JPS62120469A - Manufacture of titanium alloy material excellent in strength and ductility - Google Patents

Manufacture of titanium alloy material excellent in strength and ductility

Info

Publication number
JPS62120469A
JPS62120469A JP25857185A JP25857185A JPS62120469A JP S62120469 A JPS62120469 A JP S62120469A JP 25857185 A JP25857185 A JP 25857185A JP 25857185 A JP25857185 A JP 25857185A JP S62120469 A JPS62120469 A JP S62120469A
Authority
JP
Japan
Prior art keywords
working
alloy material
processing
mechanical properties
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25857185A
Other languages
Japanese (ja)
Other versions
JPH0135070B2 (en
Inventor
Chiaki Ouchi
大内 千秋
Hiroyoshi Suenaga
末永 博義
Hideo Sakuyama
秀夫 作山
Hideo Takatori
英男 高取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Nippon Mining Co Ltd
Priority to JP25857185A priority Critical patent/JPS62120469A/en
Publication of JPS62120469A publication Critical patent/JPS62120469A/en
Publication of JPH0135070B2 publication Critical patent/JPH0135070B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To easily manufacture a Ti alloy material excellent in mechanical properties such as strength, ductility, etc., at a low cost by applying hot working to a Ti alloy stock having a specific composition consisting of V, Cr, Sn, Al and Ti under proper conditions. CONSTITUTION:In manufacturing a Ti alloy material consisting of, by weight, 14-16% V, 2.5-3.5% Cr, 2.5-3.5% Sn, 2.5-3.5% Al, and the balance Ti with inevitable impurities and further containing, if necessary, <=0.3% O, working is started after heating a stock for hot working to 900-1,050 deg.C. Successively, above-mentioned working stock is subjected to working at >=50% draft at at least 650-900 deg.C, where at >=30% draft at 650-850 deg.C, and working is finished at 650-800 deg.C. In this way, Ti-15V-3Cr-3Sn-3Al alloy material having superior mechanical properties and uniform structure can be obtained with obviating the necessity of cold working.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は強度、延性などの機械的性′(′Iに優れlこ
チタン合金材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a titanium alloy material having excellent mechanical properties such as strength and ductility.

[従来の技術とイの問題点] Ti −15V−3Cr −3Sn−3Δg合金は高強
度でかつ冷間加工性に擾れたβ型子9ン合金として最近
利用が広がる傾向にある。これは、該1タン合金がri
 −6AJ −4V合金等のα−)−β型子9ン合金と
比較しで冷間加工性が大幅に優れ、冷間ブレス簀の採用
が可能で、加工■稈の省力化を図り得るからである。
[Prior Art and Problems of A] Ti-15V-3Cr-3Sn-3Δg alloy has recently been widely used as a β-type alloy having high strength and excellent cold workability. This means that the tan alloy has ri
-6AJ -4V alloy and other α-)-β type 9-n alloys have significantly superior cold workability, allowing the adoption of cold-bracing cages and saving labor in machining the culm. It is.

しかしながら、上記Ti −15V−3Cr −3Sn
−3Δg合金材(以下中に本合金材と称1)は、従来で
は熱間加工■稈による製造が困難どされていた。それは
、本合金材の製)告ト、+jl械的性的性質組織の不均
一性がネックどなり、熱間加工のみでは、十分な機械的
性質と組織の均一1′#1を1!Iるのが難しいとされ
ていたからである。
However, the above Ti-15V-3Cr-3Sn
-3Δg alloy material (hereinafter referred to as the present alloy material 1) has conventionally been difficult to manufacture by hot working. This is because the non-uniformity of the mechanical properties and structure of this alloy material is a bottleneck, and hot working alone is insufficient to achieve sufficient mechanical properties and uniformity of the structure. This is because it was considered difficult to enter.

そのため、本合金材は熱間加■ままで利用されることは
ほとんどなく、従来では一般に、熱間加■工程−溶体化
処理工稈−冷間加エエ稈の3工程により製造し、熱間加
工工程後の冷間加工工程の付加により、機械的性質の向
上、機械的性質及び組織の均一性向上を図っていた。し
かし、この方法では工程数が多いため製造が容易でなく
生産性、生産二」ストに問題があった。
Therefore, this alloy material is rarely used as hot-worked, and in the past, it was generally produced through a three-step process: hot working, solution treatment, and cold working. By adding a cold working step after the processing step, improvements in mechanical properties and uniformity of mechanical properties and structure were attempted. However, this method requires a large number of steps and is not easy to manufacture, resulting in problems with productivity and production costs.

