In the future, there will be an increasing demand for higher strength and higher workability in vehicle materials. Until now, stainless steel manufacturers have used SUS304 or 1/4 hard grade SUS301 as materials, and they have not yet used sufficiently high-strength materials. However, for the reasons mentioned above, there has recently been an active movement to make vehicles entirely stainless steel by using 1/2 hard grade materials while taking advantage of the corrosion resistance of stainless steel. Taking these circumstances into consideration, in order to develop vehicle materials with excellent overall properties, we conducted extensive research and found that C: over 0.04% to 0.10% by weight percentage.
N: 0.05-0.20%, Si: 1.0% or less, Mn: 0.3-2.0
%, Ni: 6.5 to less than 8.0%, Cr: 16.0 to 20.0% and as necessary V: 0.50% or less, Nb: 0.50% or less,
Cold-rolled stainless steel plate containing one or more of Ti: 0.50% or less, Mo: 0.50% or less, and the remainder consisting of Fe and other elements unavoidable in steelmaking, is recrystallized and annealed, then cold tempered. It was confirmed that by rolling, a non-aging, high-strength stainless steel sheet with the best properties as a hard material could be obtained. The first requirement for stainless steel hard materials is high strength, but at the same time, they also have good workability, weldability,
It must also have excellent corrosion resistance. This is because, for vehicle assembly, hard materials of various thicknesses of approximately 6 mm or less are processed into complex cross-sectional shapes and assembled by welding. For workability, especially 0.2 from the spring back characteristics after processing.
% yield strength (σ 0 . 2 ) is important, and the material must have good ductility due to the complicated shape. The characteristics of the weld are naturally an important factor in terms of strength, and sensitization of the weld must be avoided as much as possible because it is a remote cause of intergranular corrosion and cracking of the weld. Therefore, although it is a high-strength material, this type of material is required to have a certain level of work hardening properties and an excellent weld sensitization property (yield ratio of 0.80 or less). Another characteristic that is considered problematic is strain aging.
Conventionally, stainless steel is a high-alloy steel containing a large amount of Cr, etc., so the diffusion coefficient of C, N, etc. is small, and there is almost no need to consider aging phenomena. However, since stainless steels that are made to have high strength generally actively utilize deformation-induced transformation, the austenite phase in the component system is unstable, and the dislocation density in the transformed α' martensite becomes extremely high, resulting in so-called strain aging. We found that this phenomenon occurs easily. Considering the environment and storage time after shipping, the amount of increase in σ 0.2 is 10
It may be around Kg/mm 2 . As aging progresses, the upper yield point appears from the pre-yield state, and in the over-aged state, the load changes at the lower yield point level, leading to fracture. Therefore, overaging significantly deteriorates workability. The present invention specifically clarifies the basic composition system in order to suppress strain aging and at the same time produce a hard material that has excellent comprehensive properties such as weldability and corrosion resistance without impairing the strength characteristics, ductility, etc. required for hard materials. This is what I did. The progress of strain aging increases σ 0.2 , which increases the spring back after processing and forming, and further slows work hardening, thereby deteriorating workability. Hard stainless steel materials are generally manufactured by cold temper rolling after recrystallization annealing.
As a result of deformation-induced transformation, strength properties increase and ductility deteriorates. Since the balance of these properties influences the deformability of the hard material, controlling the material temperature, temper rolling rate, rolling speed, etc. during skin pass rolling is important for adjusting the quality of the hard material. Therefore, temper rolling to obtain high strength deteriorates the deformability of the processed material, and it is necessary to prevent strain aging from further degrading the material quality. Furthermore, strain aging not only causes the above-mentioned deterioration in workability, but also affects processing and forming conditions, resulting in a decrease in productivity and also poses a major economic problem. The reason for limiting each component element in the present invention will be described. Si: Necessary in steelmaking as a deoxidizing agent, 1.0%
If it exceeds 1.0%, the ferrite forming ability becomes strong and hot workability deteriorates, so the upper limit was set at 1.0%. Mn: Effective as an austenite-forming element, and if it falls below 0.3%, the austenite stability becomes extremely unstable, so this was set as the lower limit. Also
The upper limit was set at 2.0% because adding more than 2.0% would reduce the effect of suppressing strain aging and cause some problems with the surface properties of the steel sheet due to scaling. Ni: If it exceeds 8.0%, the austenite phase becomes too stable and high strength as a hard material cannot be obtained, so Ni was set at less than 8.0%. The lower limit of 6.5% is the minimum necessary amount from the viewpoint of maintaining the austenite phase and the balance of strength properties. Compared to other elements, Ni is the most convenient element for maintaining austenite balance, and the content range was determined in consideration of austenite balance in addition to the above reasons. Cr: Has a very small effect on austenite stability, but has a large effect on corrosion resistance and ferrite formation.If it is less than 16.0%, corrosion resistance will be a problem, and if it exceeds 20.0%, the amount of ferrite will increase significantly and have a negative impact on hot workability. Therefore, the range was set to 16.0% to 20.0%. C, N: Both elements play the same role in stabilizing austenite. However, it has the opposite effect on strain aging, and while an increase in C accelerates strain aging, N has the effect of suppressing strain aging. Both C and N have effects in the same direction on strength properties, and as the content increases, strength properties after temper rolling increase, and the degree of this is slightly greater for C. However, C is 0.04%
