JPH021217B2 - - Google Patents

Info

Publication number
JPH021217B2
JPH021217B2 JP56138204A JP13820481A JPH021217B2 JP H021217 B2 JPH021217 B2 JP H021217B2 JP 56138204 A JP56138204 A JP 56138204A JP 13820481 A JP13820481 A JP 13820481A JP H021217 B2 JPH021217 B2 JP H021217B2
Authority
JP
Japan
Prior art keywords
amount
steel
deep drawability
effective
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56138204A
Other languages
Japanese (ja)
Other versions
JPS5839766A (en
Inventor
Masatoshi Sudo
Ichiro Tsukatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13820481A priority Critical patent/JPS5839766A/en
Publication of JPS5839766A publication Critical patent/JPS5839766A/en
Publication of JPH021217B2 publication Critical patent/JPH021217B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、溶融メツキラインや連続焼鈍炉にて
製造可能な塗装焼付時に硬化する性質を有しかつ
深絞り性にすぐれた高強度冷延鋼板に関する。 近年自動車用薄鋼板の高強度化が図られつつあ
り、また耐デント性の向上のため塗装焼付硬化性
を有する高強度冷却鋼板、特に高強度溶融亜鉛メ
ツキ用鋼板が強く望まれている。この焼付硬化は
固溶Cや固溶Nによる転位の固着現象を利用する
ものであるが、フエライト中に過飽和に固溶され
たCは鋼板を硬質化させ、加工性が劣化して高度
の加工、例えば深絞り加工に耐えず、また常温歪
時効を生じストレツチヤストレインの発生をも伴
なう。 一方深絞り加工性等を向上させたものとして
Ti添加鋼が知られているが、このTi添加鋼は鋼
中の固溶C,Nを完全に固着して加工性の向上を
図るため、固溶C,Nによる焼付硬化性の付与は
望めない。 更に、深絞り性を向上させるためTiを少量添
加しかつ鋼中に微量の固溶Cを残存させて弱い焼
付硬化能をもたせんとする試みもあるが(特開昭
53−114747)、この鋼板は前述した要求特性のう
ちの基本的特性である高強度化に対しては全く配
慮がなされていない。 本発明は上述の事情に鑑み、冷延鋼板、特に溶
融亜鉛メツキ鋼板について塗装焼付硬化性及び深
絞り性を具備した上で高強度化を図ることを目的
としてなされたものである。 すなわち本発明は、C0.003〜0.02重量%(以下
%の表示は重量%である)Si0.1〜1%、Mn0.05
〜0.5%、P0.03〜0.15%、Al0.01〜0.06%、
N0.006%以下を含有し、かつTi,Nbの1種又は
2種以上を下記式で0.4〜0.8の範囲で含有し、残
部鉄及び不純物からなる塗装焼付硬化性及び深絞
り性のすぐれた高強度冷延鋼板である。 K=(有効Ti%/48+Nb%/93)/(C%/12+N%/
14) 但し有効Tiは全Tiから酸化物及び硫化物とし
てのTiを除いたもの。 なお、本発明においては上記の外、Cr0.1〜0.4
%、希土類元素0.05%以下、B0.01%以下の1種
以上を含有せしめることもでき、深絞り性の一層
の向上に寄与する。 本発明の鋼板では、C0.003〜0.02%で上記式の
Kを0.4〜0.8の範囲にした上で、Si0.1〜1%、
P0.03〜0.15%を含有せしめることにより、上記
式のKを1.0以下にしてMn等の他の元素で高強度
化を図つた場合に認められる深絞り性の劣化が回
避されるのである。すなわち本発明の鋼板では固
溶Cが残存するにもかかわらず、適量のSi,Pの
存在により連続焼鈍の如く急熱焼鈍においても良
好な{111}再結晶集合組織を発達させることが
できるのである。尚、Si,Pは固溶強化元素であ
るから鋼板の高強度化に寄与し、また残留する固
溶Cによる焼付硬化も図れる。ところでこの固溶
炭素は、冷延集合組織形成において、すべり系の
易動度や粒界拘束力の相違により粒界近傍での最