[問題点を解決するための手段] 本発明は上記したような従来の問題点を解消するため研
究と実験を重ねで創案されたもので、その目的とすると
ころは、従来方法(熱間加工工程−溶体化処理工程−冷
間加工工程)と同薯の優れた機械的性質及び組織を持つ
本合金材を、熱間加工工程だけで容易に製造できる方法
を提供することにある。
[Means for Solving the Problems] The present invention was created through repeated research and experiments in order to solve the above-mentioned conventional problems. It is an object of the present invention to provide a method for easily manufacturing the present alloy material having excellent mechanical properties and structure similar to the steps (solution treatment step - cold working step) using only a hot working step.

この目的を達成するため本発明は、本合金材を得るにあ
たり、特に熱間加工用素材(スラブ、ビレットなど)の
熱間加工工程と加工率を厳密に制御して熱間加工を行う
ようにしたもので、すなわら、V:14〜16wt%、
Cr :  2.5〜3.swt%、3n  :  2
.5〜3.51N%、△fJ  :  2.5〜3.5
wt%、残部Ti及び不可避的不純物からなるチタン合
金材を製造するにあたり、熱間IJn 1用:<r +
4を900℃以上1050℃以下の一爪に加熱1(加工
を開始し、少くとも650℃以上900℃以トで加工率
50%以」皿、か゛つそのうち650℃以−ト850℃
以下で加工率30%以上の加工を加え、6!IO℃以−
[800℃以下の温度で加工を終了することを特徴とす
るものである。
In order to achieve this objective, the present invention is designed to strictly control the hot working process and processing rate of materials for hot working (slabs, billets, etc.) in order to obtain the alloy material. In other words, V: 14 to 16 wt%,
Cr: 2.5-3. swt%, 3n: 2
.. 5-3.51N%, △fJ: 2.5-3.5
When manufacturing a titanium alloy material consisting of wt%, balance Ti and unavoidable impurities, for hot IJn 1: <r +
Heat 4 to 900°C or higher and 1050°C or lower with one finger 1 (Start processing, at least 650°C or higher and 900°C or lower to achieve a processing rate of 50%).
Add processing with a processing rate of 30% or more below, and 6! IO℃ or higher
[This process is characterized by finishing the processing at a temperature of 800°C or lower.

なお、本発明にお番)るチタン合金材に【ま、酸素を0
.3%以下まで含有さけたものら含み、これにより本合
金材の強度をさらに増ザことができる。
It should be noted that the titanium alloy material used in the present invention is
.. By avoiding the content of up to 3% or less, the strength of the present alloy material can be further increased.

以下本発明を詳述する。The present invention will be explained in detail below.

本発明で製造[]的のブータン合金材は、V : 14
−1(iW(%、Cr :  2.5〜3.5wt%、
Sn:2.5−3、5Wj%、AJl:  2.5〜3
.5wt%、残部Ti及び不可避的不純物からなるもの
で、03%以下の酸素を含有したしのを含む。M索の添
加により本合金材は強度を上背さUることが可能である
が、013%を越えろと冷間加工性(冷間成形性)が著
しく劣化する。即も溶体化処理(800℃X2omin
→水冷)において、酸素:0.3%以下含有の場合密着
面げが可能であるが、0.3%を越えると曲げ半i¥R
−10tにJ3いても破断が認められ実用上適用不可能
である。
The Bhutan alloy material produced in the present invention has a V: 14
-1(iW(%, Cr: 2.5-3.5wt%,
Sn: 2.5-3, 5Wj%, AJl: 2.5-3
.. 5 wt%, balance Ti and unavoidable impurities, including 0.3% or less oxygen. Although it is possible to increase the strength of the present alloy material by adding M cords, if the strength exceeds 0.13%, cold workability (cold formability) deteriorates significantly. Immediately solution treatment (800℃X2omin
→Water cooling), if the content of oxygen is 0.3% or less, it is possible to form a close contact surface, but if it exceeds 0.3%, bending will not be possible.
Even if J3 was used at −10t, breakage was observed, making it practically unapplicable.