Below this, the amount of increase in σ B becomes smaller than the rate of increase in σ 0.2 which is proportional to the temper rolling rate, resulting in lower work hardening ability and inferior workability. For this reason, the lower limit of C was set to exceed 0.04%. On the other hand, the upper limit was set at 0.10% in view of the balance between strength characteristics and strain aging. N increases the strength properties and suppresses strain aging, so it is better to have more N, but due to manufacturing problems such as the generation of blowholes during solidification, the upper limit was set at 0.20%.
If it is less than 0.05%, the austenite phase becomes too unstable and strain aging becomes noticeable, so 0.05% was set as the lower limit. V, Nb, Ti, Mo: Strain aging occurs mainly in the α' phase in the two-phase structure (γ phase and α' phase) after temper rolling. Aging of the γ phase also occurs, but it is extremely small compared to the α' phase. Since strain aging is caused by the reaction between high-density dislocations in α' and mainly C atoms, in order to further suppress the phenomenon, we investigated the effects of Nb, V, Ti, and Mo, and found that one of these elements It has also become clear that the overall properties of the hard material can be improved by adding two or more of them. The addition of V, Nb, and Ti has a direct effect on suppressing strain aging, whereas Mo is effective in increasing strength and can reduce the temper reduction rate to obtain constant strength characteristics.
The amount of α′ martensite decreases, indirectly suppressing strain aging. Furthermore, Mo has the effect of improving rust resistance and is a useful element. The effect of each of these elements is sufficiently exhibited at 0.50%, and adding more than this will saturate the effect and is also economically unwise. In the present invention, a cold-rolled stainless steel plate made of such components is subjected to recrystallization annealing and then cold skin pass rolling. Next, as an example, the composition and various properties of a stainless steel plate obtained by the method of the present invention are shown in Tables 1 and 2 in comparison with those obtained by a conventional method. The material in these tables is a 1.1mm thick steel plate made from a 45Kg steel ingot by known cold rolling annealing.
This was measured on a material temper-rolled to a thickness of 0.8 mm at 60°C. The strength properties were measured twice: immediately after temper rolling and after aging treatment (71°C x 50 hours). The yield ratio and ductility (El) are before aging, and Δσ 0.2 indicates the difference in σ 0.2 before and after aging . Therefore, the smaller Δσ 0.2 is , the more the aging phenomenon is suppressed. From Tables 1 and 2, it can be seen that the examples of the present invention show small aging changes, well-balanced strength properties, and excellent deformability. On the other hand, in the comparative examples, when the aging change is very large or the aging change is small, the yield ratio is large and the workability is poor. As seen in the examples above, the strain aging of the stainless steel sheet obtained by the method of the present invention is small, and there is almost no change in material quality after manufacturing the hard material. For example, once the processing conditions are set, they can be adjusted even if the lot changes. It has great advantages in terms of processing productivity, such as eliminating the need to do so.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 重量百分率でC:0.04%超〜0.10%、N:
0.05〜0.20%、Si:1.0%以下、Mn:0.3〜2.0%、
Ni:6.5〜8.0%未満、Cr:16.0〜20.0%を含有
し、残部はFeおよび製鋼上不可避の元素からな
るステンレス鋼の冷間圧延板を再結晶焼鈍した後
に冷間調質圧延することを特徴とする非時効性高
強度ステンレス鋼板の製造方法。 2 重量百分率でC:0.04%超〜0.10%、N:
0.05〜0.20%、Si:1.0%以下、Mn:0.3〜2.0%、
Ni:6.5〜8.0%未満、Cr:16.0〜20.0%に加え
て、V:0.50%以下、Nb:0.50%以下、Ti:0.50
%以下、Mo:0.50%以下の1種または2種以上
を含有し、残部はFeおよび製鋼上不可避の元素
からなるステンレス鋼の冷間圧延板を再結晶焼鈍
した後に冷間調質圧延することを特徴とする非時
効性高強度ステンレス鋼板の製造方法。
[Claims] 1. C: more than 0.04% to 0.10% in weight percentage, N:
0.05-0.20%, Si: 1.0% or less, Mn: 0.3-2.0%,
A cold-rolled stainless steel plate containing Ni: 6.5% to less than 8.0%, Cr: 16.0% to 20.0%, and the remainder consisting of Fe and other elements unavoidable in steelmaking is recrystallized and annealed and then cold skin-pass rolled. A manufacturing method for non-aging, high-strength stainless steel sheets. 2 C: more than 0.04% to 0.10% in weight percentage, N:
0.05-0.20%, Si: 1.0% or less, Mn: 0.3-2.0%,
Ni: 6.5 to less than 8.0%, Cr: 16.0 to 20.0%, plus V: 0.50% or less, Nb: 0.50% or less, Ti: 0.50
% or less, Mo: 0.50% or less, and the remainder is Fe and other elements unavoidable in steelmaking. Cold-rolled stainless steel plate is recrystallized and annealed and then cold-pass rolled. A method for producing a non-aging high-strength stainless steel sheet characterized by:
JP7865679A 1979-06-23 1979-06-23 Non-aging high strength stainless steel Granted JPS563657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7865679A JPS563657A (en) 1979-06-23 1979-06-23 Non-aging high strength stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7865679A JPS563657A (en) 1979-06-23 1979-06-23 Non-aging high strength stainless steel

