JPS62121370A - Ground-fault detecting device - Google Patents

Ground-fault detecting device

Info

Publication number
JPS62121370A
JPS62121370A JP60261262A JP26126285A JPS62121370A JP S62121370 A JPS62121370 A JP S62121370A JP 60261262 A JP60261262 A JP 60261262A JP 26126285 A JP26126285 A JP 26126285A JP S62121370 A JPS62121370 A JP S62121370A
Authority
JP
Japan
Prior art keywords
pressure
ground
ground fault
detection device
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60261262A
Other languages
Japanese (ja)
Inventor
Isao Kamata
功 鎌田
Shigeru Kitani
茂 木谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60261262A priority Critical patent/JPS62121370A/en
Publication of JPS62121370A publication Critical patent/JPS62121370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PURPOSE:To detect exactly and quickly a ground-fault point by providing plural pressure detecting devices for detecting a pressure buildup caused by a ground- fault current, in the axial direction in a duct line, and measuring a time difference detected by two pressure devices. CONSTITUTION:As for a gas insulating bus 1, plural containers 2 are connected by a flange 3, and plural conductors 5 are inserted through a contact 4 of the flange 3. Also, the conductor 5 is supported by an insulating support member 6, and contained together with an insulating gas. In such a state, for instance, in case a ground-fault is generated in a point A, a pressure buildup caused by a ground-fault current flowing to a grounding conductor 8 is detected by pressure detecting devices 9-I, 9-III. The device 9-I is nearer than 9-III to the ground-fault point A, therefore, the detection time is quickened. Accordingly, a time difference detected by the devices 9-I, 9-III is measured by a time measuring device 10, and in an arithmetic unit 12, the ground-fault point A is calculated by dimensions such as a distance extending from the ground-fault point A to the devices 9-I, 9-III, a velocity of propagation of a pressure wave in the bus 1, etc. Also, by executing an output display on a display device 12, the ground- fault point A can be detected exactly and quickly.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ガス絶縁電気機器の地絡点検出装置に係り、
特にガス絶縁母線に好適な地絡点検出装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a ground fault detection device for gas insulated electrical equipment.
In particular, the present invention relates to a ground fault detection device suitable for gas-insulated busbars.

〔発明の]技術的背景とその問題点〕[Technical background of the invention and its problems]

一般にガス絶縁母線はSF6 ガス等の絶縁ガスを充填
した管路内に挿通した導体を絶縁物にて絶縁支持して構
成されている。もし、このガス絶縁母線に地絡事故が発
生した場合、導体と管路間が地絡アーク電流により短絡
され、導体及び管路表面はあれ、絶縁物は炭化される等
によりガス絶縁母線の耐電圧性能が低下してしまう。こ
のため、ガス絶縁母線の分解点検が必要となるけれども
、なかには数kmの長さに及ぶものも存在するため地絡
点検出は正確かつ迅速に行なう必要がある。
Generally, a gas insulated bus bar is constructed by insulating and supporting a conductor inserted into a conduit filled with an insulating gas such as SF6 gas using an insulating material. If a ground fault occurs on this gas-insulated bus, the conductor and the conduit will be short-circuited by the ground fault arc current, the conductor and conduit surfaces will be roughened, and the insulator will be carbonized, causing the gas-insulated bus to withstand Voltage performance will deteriorate. For this reason, it is necessary to disassemble and inspect the gas-insulated busbars, but since some of them are several kilometers long, it is necessary to detect ground faults accurately and quickly.

そこで、従来の管路を各容器間毎に絶縁して構成し点で
接地する一点接地方式においては、容器毎に接続する接
地線に変流器を設け、地絡電流の有無により地絡点の検
出を行なっていた。しかしながら、この方式を各容器間
を絶縁しない多点接地方式に適用した場合には、容器に
対して接地線のインピーダンスがはるかに大きいので、
各変流器に測定される電流の大きさ及び位相はほぼ同一
となり地絡点を検出することが不可能となる。
Therefore, in the conventional single-point grounding system in which the conduit is insulated between each container and grounded at a point, a current transformer is installed in the grounding wire connected to each container, and a ground fault is detected depending on the presence or absence of ground fault current. was being detected. However, when this method is applied to a multi-point grounding system that does not insulate each container, the impedance of the grounding wire with respect to the container is much larger.
The magnitude and phase of the current measured in each current transformer are almost the same, making it impossible to detect a ground fault point.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を除去し正確かつ迅速な地絡検出が可
能な地絡点検出装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a ground fault point detection device capable of eliminating the above drawbacks and detecting ground faults accurately and quickly.