この成分を真空アーク溶解炉等でrB製し、溶製インボ
ッ1〜を、バラf炉又は連続炉を用いて加熱後、鍛造あ
るいは分塊圧延することで熱間加工用素材を作成する。
This component is made into rB in a vacuum arc melting furnace or the like, and the melted ingots 1 to 1 are heated in a bulk furnace or continuous furnace, and then forged or bloomed to create a material for hot working.

インゴットの加熱;温度は1000℃以上1200℃以
下が望ましい。その理由は、1000℃未満の加熱では
、後工程まで鋳造組織が残留して機械的性質の低下をも
たらづど共に、鍛造又は分塊圧延によるインゴットブレ
イクダ・クンlliの加工性の低下を生じさせ、120
0℃を越える温度に加熱すると、酸化に伴う歩留りの大
幅な低下を伴うからである。
Heating the ingot; the temperature is preferably 1000°C or more and 1200°C or less. The reason for this is that heating below 1000°C causes the casting structure to remain until the subsequent process, resulting in a decline in mechanical properties, as well as a decline in the workability of the ingot breakers during forging or blooming. cause, 120
This is because heating to a temperature exceeding 0° C. causes a significant decrease in yield due to oxidation.

上記熱間加工用素材を熱間加工するに際し、バッチ炉又
は連続炉で900℃以上1050℃以下のUiに加熱後
加工を開始する。このように、熱間加工用木材の加熱温
度を制御2IIすることが本発明のひとつの重要なポイ
ントである。
When hot working the above-mentioned material for hot working, processing is started after heating to Ui of 900° C. or more and 1050° C. or less in a batch furnace or a continuous furnace. Thus, one important point of the present invention is to control the heating temperature of wood for hot processing.

本合金材は熱間加工後、溶体化処理、時効処理を施して
使用されるが、時効時に組織の不均一化が生じやすく、
これが本合金材の機械的性質の不均一と質低下を招く、
これは閃効析出子動の不均一に基くらのであり、添加元
素の偏析が原因である。
After hot working, this alloy material is subjected to solution treatment and aging treatment before use, but the structure tends to become non-uniform during aging.
This leads to uneven mechanical properties and quality deterioration of this alloy material.
This is due to the non-uniformity of flash precipitate molecular motion and is caused by the segregation of added elements.

この対策として従来法では、■熱間加工、■溶体化処理
、■冷間加工、■溶体化処理、■時効処理を順次施し−
C最終製品としている。すなわら、熱間加工工程に続き
冷間加工工程を必須工程として加え、熱間(冷間)加ニ
ー溶体処理(7+lI L−再結品過程)を2回繰返1
ことににり添加元素を均質化し、最終製品の均質化を図
っている。
As a countermeasure to this, conventional methods sequentially perform ■ hot working, ■ solution treatment, ■ cold working, ■ solution treatment, and ■ aging treatment.
C It is considered a final product. In other words, following the hot working process, a cold working process is added as an essential process, and the hot (cold) kneading solution treatment (7+lI L-reconsolidation process) is repeated twice1.
In particular, the added elements are homogenized to ensure a homogeneous final product.

本発明はこのような煩雑な工程を省き、熱間加工用素材
の加熱温度を一定条f(に厳密に制御づろことで、添加
元素の均質化、組織の均一化を図るもので、これがβ高
温域の900℃以上、1050℃以下の温度に熱間加工
用素材を加熱してから加工を開始するという条件である
The present invention eliminates such a complicated process and strictly controls the heating temperature of the material for hot processing to a constant value f(), thereby achieving homogenization of the added elements and uniformity of the structure. The condition is to start processing after heating the material for hot processing to a temperature of 900° C. or higher and 1050° C. or lower in the β high temperature range.