Publications (2)

Publication Number Publication Date
JPS563657A JPS563657A (en) 1981-01-14
JPS6212289B2 true JPS6212289B2 (en) 1987-03-18

Family

ID=13667895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7865679A Granted JPS563657A (en) 1979-06-23 1979-06-23 Non-aging high strength stainless steel

Country Status (1)

Country Link
JP (1) JPS563657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265790U (en) * 1985-10-14 1987-04-23

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825460A (en) * 1981-08-07 1983-02-15 Nippon Stainless Steel Co Ltd High strength austenite stainless steel with high fabrication property and corrosion resistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262113A (en) * 1975-11-18 1977-05-23 Kawasaki Steel Co Austenitic stainles steel having good press workability
JPS5326716A (en) * 1976-08-25 1978-03-13 Kubota Ltd Perfect austenite cast stainless steel having high strength at room temperature
JPS53125217A (en) * 1977-04-07 1978-11-01 Nippon Metal Ind Austenite heattresistant steel for catalyst converter of exhaust gas purification apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262113A (en) * 1975-11-18 1977-05-23 Kawasaki Steel Co Austenitic stainles steel having good press workability
JPS5326716A (en) * 1976-08-25 1978-03-13 Kubota Ltd Perfect austenite cast stainless steel having high strength at room temperature
JPS53125217A (en) * 1977-04-07 1978-11-01 Nippon Metal Ind Austenite heattresistant steel for catalyst converter of exhaust gas purification apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265790U (en) * 1985-10-14 1987-04-23

Also Published As

Publication number Publication date
JPS563657A (en) 1981-01-14

Similar Documents

Publication Publication Date Title
EP1969148B1 (en) Method for manufacturing high strength steel strips with superior formability and excellent coatability
EP3561111B1 (en) Thick steel sheet having excellent cryogenic impact toughness and manufacturing method therefor
JP3514276B2 (en) Ultra-high strength steel sheet excellent in delayed fracture resistance and method of manufacturing the same
JPH10130776A (en) High ductility type high tensile strength cold rolled steel sheet
KR20100071619A (en) High manganese steel sheet with high yield ratio, excellent yield strength and formability and manufacturing method thereof
JPH0128817B2 (en)
JPH11343535A (en) Coating/baking hardening type high tensile strength steel plate and its production
KR20180071684A (en) Steel plate for welded steel pipe having excellent elogation of the longitudinal direction and toughness at low-temperature, method for manufacturing thereof and welded steel pipe using same
JPS6212289B2 (en)
JP2984128B2 (en) Method for producing aging resistant ultra-soft container steel sheet with small anisotropy
JP3212344B2 (en) Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
KR102237486B1 (en) High strength ultra thick steel plate having excellent very low temperature strain aging impact toughness at the center of thickness and method of manufacturing the same
JPS6119687B2 (en)
EP4245876A1 (en) High yield ratio and high strength steel sheet having excellent thermal stability, and manufacturing method therefor
JP3297107B2 (en) Method for producing low temperature steel with excellent weldability
JP3175063B2 (en) Ferrite single-phase cold-rolled steel sheet for non-aging deep drawing at room temperature and method for producing the same
JP3009750B2 (en) Method for producing structural steel sheet with excellent low-temperature toughness
JPH021217B2 (en)
EP3859044A1 (en) Hot-rolled steel sheet with excellent low-temperature impact toughness and manufacturing method therefor
JP2002105540A (en) Method for producing high strength hot rolled steel sheet
KR100825559B1 (en) Method of manufacturing blackplate with excellent formability
JP3471407B2 (en) Manufacturing method of hot rolled steel sheet with excellent workability
JPH11350062A (en) High tensile strength steel plate for working and its production
JP3212346B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent toughness