終安定方位への回転における拘束領域の範囲およ
びその程度に相違をもたらし、回復再結晶時に
(111)粒よりも(110)や(200)粒を早く核生成
するため{111}再結晶集合組織を劣化させると
考えられるので、本発明において知見された挙動
は、SiおよびPを含有すると、たとえ固溶Cが存
在したとしても上述のような固溶Cの効果が緩和
されて、冷延集合組織的には固溶Cを含有しない
ような挙動を呈するようになり、急熱焼鈍におい
てさえ{111}再結晶集合組織を発達させること
ができると考えられる。 次に本発明の鋼板の化学成分の限定理由を述べ
る。 Cはその量が多くなると、フエライト粒の成長
が抑制され、かつTiCの析出量が増大し、再結晶
温度が高くなるので、短時間の連続焼鈍による成
形性の付与を可能とするため、さらに過剰の固溶
Cは調質圧延された鋼板のプレス加工するまでの
硬化をもたらし深絞り性を劣化せしめる傾向を有
するので0.02%を上限とする。したがつて過剰の
固溶Cの含有を避けるためにまず溶鋼を真空脱ガ
ス処理により脱炭するが、現在の技術では0.003
%未満に安定してCを低減するのは極めて困難で
あり、鋼中酸素量の急増を伴い成形性を劣化す
る。 従つて、0.003%を下限とする。 Nは伸び特性値を下げ、従つてプレス加工等に
おける張出し特性を劣化せしめるので、少ない程
良く、0.006%を上限とする。 SiはPと共に前記式のK0.4〜0.8の範囲内にお
いて深絞り性を向上させるという本発明において
必要不可欠な元素であり、そのためには0.1%以
上含有する必要がある。一方、1%を超えるとこ
の効果が飽和し、逆に深絞り性を劣化させるばか
りか溶融亜鉛メツキ鋼板を得ようとする場合、メ
ツキ前処理のガスクリーニング工程において生成
された酸化スケールが還元されなくなるので1%
を上限とする。 MnはSに起因する熱間脆性を防止する効果を
有しこのため0.05%以上存在する必要がある。 一方Mnは強化成分であるので深絞り性を考慮
しない場合には要求される鋼の強度に応じて添加
することができるが、本発明の如く塗装焼付硬化
性を得るためわずかの固溶炭素を残存させた状態
ではMn含有量を増すと深絞り性を著しく劣化さ
せるので0.5%を上限とする。 Pは上述のSiと同様本発明において必要不可欠
の元素であり、その効果は深絞り性の改善に対す
るもの以上に塗装焼付硬化性に対するものの方が
大きい。すなわち一般に焼鈍後の残留固溶Cは、
鋼中C量、前記式Kあるいは更に焼鈍後の冷却速
度によつて決まるが、溶製時に常に同一の化学組
成の鋼塊を作製することは不可能であり、また連
続焼鈍といえども焼鈍温度、コイル板厚、コイル
位置の異なるものを常に一定の冷却速度で冷却す
ることは至難の技である。従つてこれらの条件の
相異により残留固溶炭素量が異なつてくると、そ
の量が多い場合には常温時効を起こしてしまう
し、少ない場合には必要な塗装焼付硬化量が得ら
れない。 ところがPを0.03%以上含有すると、上記製造
条件にかかわりなく常にほぼ一定量の焼付硬化量
が得られる。常温時効を起さないのは言うまでも
ない。しかし0.15%を超えて含有すると鋼を硬質
化しすぎ、また降伏比(降伏応力/引張強さ)を
上昇させてプレス成形しにくくするのでその範囲
は0.03〜0.15%とする。 AlはTiが酸化して失なわれたり、鋼中非金属
介在物(酸化物)となるのを回避すると共にNを
AlNとして固定・無害化するのに有効である。
このため0.01%以上加えられる。しかし、あまり
多くなると効果が飽和するだけでなく、非金属介
在物の増加による表面性状の悪化、あるいは再結
晶粒の微細化を招き好ましくない。このため0.06
%を上限とする。 Tiは添加量の増加と共に深絞り性を高め、特
に鋼中のCおよびNを完全に炭窒化物〔Ti(C,
N)〕として固定することにより深絞り性は極め
て良好になることが知られている。しかし、それ
とともに製造コストの大幅な負担増を伴う。 また焼付き硬化量が零となつてしまう。 そこで本発明では当然SiおよびPの併合添加に
より達成されたものであるが、高度な深絞り性を
維持し、かつプレス加工までの鋼板の硬化を防止
し、加工後鋼が焼付硬化する程度に添加する。 その量は、前記式のKが0.4〜0.8を満足するTi
量の添加が必要である。 一方、前記式のKが0.4〜0.8を満足するTi量以
上の過剰なTiはC,Nを完全あるいはほぼ完全
に固定するため、本発明の目的であるプレス加工
後の硬化特性を期待できないばかりでなく、二次
成形性も劣化すると共に耐火物の溶損を大ならし
め作業性を悪くし、大巾なコスト増加をもたら
す。 一方、K0.4未満のTi添加では鋼中に残存する
過剰炭素量が多すぎるため、たとえSiおよびPを