加熱温度の上限を1050℃としたのは、これを越える
加熱温度とした場合、β粒の粒成長が著しくなり、その
結果最n製品のβ粒の粗大化、不均一を生じ、機械的性
質の低下をもたらすからである。
The reason why the upper limit of the heating temperature was set at 1050°C is that if the heating temperature exceeds this temperature, the grain growth of β grains will be significant, resulting in coarsening and non-uniformity of β grains in the final product, which will deteriorate the mechanical properties. This is because it causes a decrease in

また、加熱温度の下限を900℃としたのは、加熱温度
がこれ未満の場合には、添加元素の拡散均一化が不」−
分となり、やはり、最終製品の機械的性質及び組織の不
均一性の問題が生ずると共に、機械的性質の低下を招く
からである。
In addition, the lower limit of the heating temperature was set at 900°C because if the heating temperature is lower than this, the diffusion of the added elements will not be uniform.
This is because the problem of non-uniformity of the mechanical properties and structure of the final product arises as well as a decrease in the mechanical properties.

なお本発明は、場合によっては、熱間加工用素材を90
0℃以上1050℃以下の温度に加熱後加工を開始し、
900℃以上の再結晶域での加工を行うことでβ晶の再
結晶を図り、これを通して添加元素の均質化をさらに向
上させることも可能である。
In addition, in some cases, the present invention may be applied to a material for hot processing of 90%
Start processing after heating to a temperature of 0°C or more and 1050°C or less,
It is also possible to recrystallize the β crystal by performing processing in a recrystallization region of 900° C. or higher, thereby further improving the homogenization of the additive elements.

次に本発明は、上記のように熱間加工用素材を加熱後次
の条件で熱間加工を行う。
Next, in the present invention, after heating the material for hot working as described above, hot working is performed under the following conditions.

(1)加工率を少なくとも650℃以上900℃以下で
50%以上かつ650℃以上850℃以下で30%以上
とする。
(1) The processing rate is at least 50% or more at 650°C or more and 900°C or less, and 30% or more at 650°C or more and 850°C or less.

(2)加工仕上温度を650℃以上800℃以下とする
(2) The finishing temperature is 650°C or more and 800°C or less.

このように加熱温度を加え、熱間加二F方法を厳密に制
御することが本発明の重f!、なポイントで(hる。
The importance of the present invention is to apply the heating temperature in this manner and strictly control the hot heating method. , at a point (hru.

従来法にJjいては、熱間加工T稈に続く冷間加工■稈
においで加工材に加工歪を与え、これに続く溶体化処理
工程での再結晶挙動を通しυβ品の均−微細化及び添加
元素の均質化、そして時効時の機械的1i質の改善を図
っていた。本発明は、この発想を転換し、熱間加工条件
−Fのちのでの低温域の加工率を制御することにより、
冷間加二丁と同様の効果を得るようにしたちのτ・ある
In the conventional method, hot working T culm is followed by cold working.Working strain is applied to the workpiece in the culm, and the υβ product is homogenized and refined through recrystallization behavior in the subsequent solution treatment process. Attempts were made to homogenize the additive elements and improve the mechanical quality during aging. The present invention changes this idea and controls the processing rate in the low temperature range after the hot processing condition -F.
There is a tau that produces the same effect as two cold heaters.

(1)の加工率を規定したのは、最終製品のβ粒の微細
化及び機械的性質の改pjをIAる1、:、tよ、未再
結晶温度域(゛ある900℃1ス下での加工率の制御が
必要だからであり、900℃以下で50%以上かつ85
0℃以下で30%以上の加工を加えた場合にだけ、均一
・な圧延変形組織となり熱間1]延(股の溶体化組織、
溶体化組織も均一微細となる。その結果、これら熱処理
材の機械的性質及び均−竹の向トを生じる。づなわら加
工率が小さい場合、熱間ル延後の溶体化熱処理において
、不均一な再結晶、回復組織となり、この結果、続く時
効熱処理における時効析出が不均一となる。
The processing rate in (1) was specified in order to refine the β grains and modify the mechanical properties of the final product. This is because it is necessary to control the processing rate at
Only when 30% or more of processing is applied at temperatures below 0°C, a uniform rolling deformation structure is created.
The solution-treated structure also becomes uniform and fine. As a result, the mechanical properties and uniformity of these heat-treated materials deteriorate. If the processing rate is small, non-uniform recrystallization and recovery structure will occur in the solution heat treatment after hot rolling, and as a result, aging precipitation will become non-uniform in the subsequent aging heat treatment.