〔発明の概要〕 上記目的を達成するために、本発明においては、管路内
の軸方向に所定間隔をおいて管路内に発生した地絡電流
による圧力上昇を検知する複数の圧力検出装置を設け、
この圧力検出装置のうち二つの圧力検出装置からの入力
の時間差を時間測定装置により測定し、この時間差より
演算装置にて地絡点を演算して表示装置に表示するよう
にしたので、正確かつ迅速な地絡点検出が可能である。
[Summary of the Invention] In order to achieve the above object, the present invention includes a plurality of pressure detection devices that detect a pressure increase due to a ground fault current generated in a pipeline at predetermined intervals in the axial direction within the pipeline. established,
The time difference between the inputs from two of these pressure detection devices is measured by a time measurement device, and the calculation device calculates the ground fault point based on this time difference and displays it on the display device, making it possible to accurately and Rapid ground fault detection is possible.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の概略を第1図を参照して説明する。 The outline of the present invention will be explained below with reference to FIG.

第1図はガス絶縁電気機器の一例としてのガス絶縁母線
を示している。ガス絶縁器a1は複数の容器2を互いの
フランジ3にて連結するとともに電気的に接続して構成
した管路内部に、フランジ3部にて接触子4を介して接
続される複数の導体5を挿通し、この導体5を絶縁性の
支持部材6により支持し絶縁ガスであるSFs ガスと
ともに収納する構成である。また、各容器2は容器毎に
設けた接地端子7より接地′a8を介して接地する。尚
、本実施例においては一例として3個の容器2を接続し
て管路を構成した場合を示し第1図中左側よりI、IT
及び■区画として説明する。但し、接続した容器2の途
中又は端に容器2以外の例えばベローズ等を接続する構
成としてもよい。さらに。
FIG. 1 shows a gas insulated bus bar as an example of gas insulated electrical equipment. The gas insulator a1 has a plurality of conductors 5 connected via contacts 4 at the flange 3 inside a conduit constructed by connecting a plurality of containers 2 at each other's flanges 3 and electrically connecting them. The conductor 5 is supported by an insulating support member 6 and housed together with SFs gas, which is an insulating gas. Further, each container 2 is grounded via a ground terminal 'a8' from a ground terminal 7 provided for each container. In this embodiment, as an example, a case is shown in which three containers 2 are connected to form a conduit, and from the left side in FIG.
and ■Explained as sections. However, it is also possible to connect a device other than the container 2, such as a bellows, to the middle or end of the connected container 2. moreover.

■区画の容器2及び■区画の容器2には、容器内部の圧
力を検知し信号として出力する圧力検出装置9−1及び
9−111を設ける。尚、圧力検出装置9−I及び9−
Illは圧力の変化を電流の変化あるいは光量の変化等
として出力するものである。そして、面圧力検出装置9
−1.9−mには時間計d1す装置10を接続する。こ
の時間計測装置10は圧力検出装置9−■、9−III
に到達するまでの時間差を測定するものである。また、
時間計測装置10には地絡点を演算する演算装置11を
接続し、この演算装置11には地絡点を表示する表示装
置12を接続する。
The containers 2 in section (1) and the containers 2 in section (2) are provided with pressure detection devices 9-1 and 9-111 that detect the pressure inside the containers and output it as a signal. In addition, the pressure detection devices 9-I and 9-
Ill outputs a change in pressure as a change in current, a change in light amount, or the like. And surface pressure detection device 9
-1.9-m is connected to the time meter d1 device 10. This time measuring device 10 includes pressure detecting devices 9-■, 9-III.
It measures the time difference until reaching . Also,
A calculation device 11 for calculating the ground fault point is connected to the time measurement device 10, and a display device 12 for displaying the ground fault point is connected to the calculation device 11.