含有せしめたとしても良好な深絞り特性が得られ
ないばかりが常温時効をひきおこす。 NbはTiとその添加効果が全く等価であり、C
およびNの合計量との原子濃度比により等価に置
換できるもので、Tiの一部または全部をNbで置
きかえたとしても何んらさしつかえないばかりか
溶融亜鉛メツキ用の原板として用いる場合には、
溶融亜鉛メツキ合金化特性およびその密着性の観
点から有利な点も多い。 なお前記式のKは、全Ti量から酸化物及び硫
化物としてのTiを除いた有効Ti量及びNb量とC
量、N量との原子濃度比を示す式である。 この他本発明では深絞り性の一層の向上を図る
ためCr,REM,Bを必要に応じ単独又は複合し
て含有せしめることができる。 Crは0.1%以上含有せしめることにより深絞り
性を一層高める。 この効果はCrの存在によりTiC析出物粒子が粗
大化し易くなることによる。またCrは、単に深
絞り性の改善だけでなく、Ti(C,N)として結
合しない固溶炭素に起因する常温時効を起りにく
くする働きを有する。なお、本発明ではTi量が
比較的少ないので0.4%を超える含有の必要はな
い。 REMは不純物のS量を低減し、また成形加工
性に有害な硫化物系介在物の形状制御の作用によ
り深絞り性向上に寄与する。またREM及びBは、
再結晶後の粒成長の促進作用があり深絞り性の向
上に寄与する。REM及びBの含有量はそれぞれ
0.05%以下、B0.01%以下で十分であり、それ以
上の含有の必要はない。 次に本発明の実施例を比較例と共に説明する。 転炉で溶製し、真空脱ガス処理を施して造塊、
分塊して製造した鋼片を熱間圧延し、酸洗した後
圧下率70%の冷延を施して板厚0.8mmの冷延板を
製造し、この冷延板をゼンジマータイプの溶融亜
鉛メツキラインにおいて焼鈍し、溶融亜鉛メツキ
鋼板を得た。このときの冷延鋼板の化学成分とそ
の特性値を第1,2表に示す。尚鋼種C〜Jおよ
びN〜Sは本発明鋼、鋼種A,BおよびK〜Mは
本発明の範囲を逸脱する比較用材料である。 上記の結果から明らかなように本発明の冷延鋼
板は、鋼種Kを除く比較用鋼板に比べて深絞り性
(値)が良く、焼付硬化によりプレス成形後硬
さを増加して成形品の強度を大幅に高めえる。
尚、鋼種Kは深絞り性は良好であるが、常温時効
もなければ焼付硬化も全くない。
The present invention relates to a high-strength cold-rolled steel sheet that can be produced in a hot-melt plating line or a continuous annealing furnace and has the property of being hardened during painting baking and has excellent deep drawability. In recent years, efforts have been made to increase the strength of thin steel sheets for automobiles, and in order to improve dent resistance, there is a strong desire for high-strength cooling steel sheets with paint-baking hardenability, especially high-strength hot-dip galvanized steel sheets. This bake hardening utilizes the fixation phenomenon of dislocations due to solid solution C and solid solution N, but supersaturated solid solution C in ferrite hardens the steel sheet, deteriorates workability, and requires advanced processing. For example, it does not withstand deep drawing processing, and also undergoes strain aging at room temperature, which is accompanied by the occurrence of stretch strain. On the other hand, as a product with improved deep drawing workability etc.