加工温度及び加工仕上温度の下限を650℃以上どした
のは、加工温度が650℃未満になると加工変形抵抗が
上昇し、加工が困難になると共に、加工中のα晶が析出
し、最終製品の機械的性質及び組織の均−竹が低下する
ためである。
The reason why the lower limit of processing temperature and finishing temperature is set at 650℃ or higher is because when the processing temperature is lower than 650℃, the processing deformation resistance increases, making processing difficult, and α crystals precipitate during processing, causing the final product to deteriorate. This is because the mechanical properties and uniformity of the structure deteriorate.

また仕J一温度を800℃以下と限定した理由は圧延仕
上温度が800℃を越える場合、熱間圧延後(中)の冷
却過程で[[延変形組織が不均一な回復組織となり、こ
の不均一な回復組織が原因で、溶体化時効材の機械的性
質の低下を生じるためである。すなわち、この不均一な
回復組織は熱間圧延後の溶体化4[織、溶体化時効組織
の均一性に影響を及ぼし、その結果、これら熱処理材の
機械的性質の低下、不均一性を生じるためである。
The reason for limiting the finishing temperature to 800°C or less is that if the finishing rolling temperature exceeds 800°C, the rolling deformation structure becomes a non-uniform recovery structure during the cooling process after (middle) hot rolling. This is because the mechanical properties of the solution aged material deteriorate due to the uniform recovery structure. In other words, this non-uniform recovery structure affects the uniformity of the solution-aged structure after hot rolling, resulting in a decrease in the mechanical properties and non-uniformity of these heat-treated materials. It's for a reason.

[実/I!!lPA] 次に本発明の実施例を示す。[Rei/I! ! lPA] Next, examples of the present invention will be shown.

■、第1表は供試月の化学成分(wt%)を示すもノテ
、使用したri −15V−3Cr −3Sn −3A
l合金インゴットの直径は直径550mjRであり、こ
れを1050℃に加熱した後、100.厚に鍛造し、熱
間加工用素材を作成した。
■Table 1 shows the chemical composition (wt%) of the test month.
The diameter of the l alloy ingot is 550mjR, and after heating it to 1050°C, it is heated to 100. It was forged thickly to create a material for hot processing.

第  1  表 ■、上記熱間加工用素材を種々の熱間加工条件で加工し
、それぞれの機械的性質について調べた結果を下記第2
表に示1゜ 熱間加工は、上記熱間加1−用木+Jから試験j1を析
出し、該試験片を、1100°Cから875°Cの温度
範囲に加熱した後、仕上温1α800℃から625℃の
温度範囲で実施した。付上板厚はいずれも10姻である
。熱間加1.後の溶体化処理工程は800℃X20m1
n→空冷であり、時効処理条例は、480℃X 14h
r−+空冷(STAl)、510℃×14hr→空冷(
STA2)の2条f1どした。一部の材It (表中1
!+、16)についでは、比較のため、熱間加工後、溶
体化処理−冷間加工(L方向5冗冷間加工)を実施した
Table 1 ■ The above materials for hot processing were processed under various hot processing conditions, and the results of investigating the mechanical properties of each are shown in Table 2 below.
In the 1° hot working shown in the table, test j1 was precipitated from the above hot working wood + J, and the test piece was heated to a temperature range of 1100°C to 875°C, and then the finishing temperature 1α was 800°C. The experiment was carried out at a temperature range of 625°C to 625°C. The top plate thickness is 10 mm. Hot heating 1. The subsequent solution treatment step is 800℃ x 20m1
n → Air cooling, aging treatment regulations are 480℃ x 14 hours
r-+ air cooling (STAl), 510°C x 14 hr → air cooling (
STA2) article 2 f1. Some materials It (1 in the table)
! +, 16), after hot working, solution treatment and cold working (5 cold working in L direction) were carried out for comparison.