次に、本構成における基本的作用を説明する。Next, the basic operation of this configuration will be explained.

いま、第1図中A点にて地絡が発生したとすると、接地
線8に流れる地絡電流波形は第2図中入曲線で示される
。また、圧力検出装置9−1及び9−■で検出される管
路内の圧力波形は夫々B曲線及びC曲線で示される。そ
して、地絡発生時刻をt。
Assuming that a ground fault occurs at point A in FIG. 1, the waveform of the ground fault current flowing through the grounding wire 8 is shown by an inset curve in FIG. Moreover, the pressure waveforms in the pipe line detected by the pressure detection devices 9-1 and 9-2 are shown by curve B and curve C, respectively. Then, the time of occurrence of the ground fault is t.

とすると地絡電流による圧力上昇変化が圧力検出装置9
−I位置では時刻t工、圧力検出装置9−■■位置では
時刻t2に起きる。尚、地絡点に対し、圧力検出装置R
9−l1lよりも9−Iの方が近いのでtl<tzとな
っている。
Then, the pressure increase change due to the ground fault current is detected by the pressure detection device 9.
It occurs at time t at the -I position, and at time t2 at the pressure detection device 9-■■ position. In addition, for the ground fault point, the pressure detection device R
Since 9-I is closer than 9-l1l, tl<tz.

ここで、圧力検出装置9−1及び9−■間の距離をL[
m]、地絡点Aから圧力検出装置9−1.9−■までの
距離を夫々n1. Q2(m)、ガス絶縁母線1内の圧
力波伝搬速度をv (m/s)とすると、a□+Q2=
 L          ・・・・・・ (υQz−Q
1= v (ti  tx)      ”’ ”’ 
 (21となる。0式及び■式より、 −gx−丁(4−v(tz−ti)  )−・−■が得
られる。即ち、時間差(12−1よ)の値は時間計測装
置10で設定することができ、L、vの値は既知である
ため(3)式の演算を演算装置11で行なうことで地絡
点Aを決定しその結果を表示装置12に表示することか
できる。
Here, the distance between the pressure detection devices 9-1 and 9-■ is L[
m], and the distance from the ground fault point A to the pressure detection device 9-1.9-■ is respectively n1. Q2 (m), and the pressure wave propagation speed in the gas insulated bus 1 is v (m/s), then a□+Q2=
L ・・・・・・ (υQz−Q
1= v (ti tx) ”'”'
(21. From equation 0 and equation (■), -gx-ti(4-v(tz-ti))--■ can be obtained.In other words, the value of the time difference (12-1) is determined by the time measurement device 10. Since the values of L and v are known, the ground fault point A can be determined by calculating equation (3) with the arithmetic device 11 and the result can be displayed on the display device 12. .

ニーで、具体的な地絡検出装置を第3図を用いて説明す
る。ガス絶縁母線1には軸方向に所定間隔をおいて複数
の圧力検出装置9a、 9b、 9c、 9d。
A concrete ground fault detection device will be explained with reference to FIG. A plurality of pressure detection devices 9a, 9b, 9c, and 9d are provided on the gas insulated bus bar 1 at predetermined intervals in the axial direction.

9e+9f+ 9g+及び9hを設ける。圧力検出装置
119a−9hには夫々OR回路13及び信号選択回路
14が接続されている。そして、OR回路13及び信号
選択回路14には演算装@11を接続する。この演算装
置11はCPU11a、RANllb及びROM11c
を備えている。また、演算装置11には時間計測装置1
0a及び表示装置12が接続されている。
9e+9f+ 9g+ and 9h are provided. An OR circuit 13 and a signal selection circuit 14 are connected to the pressure detection devices 119a-9h, respectively. An arithmetic unit @11 is connected to the OR circuit 13 and the signal selection circuit 14. This arithmetic unit 11 includes a CPU 11a, a RANllb, and a ROM11c.
It is equipped with The calculation device 11 also includes a time measurement device 1.
0a and a display device 12 are connected.