Ti-added steel is known, but since this Ti-added steel completely fixes the solid solute C and N in the steel to improve workability, it cannot be expected that the solid solute C and N will impart bake hardenability. do not have. Furthermore, in order to improve deep drawability, there is an attempt to add a small amount of Ti and leave a small amount of solid solution C in the steel to give it a weak bake hardenability (Japanese Patent Application Laid-Open No.
53-114747), this steel plate does not give any consideration to high strength, which is a basic characteristic among the above-mentioned required characteristics. In view of the above-mentioned circumstances, the present invention has been made with the object of increasing the strength of cold-rolled steel sheets, particularly hot-dip galvanized steel sheets, while providing paint-baking hardenability and deep drawability. That is, the present invention contains 0.003 to 0.02% by weight of C (hereinafter, % is expressed as % by weight), 0.1 to 1% of Si, and 0.05% of Mn.
~0.5%, P0.03~0.15%, Al0.01~0.06%,
Contains N0.006% or less, and contains one or more of Ti and Nb in the range of 0.4 to 0.8 according to the formula below, with the balance being iron and impurities. The paint has excellent bake hardenability and deep drawability. It is a high-strength cold-rolled steel plate. K=(effective Ti%/48+Nb%/93)/(C%/12+N%/
14) However, effective Ti is total Ti excluding Ti in the form of oxides and sulfides. In addition, in the present invention, in addition to the above, Cr0.1 to 0.4
%, rare earth elements 0.05% or less, and B 0.01% or less, contributing to further improvement of deep drawability. In the steel plate of the present invention, K in the above formula is set in the range of 0.4 to 0.8 with C0.003 to 0.02%, Si0.1 to 1%,
By containing 0.03 to 0.15% of P, the deterioration in deep drawability that is observed when K in the above formula is set to 1.0 or less and high strength is attempted with other elements such as Mn can be avoided. In other words, despite the presence of solid solution C in the steel sheet of the present invention, the presence of appropriate amounts of Si and P makes it possible to develop a good {111} recrystallized texture even in rapid annealing such as continuous annealing. be. Incidentally, since Si and P are solid solution strengthening elements, they contribute to increasing the strength of the steel sheet, and baking hardening can also be achieved by the remaining solid solution C. By the way, this solute carbon causes differences in the range and extent of the restraint region in rotation toward the final stable orientation near the grain boundaries due to differences in the mobility of the slip system and the grain boundary restraint force during cold rolling texture formation. The behavior discovered in the present invention is thought to deteriorate the {111} recrystallized texture because it causes (110) and (200) grains to nucleate earlier than (111) grains during recovery recrystallization. When Si and P are contained, even if solid solution C exists, the effect of solid solution C as described above is alleviated, and the cold rolling texture behaves as if it does not contain solid solution C. Therefore, it is considered that the {111} recrystallized texture can be developed even in rapid annealing. Next, the reason for limiting the chemical composition of the steel sheet of the present invention will be described. When the amount of C increases, the growth of ferrite grains is suppressed, the amount of TiC precipitated increases, and the recrystallization temperature becomes high. Excessive solid solution C tends to cause hardening of the temper-rolled steel sheet before press working and deteriorates deep drawability, so the upper limit is set at 0.02%. Therefore, in order to avoid containing excessive solid solution C, molten steel is first decarburized by vacuum degassing treatment, but with the current technology, 0.003
It is extremely difficult to stably reduce C to less than %, and this results in a rapid increase in the amount of oxygen in the steel, resulting in deterioration of formability. Therefore, the lower limit is set at 0.003%. Since N lowers the elongation property value and therefore deteriorates the elongation property in press working, etc., the less the content, the better, and the upper limit is set at 0.006%. Si, together with P, is an essential element in the present invention to improve deep drawability within the range of K0.4 to 0.8 in the above formula, and for this purpose, it must be contained in an amount of 0.1% or more. On the other hand, if it exceeds 1%, this effect will be saturated, which will not only deteriorate the deep drawability but also reduce the oxide scale generated in the gas cleaning process of the plating pretreatment when trying to obtain a hot-dip galvanized steel sheet. 1% because it will run out