■、第2表中の加工材の機械的性質は、板厚中心より板
厚7tta、’4’行部12.5m、G 、 1 、5
0mの板状引張試験片をL方向に各々の加工条件ごとに
10本採取して調査した。
■The mechanical properties of the processed materials in Table 2 are as follows: plate thickness 7tta from the plate thickness center, '4' row 12.5m, G, 1, 5
Ten 0 m plate-shaped tensile test pieces were taken in the L direction for each processing condition and investigated.

また、表中のβ粒径は各々の加工条件について、L/而
(圧延方向に平行な板厚断面)におけるβ粒径を線分法
で測定して求めた。
Further, the β grain size in the table was determined by measuring the β grain size at L/(thickness section parallel to the rolling direction) using a line segment method for each processing condition.

また、第2表中の超音波探傷ノイズレベルは、探(セ周
波数5H1lZ、狭帯域探触子を用い、探傷感度sTB
 G V15−1.4=50%で求めた。
In addition, the ultrasonic flaw detection noise level in Table 2 is as follows:
G V15-1.4=50%.

Iv、第2表から明らかなように、本発明の加工糸1′
tにあるPJIj、 1〜庵9の材料はS 1− A 
1で強度135に9 f / am 2以上、伸び5%
以上、Sr’A2で強度130Kgf/11m2以上、
伸び5%以上の優れた強度、延性直が得られており、強
度の標準−差も03以下とばらつきも小さい。これらの
機械的性質は従来法である隘16の材料(熱間加工工稈
後冷間加エエ稈を加えたもの)と同等である。
Iv, as is clear from Table 2, the processed yarn 1' of the present invention
PJIj in t, materials of 1 to 9 are S 1-A
1 to strength 135, 9 f/am 2 or more, elongation 5%
Above, Sr'A2 has a strength of 130Kgf/11m2 or more,
Excellent strength and ductility with an elongation of 5% or more have been obtained, and the standard difference in strength is 0.3 or less, with small variations. These mechanical properties are equivalent to the material of the conventional method No. 16 (adding cold working culm after hot working culm).

これに対し、本発明の規定する加熱温度、仕上温度、加
工温度と加工率の各条件のうら1つでb欠いたもの0!
110−ル15)Gよ、従来法による材料に比べ機械的
性質が劣っている。このことから、熱間加工用素材を9
00℃以上1050℃以下の温度に加熱後、少なくとも
650℃以上900℃以下で加工率50%以上かつその
うら650℃以上850′″C以下で加][率30%以
上の加工を加え、650″C以上800℃以下の温度で
加工を終了することが、熱間加工ままて・優れた機械的
性質の本合金材を(!する必須条件であることが明らか
である。
On the other hand, if one of the conditions of heating temperature, finishing temperature, processing temperature and processing rate specified by the present invention is missing b, 0!
110-15) G, mechanical properties are inferior to materials made by conventional methods. From this, the material for hot processing is 9
After heating to a temperature of 00°C or more and 1050°C or less, at least 650°C or more and 900°C or less with a processing rate of 50% or more, and then heating at a rate of 650°C or more and 850'''C or less] [Add processing with a rate of 30% or more, and It is clear that finishing the processing at a temperature of 800°C or higher is an essential condition for producing this alloy material with excellent mechanical properties as hot-processed.

また、本発明によれば超音波探傷時のノイズレベルが大
幅に低減し、超音波探14が容易になる。
Further, according to the present invention, the noise level during ultrasonic flaw detection is significantly reduced, and the ultrasonic detection 14 becomes easier.

これは本発明の採用で組織が均一化されるためで、この
点では従来法による材料よりも降れている。
This is because the structure is made more uniform by employing the present invention, and in this respect it is better than materials made by conventional methods.

[発明の効果] 以上説明した本発明によるときには、Ti −15V−
3Cr −3Sn−3AN合金材の製造ニ83 イて、
冷間加工を行わなくても熱間加工の温度と加工率を制御
することにより、冷間加工材と同等の優れた機械的性質
を右するブタン合金材を容易に製造できるというすぐれ
た効果が(IIられる。
[Effect of the invention] According to the present invention described above, Ti -15V-
Manufacturing of 3Cr-3Sn-3AN alloy material 83
By controlling the temperature and processing rate of hot working, it is possible to easily produce butane alloy materials with excellent mechanical properties equivalent to those of cold-worked materials, without performing cold working. (II is done.