次に、本構成における作用を説明する。一般に地絡事故
は突発的に発生するため、通常実施される方法として各
圧力検出装置9a〜9hをスキャンニングするものがあ
る。しかしながら、スキャンニング箇所が多くなると、
地絡発生時刻検出の検出誤差を生む恐れがあり好ましく
ない。そこで、何れか最初の圧力検出装置98〜9hが
地絡による圧力上昇を検知した場合、その出力が必ずO
R回路13を介して割り込み信号15としてCPU11
aに伝達される。以下、第4図に示すフローチャートを
参照して動作説明を行なう。
Next, the operation of this configuration will be explained. Since ground faults generally occur suddenly, one commonly used method involves scanning each pressure detection device 9a to 9h. However, when the number of scanning points increases,
This is not preferable because it may cause a detection error in detecting the time of occurrence of a ground fault. Therefore, if any of the first pressure detection devices 98 to 9h detects a pressure increase due to a ground fault, its output will always be 0.
The CPU 11 receives the interrupt signal 15 via the R circuit 13.
transmitted to a. The operation will be explained below with reference to the flowchart shown in FIG.

割り込み信号15を受けたCPU11aは時間計測装置
10へ計時開始16を伝達することにより、時間計測装
置10がリセットされ計時が開始される(ステップ A
I  )。
Upon receiving the interrupt signal 15, the CPU 11a transmits a time measurement start signal 16 to the time measurement device 10, thereby resetting the time measurement device 10 and starting time measurement (step A).
I).

そして、CPU11aから選択信号17を信号選択回路
14へ伝達し、圧力検出装置98〜9hの出力を順次切
換え、選択データ18により地絡発生箇所が判定される
。これにより、圧力検出装置9a〜9hのうち何れの出
力にて割り込みが発生したかが検知される(ステップ 
A2  )。尚、ここでは圧力検出装[9cの出力にて
割り込みが発生、即ち、圧力検出装置9cに最も近い位
置で地絡が発生したものとする。
Then, the selection signal 17 is transmitted from the CPU 11a to the signal selection circuit 14, the outputs of the pressure detection devices 98 to 9h are sequentially switched, and the location where the ground fault has occurred is determined based on the selection data 18. As a result, it is detected which output of the pressure detection devices 9a to 9h has caused an interrupt (step
A2). Here, it is assumed that an interruption occurs at the output of the pressure detection device [9c, that is, a ground fault occurs at the position closest to the pressure detection device 9c.

次に、地絡点発生位置が圧力検出装置9cのどちら側で
あるか、即ち、圧力検出装[9b側かもしくは9d側の
判定を行なう。つまり、CPU11aから選択信号17
を信号選択回路14へ伝達し、圧力検出装置9b、 9
dの出力を切換えて判定が行なわれる(ステップ A3
  、  A4)。
Next, it is determined which side of the pressure detection device 9c the ground fault point is occurring, that is, the pressure detection device [9b side or 9d side]. In other words, the selection signal 17 is sent from the CPU 11a.
is transmitted to the signal selection circuit 14, and the pressure detection devices 9b, 9
Judgment is made by switching the output of d (step A3
, A4).

もし、圧力検出装置9dで圧力上昇が検知された場合、
圧力検出装置9Cを基準として圧力検出装置9cを基準
として圧力検出装置9d方向に発生したと判定されると
ともに、このことが選択データ18によりCPU11a
に記憶される(ステップ A5  )。
If a pressure increase is detected by the pressure detection device 9d,
It is determined that the pressure has occurred in the direction of the pressure detection device 9d with the pressure detection device 9C as a reference, and this is determined to be detected by the CPU 11a based on the selection data 18.
(Step A5).

一方、圧力検出装置9bで圧力上昇が検知された場合、
圧力検出装置9cを基準として圧力検出装置9b方向に
地絡が発生したと判定されるとともに、このことが選択
データ18によりCPU11aに記憶される(ステップ
 A6  )。
On the other hand, if a pressure increase is detected by the pressure detection device 9b,
It is determined that a ground fault has occurred in the direction of the pressure detection device 9b with respect to the pressure detection device 9c as a reference, and this is stored in the CPU 11a based on the selection data 18 (step A6).