is the upper limit. Mn has the effect of preventing hot embrittlement caused by S, and therefore needs to be present in an amount of 0.05% or more. On the other hand, since Mn is a reinforcing component, it can be added depending on the required strength of the steel if deep drawability is not taken into account. If Mn remains in the state, increasing the Mn content will significantly deteriorate deep drawability, so the upper limit is set at 0.5%. Like the above-mentioned Si, P is an essential element in the present invention, and its effect on paint bake hardenability is greater than on improving deep drawability. In other words, the residual solid solution C after annealing is generally
Although it is determined by the amount of C in the steel, the above formula K, or the cooling rate after annealing, it is impossible to always produce a steel ingot with the same chemical composition during melting, and even with continuous annealing, the annealing temperature It is extremely difficult to constantly cool down devices with different coil plate thicknesses and coil positions at a constant cooling rate. Therefore, if the amount of residual solid solute carbon varies due to differences in these conditions, if the amount is large, room temperature aging will occur, and if it is small, the required amount of paint bake hardening cannot be obtained. However, when P is contained in an amount of 0.03% or more, a substantially constant amount of bake hardening is always obtained regardless of the above manufacturing conditions. Needless to say, it does not age at room temperature. However, if the content exceeds 0.15%, the steel will become too hard and the yield ratio (yield stress/tensile strength) will increase, making press forming difficult, so the range should be 0.03 to 0.15%. Al prevents Ti from being lost due to oxidation or becoming nonmetallic inclusions (oxides) in steel, and also prevents N from being lost.
It is effective in fixing and rendering harmless AlN.
For this reason, 0.01% or more is added. However, if the amount is too large, not only the effect will be saturated, but also the surface quality will deteriorate due to an increase in nonmetallic inclusions, or recrystallized grains will become finer, which is undesirable. For this reason 0.06
The upper limit is %. Ti improves deep drawability as the amount added increases, and in particular completely converts C and N in steel into carbonitrides [Ti(C,
It is known that deep drawability becomes extremely good by fixing the steel as N)]. However, this also entails a significant increase in manufacturing costs. Moreover, the amount of hardening due to seizure becomes zero. Therefore, in the present invention, which was naturally achieved by the combined addition of Si and P, it is possible to maintain a high degree of deep drawability, prevent hardening of the steel sheet until press working, and prevent the steel from baking hardening after working. Added. The amount of Ti is such that K in the above formula satisfies 0.4 to 0.8.
It is necessary to add a certain amount. On the other hand, an excessive amount of Ti that satisfies K in the above formula from 0.4 to 0.8 completely or almost completely fixes C and N, so that the hardening properties after press working, which is the objective of the present invention, cannot be expected. Moreover, the secondary formability deteriorates, and the melting loss of the refractory increases, which impairs workability, resulting in a large increase in costs. On the other hand, if Ti is added below K0.4, the amount of excess carbon remaining in the steel is too large, so even if Si and P are included, good deep drawing properties cannot be obtained and room temperature aging occurs. Nb has the same effect as Ti, and C
It can be replaced equivalently depending on the atomic concentration ratio with the total amount of Ti and N.There is no problem even if part or all of Ti is replaced with Nb, and when used as a base plate for hot-dip galvanizing,
Hot-dip galvanizing has many advantages in terms of alloying properties and adhesion. In addition, K in the above formula is the effective amount of Ti obtained by excluding Ti as oxides and sulfides from the total amount of Ti, the amount of Nb, and C.