特許出願人  日本鋼管株式会社 同     日本鉱業株式会社Patent applicant: Nippon Kokan Co., Ltd. Same as Nippon Mining Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)V:14〜16wt%、Cr:2.5〜3.5w
t%、Sn:2.5〜3.5wt%、Al:2.5〜3
.5wt%、残部Ti及び不可避的不純物からなるチタ
ン合金材を製造するにあたり、熱間加工用素材を900
℃以上1050℃以下の温度に加熱後加工を開始し、少
くとも650℃以上900℃以下で加工率50%以上、
かつそのうち650℃以上850℃以下で加工率30%
以上の加工を加え、650℃以上800℃以下の温度で
加工を終了することを特徴とする強度、延性に優れたチ
タン合金材の製造方法。
(1) V: 14-16wt%, Cr: 2.5-3.5w
t%, Sn: 2.5-3.5wt%, Al: 2.5-3
.. In producing a titanium alloy material consisting of 5wt%, balance Ti and unavoidable impurities, 900% of the material for hot processing was used.
Start processing after heating to a temperature of 1050°C or higher, at least 650°C or higher and 900°C or lower, with a processing rate of 50% or more,
And the processing rate is 30% at 650℃ or higher and 850℃ or lower.
A method for producing a titanium alloy material with excellent strength and ductility, which comprises performing the above processing and completing the processing at a temperature of 650°C or higher and 800°C or lower.
(2)前記チタン合金材中に酸素0.3%以下を含有す
る特許請求の範囲第1項記載のチタン合金材の製造方法
(2) The method for producing a titanium alloy material according to claim 1, wherein the titanium alloy material contains 0.3% or less of oxygen.
JP25857185A 1985-11-20 1985-11-20 Manufacture of titanium alloy material excellent in strength and ductility Granted JPS62120469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25857185A JPS62120469A (en) 1985-11-20 1985-11-20 Manufacture of titanium alloy material excellent in strength and ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25857185A JPS62120469A (en) 1985-11-20 1985-11-20 Manufacture of titanium alloy material excellent in strength and ductility

Publications (2)

Publication Number Publication Date
JPS62120469A true JPS62120469A (en) 1987-06-01
JPH0135070B2 JPH0135070B2 (en) 1989-07-24

Family

ID=17322090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25857185A Granted JPS62120469A (en) 1985-11-20 1985-11-20 Manufacture of titanium alloy material excellent in strength and ductility

Country Status (1)

Country Link
JP (1) JPS62120469A (en)

Also Published As

Publication number Publication date
JPH0135070B2 (en) 1989-07-24

Similar Documents

Publication Publication Date Title
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
JPS6140742B2 (en)
JPS6369952A (en) Manufacture of aluminum-alloy rolled sheet
JPH06240424A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JPH08509266A (en) Improvement of mechanical properties of aluminum-lithium alloy
CN114934162A (en) Thermal deformation method of high-alloy martensitic stainless steel and stainless steel
JPS62120469A (en) Manufacture of titanium alloy material excellent in strength and ductility
KR20160012231A (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
JP6623950B2 (en) Titanium plate excellent in balance between proof stress and ductility and method for producing the same
JP2017057473A (en) α+β TYPE TITANIUM ALLOY SHEET AND MANUFACTURING METHOD THEREFOR
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPH0135069B2 (en)
JP2003328095A (en) Production method for aluminum alloy plate for forming
JPH0259859B2 (en)
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JPS634914B2 (en)
JPH02290952A (en) Production of al-cu-mg-li aluminum alloy material for structural use
JPH11335803A (en) Production of near beta type titanium alloy coil
JPH0517858A (en) Manufacture of aluminum alloy excellent in formability
JPH0971842A (en) High strength non-heat treated steel wire rod excellent in cold heading property
KR20230095259A (en) Method for manufacturing thin titanium plates with fine and equiaxed grains and thin titanium plates manufactured by using the same
JPS62214163A (en) Manufacture of stress corrosion-resisting aluminum-magnesium alloy soft material
JPH0285345A (en) Manufacture of alpha+beta titanium alloy material having reduced componental segregation and having excellent homogeneity
JP3075943B2 (en) Method for producing structural steel with low yield strength