この後、CPU11aから時間計測装置10へ計時停止
信号19が伝達される。この計時停止信号19により時
間計測装置10は測定を停止する(ステップ八7 )。
Thereafter, a clock stop signal 19 is transmitted from the CPU 11a to the time measuring device 10. The time measurement device 10 stops measurement in response to the time measurement stop signal 19 (step 87).

つまり、地絡による圧力上昇を最初に検知した圧力検出
装置9cの出力信号により時間計測装置10が計時を開
始し、第2番目に検知した圧力検出装[119bまたは
9dの出力信号により時間計測装置10が計時を停止す
る。
That is, the time measuring device 10 starts measuring time based on the output signal of the pressure detecting device 9c that first detected the pressure increase due to the ground fault, and the time measuring device 10 stops timing.

そして、時間計測装置10の動作時間は計時結果データ
20としてCPU11aに伝達され記憶される(ステッ
プ A8  )。
The operating time of the time measurement device 10 is then transmitted to the CPU 11a and stored as time measurement result data 20 (step A8).

さらに、CPU11aにおいては、圧力検出装置98〜
9hの位置、圧力波伝搬速度等が既知情報として収納さ
れており、計時結果データ20とともににj記■式より
圧力検出装置9Cからの距離測定の演算が行なわれる(
ステップ A9  )。
Furthermore, in the CPU 11a, the pressure detection devices 98 to
The position of 9h, the pressure wave propagation speed, etc. are stored as known information, and along with the time measurement result data 20, the distance measurement from the pressure detection device 9C is calculated using the formula (J).
Step A9).

最後に、ステップ 八〇  で得られた結果を表示装置
12に表示する(ステップ A10)。
Finally, the results obtained in step 80 are displayed on the display device 12 (step A10).

本具体例においては、複数の容器を接続して形成した管
路に複数の圧力検出装置98〜9hを設けている。そし
て、地絡による圧力上昇を離間して設けた圧力検出装置
9a〜9hで検知し、この時間差を時間計測装置10で
測定している。さらに、この時間差を演算装置11で演
算して地絡点位置を迅速かつ正確に検出することができ
る。また、時間計測装置lOの計時開始は地絡による圧
力上昇を最初に検知した圧力検出装置の出力信号により
行ない、計時停止は第2番目に検知した圧力検出装置の
出力信号により行なう。よって、地絡点位置検出時間を
最短とすることができるとともに、演算装置11、時間
計測装置10における第3番目以降の測定等の無用の動
作を省略することができる。そして、OR回路13を圧
力検出装置98〜9hに接続し、このOR回路13の割
り込み信号15出力としてCPU11aを動作させてい
るので、地絡発生時刻の正確な計測を行なうことができ
る。さらに、最初に検知した圧力検出装置9cの両隣の
圧力検出装置9b。
In this specific example, a plurality of pressure detection devices 98 to 9h are provided in a conduit formed by connecting a plurality of containers. The pressure increase due to the ground fault is detected by the pressure detection devices 9a to 9h provided apart from each other, and the time difference is measured by the time measurement device 10. Furthermore, by calculating this time difference using the calculation device 11, the position of the ground fault point can be detected quickly and accurately. Furthermore, the time measuring device 10 starts counting based on the output signal of the pressure detecting device that first detected the pressure increase due to the ground fault, and stops counting based on the output signal of the pressure detecting device that detects the second pressure increase. Therefore, the time required to detect the position of the ground fault can be minimized, and unnecessary operations such as third and subsequent measurements in the arithmetic device 11 and the time measuring device 10 can be omitted. Since the OR circuit 13 is connected to the pressure detection devices 98 to 9h and the CPU 11a is operated as the output of the interrupt signal 15 of the OR circuit 13, it is possible to accurately measure the time when a ground fault occurs. Further, the pressure detection devices 9b on both sides of the pressure detection device 9c that detected the first pressure detection device.

9dのみを第2番目に検知するものと判定するので、地
絡点検出速度を速くすることができる。また。
Since only 9d is determined to be detected second, the ground fault detection speed can be increased. Also.

地絡点の表示は最初に圧力検出装置9cからの距離及び
方向で行なうので、地絡点の確認が容易でがつガス絶縁
母線の分解点検が短時間に行なえる。
Since the ground fault point is first displayed based on the distance and direction from the pressure detection device 9c, the ground fault point can be easily confirmed and the gas insulated bus bar can be disassembled and inspected in a short time.