This is an equation showing the atomic concentration ratio between the amount and the amount of N. In addition, in the present invention, in order to further improve deep drawability, Cr, REM, and B can be contained singly or in combination as necessary. Deep drawability is further improved by containing 0.1% or more of Cr. This effect is due to the fact that TiC precipitate particles tend to become coarser due to the presence of Cr. Further, Cr not only improves deep drawability but also has the function of making it difficult for room temperature aging to occur due to solid solution carbon that does not combine as Ti(C,N). In addition, in the present invention, since the amount of Ti is relatively small, there is no need for the content to exceed 0.4%. REM reduces the amount of S impurities and also contributes to improving deep drawability by controlling the shape of sulfide inclusions that are harmful to formability. Also, REM and B are
It has the effect of promoting grain growth after recrystallization and contributes to improving deep drawability. The contents of REM and B are respectively
0.05% or less and B0.01% or less are sufficient, and there is no need to contain more. Next, examples of the present invention will be described together with comparative examples. Smelted in a converter, subjected to vacuum degassing treatment to form ingots,
A steel billet manufactured by blooming is hot rolled, pickled, and then cold rolled at a reduction rate of 70% to produce a cold rolled plate with a thickness of 0.8 mm. It was annealed in a galvanizing line to obtain a hot-dip galvanized steel sheet. Tables 1 and 2 show the chemical composition of the cold-rolled steel sheet and its characteristic values. Steel types C to J and N to S are the steels of the present invention, and steel types A, B, and K to M are comparative materials that are outside the scope of the present invention. As is clear from the above results, the cold rolled steel sheet of the present invention has better deep drawability (value) than the comparative steel sheets except for steel type K, and increases the hardness after press forming through bake hardening. Strength can be significantly increased.
Incidentally, although steel type K has good deep drawability, it has neither room temperature aging nor bake hardening.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 C0.003〜0.02重量%(以下同じ)、Si0.1〜1
%、Mn0.05〜0.5%、P0.03〜0.15%、Al0.01〜
0.06%、N0.006%以下を含有し、かつTi,Nbの
1種又は2種を下記式で0.4〜0.8の範囲で含有
し、残部鉄及び不純物からなる焼付硬化性及び深
絞り性のすぐれた高強度冷延鋼板。 K=(有効Ti%/48+Nb%/93)/(C%/12+N%/
14) 但し有効Tiは全Tiから酸化物及び硫化物とし
てのTiを除いたもの。 2 C0.003〜0.02%、Si0.1〜1%、Mn0.05〜0.5
%、P0.03〜0.15%、Al0.01〜0.06%、N0.006%以
下を含有し、かつTi,Nbの1種又は2種を下記
式で0.4〜0.8の範囲で含有し、更にCr0.1〜0.4%、
希土類元素0.05%以下、B0.01%以下の1種以上
を含有し、残部鉄及び不純物からなる焼付硬化性
及び深絞り性のすぐれた高強度冷延鋼板。 K=(有効Ti%/48+Nb%/93)/(C%/12+N%/
14) 但し有効Tiは全Tiから酸化物及び硫化物とし
てのTiを除いたもの。
[Claims] 1 C0.003 to 0.02% by weight (the same applies hereinafter), Si0.1 to 1
%, Mn0.05~0.5%, P0.03~0.15%, Al0.01~
0.06%, N0.006% or less, and contains one or both of Ti and Nb in the range of 0.4 to 0.8 according to the following formula, with the balance being iron and impurities. Excellent bake hardenability and deep drawability. High strength cold rolled steel sheet. K=(effective Ti%/48+Nb%/93)/(C%/12+N%/
14) However, effective Ti is total Ti excluding Ti in the form of oxides and sulfides. 2 C0.003~0.02%, Si0.1~1%, Mn0.05~0.5
%, P0.03~0.15%, Al0.01~0.06%, N0.006% or less, and contains one or two of Ti and Nb in the range of 0.4~0.8 according to the following formula, and further contains Cr0 .1~0.4%,
A high-strength cold-rolled steel sheet with excellent bake hardenability and deep drawability, containing at least 0.05% of rare earth elements and 0.01% or less of B, with the balance being iron and impurities. K=(effective Ti%/48+Nb%/93)/(C%/12+N%/
14) However, effective Ti is total Ti excluding Ti in the form of oxides and sulfides.
JP13820481A 1981-09-01 1981-09-01 High strength cold rolled steel plate with superior baking hardenability and deep drawability Granted JPS5839766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13820481A JPS5839766A (en) 1981-09-01 1981-09-01 High strength cold rolled steel plate with superior baking hardenability and deep drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13820481A JPS5839766A (en) 1981-09-01 1981-09-01 High strength cold rolled steel plate with superior baking hardenability and deep drawability

Publications (2)

Publication Number Publication Date
JPS5839766A JPS5839766A (en) 1983-03-08
JPH021217B2 true JPH021217B2 (en) 1990-01-10

Family

ID=15216510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13820481A Granted JPS5839766A (en) 1981-09-01 1981-09-01 High strength cold rolled steel plate with superior baking hardenability and deep drawability

Country Status (1)

Country Link
JP (1) JPS5839766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123305A (en) * 1990-07-20 1993-05-21 William E Thornton Improved heart monitoring device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110659A (en) * 1981-12-25 1983-07-01 Nippon Kokan Kk <Nkk> Galvanized steel plate for deep drawing and its manufacture
JPS6077957A (en) * 1983-10-05 1985-05-02 Kawasaki Steel Corp High-tension cold-rolled steel sheet with superior deep drawability
JPS62109927A (en) * 1985-11-06 1987-05-21 Nippon Steel Corp Manufacture of cold rolled steel sheet superior in baking hardenability and workability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142852A (en) * 1980-04-09 1981-11-07 Nippon Steel Corp High strength cold rolled steel plate of low yield ratio for deep drawing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142852A (en) * 1980-04-09 1981-11-07 Nippon Steel Corp High strength cold rolled steel plate of low yield ratio for deep drawing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123305A (en) * 1990-07-20 1993-05-21 William E Thornton Improved heart monitoring device

Also Published As

Publication number Publication date
JPS5839766A (en) 1983-03-08

Similar Documents

Publication Publication Date Title
US5624504A (en) Duplex structure stainless steel having high strength and elongation and a process for producing the steel
EP2753725B1 (en) Low density high strength steel and method for producing said steel
KR20110018363A (en) An ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
JP4507851B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
KR20080061853A (en) High strength zn-coated steel sheet having excellent mechanical properites and surface quality and the method for manufacturing the same
JP4414883B2 (en) High-strength cold-rolled steel sheet for ultra-deep drawing excellent in formability and weldability and its manufacturing method
US20110073223A1 (en) Steel sheet for galvanizing with excellent workability, and method for manufacturing the same
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP4613618B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and its manufacturing method
EP4234750A1 (en) Ultra high strength steel sheet having excellent ductility and method for manufacturing thereof
JPH021217B2 (en)
JPH06102810B2 (en) Method for producing galvannealed steel sheet for deep drawing with excellent secondary workability
JP2864966B2 (en) Continuously annealed cold rolled steel sheet with excellent balance between deep drawability and deep draw resistance
JPS582248B2 (en) Manufacturing method for hot-dip galvanized steel sheet with excellent workability
JPH05171353A (en) Steel sheet for deep drawing excellent in baking hardenability and its production
JP3293339B2 (en) Steel plate with excellent work hardenability
JP2620444B2 (en) High strength hot rolled steel sheet excellent in workability and method for producing the same
JPH0353381B2 (en)
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JP3309396B2 (en) High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JP2669188B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
KR19980040101A (en) Manufacturing method of ferritic stainless steel with high corrosion resistance and high formability
JPH0250940A (en) Cold rolled steel plate for deep drawing having excellent corrosion resistance