尚、本実施例においてはガス絶縁母線についてのみ説明
したが、これに限定されるものではなく途中又は端部に
他のガス絶縁電気機器を介在しても同様な構成として同
様な構成として同様な作用効果を得ることができる。
In this embodiment, only the gas-insulated busbar has been described, but the invention is not limited to this, and even if other gas-insulated electric equipment is interposed in the middle or at the end, the same structure can be obtained. Effects can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明においては、管路内の軸方向
に所定間隔をおいて管路内に発生した地絡電流による圧
力上昇を検知する複数の圧力検出装置を設け、この圧力
検出装置のうち二つの圧力検出装置が検知する時間差を
測定して地絡点を検出するので、正確かつ迅速に地絡点
検出可能な地絡点検出装置を提供することができる。
As explained above, in the present invention, a plurality of pressure detection devices are provided at predetermined intervals in the axial direction of the pipe to detect a pressure increase due to a ground fault current generated in the pipe. Since the ground fault point is detected by measuring the time difference detected by the two pressure detection devices, it is possible to provide a ground fault point detection device that can accurately and quickly detect the ground fault point.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の地絡点検出装置を示す概略構成は、第
2図は地絡電流波形及び圧力波形を示す図、第3図は第
1図の地絡点検出装置の具体例を示す構成図、第4図は
第3図に示す地絡点検出装置の動作を示す流れ図である
。 1・・・ガス絶縁母線、    2・・・容器、3・・
・フランジ、      4・・・接触子、5・・・導
体、         6・・・支持部材、7・・・接
地端子、       8・・・接地線、9−1.9−
m 、9a 〜9h−・−圧力検出装置、10・・・時
間計測装置、    11・・・演算装置、12・・・
表示装置、      13・・・OR回路。 14・・・信号選択回路、    15・・・割り込み
信号、16・・・計時開始信号、    17・・・選
択信号、18・・・選択データ、     19・・・
計時停止信号、20・・計時結果データ。 代理人 弁理士 則 近 憲 佑 同  三俣弘文 第1図
Fig. 1 shows a schematic configuration of the ground fault detection device of the present invention, Fig. 2 shows a ground fault current waveform and pressure waveform, and Fig. 3 shows a specific example of the ground fault detection device of Fig. 1. FIG. 4 is a flowchart showing the operation of the ground fault detection device shown in FIG. 3. 1... Gas insulated bus bar, 2... Container, 3...
・Flange, 4...Contact, 5...Conductor, 6...Supporting member, 7...Grounding terminal, 8...Grounding wire, 9-1.9-
m, 9a to 9h--pressure detection device, 10... time measuring device, 11... arithmetic device, 12...
Display device, 13...OR circuit. 14... Signal selection circuit, 15... Interrupt signal, 16... Timing start signal, 17... Selection signal, 18... Selection data, 19...
Timing stop signal, 20... Timing result data. Agent Patent Attorney Noriyuki Chika Yudo Hirofumi Mitsumata Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)絶縁ガスとともに内部に導体を絶縁収納した管路
内に軸方向に所定間隔をおいて設け、この管路内に発生
した地絡電流による圧力上昇を検知する複数の圧力検出
装置と、この圧力検出装置のうち二つの圧力検出装置か
らの入力の時間差を測定する時間計測装置と、前記時間
差及び前記圧力検出装置の設置位置等の諸元より地絡点
を演算する演算装置と、この演算装置に接続しこの出力
を表示する表示装置とを備えることを特徴とする地絡点
検出装置。
(1) A plurality of pressure detection devices installed at predetermined intervals in the axial direction in a conduit in which a conductor is insulated and housed inside along with an insulating gas, and detecting a pressure increase due to a ground fault current generated in the conduit; A time measurement device that measures the time difference between inputs from two of the pressure detection devices; a calculation device that calculates the ground fault point from the time difference and specifications such as the installation position of the pressure detection devices; A ground fault detection device comprising: a display device connected to an arithmetic device and displaying the output thereof.
(2)時間計測装置は最初に圧力上昇を検知した圧力検
出装置からの割り込み信号により計時を開始する特許請
求の範囲第(1)項記載の地絡点検出装置。
(2) The earth fault detection device according to claim (1), wherein the time measurement device starts measuring time in response to an interrupt signal from the pressure detection device that first detects a pressure increase.
(3)時間計測装置は最初に圧力上昇を検知した圧力検
出装置の出力により計時を開始し、第2番目に圧力上昇
を検知した圧力検出装置の出力により計時を停止する特
許請求の範囲第(1)項記載の地絡点検出装置。
(3) The time measuring device starts measuring time based on the output of the pressure detecting device that first detects the pressure increase, and stops timing based on the output of the pressure detecting device that detects the pressure increase second. The earth fault detection device described in item 1).
(4)時間計測装置は最初に圧力上昇を検知した圧力検
出装置の両隣の何れか一方の圧力検出装置の出力により
計時を停止する特許請求の範囲第(1)項記載の地絡点
検出装置。
(4) The earth fault point detection device according to claim (1), wherein the time measurement device stops measuring time by the output of one of the pressure detection devices on either side of the pressure detection device that first detects a pressure increase. .
(5)表示装置は最初に圧力上昇を検知した圧力検出装
置からの距離及び方向で地絡点を表示する特許請求の範
囲第(1)項記載の地絡点検出装置。
(5) The ground fault detection device according to claim (1), wherein the display device displays the ground fault point in terms of distance and direction from the pressure detection device that first detected the pressure increase.
JP60261262A 1985-11-22 1985-11-22 Ground-fault detecting device Pending JPS62121370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60261262A JPS62121370A (en) 1985-11-22 1985-11-22 Ground-fault detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60261262A JPS62121370A (en) 1985-11-22 1985-11-22 Ground-fault detecting device

Publications (1)

Publication Number Publication Date
JPS62121370A true JPS62121370A (en) 1987-06-02

Family

ID=17359380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60261262A Pending JPS62121370A (en) 1985-11-22 1985-11-22 Ground-fault detecting device

Country Status (1)

Country Link
JP (1) JPS62121370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320479A (en) * 1988-06-22 1989-12-26 Toshiba Corp Earthing point detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320479A (en) * 1988-06-22 1989-12-26 Toshiba Corp Earthing point detector

Similar Documents

Publication Publication Date Title
JP2014190758A (en) Deterioration diagnostic method for power cable
CN105359365A (en) Method and means for complex, universal earth fault protection in power high and medium voltage system
JPS62121370A (en) Ground-fault detecting device
KR100538018B1 (en) A new measurement equipment for the shieth currents of grounding power cables
JP2732586B2 (en) Ground fault detection device
JPH11202017A (en) Operation confirming method of fault point orientating apparatus for power cable line
CN201489082U (en) Sensor and device for monitoring partial discharge of gas-insulated metal-enclosed switch
RU205414U1 (en) HIGH-VOLTAGE DEVICE FOR REGISTRATION OF DAMAGE PLACES OF INSULATING MATERIALS OF POWER CABLE LINES BY REMOTE METHOD OF DIRECT CONNECTION TO THE CABLE LINE
JP2608925B2 (en) Partial discharge detection method for power cables
JPH0473755B2 (en)
JP2002098729A (en) Leak current probing device
CN2757143Y (en) Arc light earthing point detector for power transport line
JP3260155B2 (en) Method and apparatus for detecting ground fault direction of transmission and distribution lines
JPS62278468A (en) Grounding-fault point locator
JPH06331665A (en) Diagnostic monitoring system for insulation of power cable
JPH09159717A (en) Method and device for detecting discharging position
JPH01232626A (en) Abnormal current supply sensing device for gas-insulated switching apparatus
JPS5916844Y2 (en) Failure detection device
JPH1019969A (en) Partial discharge measuring method
JPH0353583B2 (en)
JPH043524Y2 (en)
JP2019179010A (en) Pulse measurement apparatus and pulse measurement method
JPH08178997A (en) Partial discharge measuring method for power cable
JPS63210676A (en) Fault point locator for gas insulated switch gear
JPH034940Y2 (en)