JPS6211889B2 - - Google Patents

Info

Publication number
JPS6211889B2
JPS6211889B2 JP57133906A JP13390682A JPS6211889B2 JP S6211889 B2 JPS6211889 B2 JP S6211889B2 JP 57133906 A JP57133906 A JP 57133906A JP 13390682 A JP13390682 A JP 13390682A JP S6211889 B2 JPS6211889 B2 JP S6211889B2
Authority
JP
Japan
Prior art keywords
heat exchanger
passed
heat
tower
lean liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57133906A
Other languages
Japanese (ja)
Other versions
JPS5926926A (en
Inventor
Takeshi Watabe
Torao Takahashi
Nobukazu Sato
Shiro Inoe
Tetsuo Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP57133906A priority Critical patent/JPS5926926A/en
Publication of JPS5926926A publication Critical patent/JPS5926926A/en
Publication of JPS6211889B2 publication Critical patent/JPS6211889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 この発明はいわゆる熱炭酸カリによる脱CO2
置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a CO 2 removal device using so-called hot potassium carbonate.

なお、この明細書において、「リツチ液」と
は、吸収塔においてCO2を吸収したKHCO3リツ
チ吸収液を意味し、また、「リーン液」とは再生
塔においてガス放出されたKHCO3リーン吸収液
を意味することとする。
In this specification, "rich liquid" means the KHCO 3 rich absorption liquid that has absorbed CO 2 in the absorption tower, and "lean liquid" means the KHCO 3 lean absorption liquid that has gas released in the regeneration tower. It means liquid.

熱炭酸カリによる脱CO2装置は、第1図に示す
ように、高温の濃K2CO3溶液でガス混合物中の主
としてCO2を吸収する吸収塔1と、吸収塔1から
来たリツチ液をストリツピング処理して吸収ガス
を放出させ、リーン液を吸収塔1へ戻す再生塔2
とを主構成要素とする。そして吸収塔1におい
て、原料ガスと高温の濃K2CO3溶液が直接向流接
触されて、原料ガス中の主としてCO2が反応式 K2CO3+CO2+H2O→2KHCO3 ……() により濃K2CO3溶液に吸収されるとともに、H2S
等のガスも吸収され、精製ガスは塔頂から取出さ
れる。精製ガスは通常100〜120℃に昇温されてい
るので、熱交換器3で原料ガスを加熱し、さらに
冷却器4で冷される。そして吸収塔1で混入した
水蒸気がここで凝縮され、凝縮水が再生塔2の塔
頂に導かれる。
As shown in Figure 1, the CO 2 removal device using thermal potassium carbonate consists of an absorption tower 1 that mainly absorbs CO 2 in a gas mixture with a high-temperature concentrated K 2 CO 3 solution, and a rich liquid coming from the absorption tower 1. The regeneration tower 2 performs stripping treatment to release the absorbed gas and returns the lean liquid to the absorption tower 1.
and are the main components. Then, in the absorption tower 1, the raw material gas and the high-temperature concentrated K 2 CO 3 solution are brought into direct countercurrent contact, and mainly CO 2 in the raw material gas undergoes the reaction formula K 2 CO 3 + CO 2 + H 2 O→2KHCO 3 ……( ) is absorbed into concentrated K 2 CO 3 solution and H 2 S
The purified gas is taken out from the top of the column. Since the purified gas is usually heated to 100 to 120°C, the raw material gas is heated in the heat exchanger 3 and further cooled in the cooler 4. The water vapor mixed in the absorption tower 1 is condensed here, and the condensed water is led to the top of the regeneration tower 2.

また、上記吸収工程が連続的になされるよう
に、吸収塔1から出たリツチ液が減圧器6を経て
再生塔2の塔頂に導かれる。ここでリツチ液は塔
底に供給されたストリツピング蒸気によつて加熱
され、上記反応式()の逆反応によりリツチ液
からCO2が放出され、H2S等のガスも放出され
る。塔底から出たリーン液はリボイラ7において
加熱蒸気で加熱され、生じた蒸気は再生塔2の塔
底に循環されてストリツピング蒸気として用いら
れる。こうして吸収ガスを放出したリーン液は、
ポンプ8を介して吸収塔1の塔頂に戻され、ガス
吸収液として再使用される。再生塔2の塔頂ガス
は凝縮器5で冷され、生じた凝縮水は塔頂に戻さ
れる。CO2,H2S等の非凝縮ガスは系外に排出さ
れる。
In addition, the rich liquid discharged from the absorption tower 1 is led to the top of the regeneration tower 2 via a pressure reducer 6 so that the above-mentioned absorption process is performed continuously. Here, the rich liquid is heated by the stripping vapor supplied to the bottom of the column, and CO 2 is released from the rich liquid by the reverse reaction of the above reaction formula (), and gases such as H 2 S are also released. The lean liquid discharged from the bottom of the tower is heated with heating steam in the reboiler 7, and the resulting steam is circulated to the bottom of the regeneration tower 2 and used as stripping steam. The lean liquid that released the absorbed gas in this way is
It is returned to the top of the absorption tower 1 via the pump 8 and reused as a gas absorption liquid. The top gas of the regeneration tower 2 is cooled in the condenser 5, and the resulting condensed water is returned to the top of the tower. Non-condensable gases such as CO 2 and H 2 S are discharged outside the system.

ところで、再生塔2における加熱量は、通常25
〜30Mcal/kg・Molにもなる。そのためエネル
ギーコストの高騰を考慮すると、再生塔における
加熱用熱量の節減が重要な課題となつている。
By the way, the amount of heating in the regeneration tower 2 is usually 25
~30Mcal/kg・Mol. Therefore, in view of the rising energy costs, reducing the amount of heat used for heating in the regeneration tower has become an important issue.

最近、上記の点から熱量の節減を目的として、
第2図に示すように、再生塔21を圧力(温度)
の異なる下側の高圧再生部22と上側の低圧再出
部23とに区分し、高圧再生部22から吸収塔へ
戻されるリーン液の一部を、フラツシユタンク2
4で蒸発させ、生じたフラツシユ蒸気を低圧再生
部23に導入する方法が提案された。しかし、こ
の場合、水蒸気の流れをスムーズに行なうために
は、フラツシユ圧力(温度)は自ずと所要値以上
の値を必要とし、また低圧再生部23は大気圧よ
りわずかに高圧であるため、高圧再生部22の圧
力(温度)をさらに上げる必要があり、そのため
高圧再生部22に付随するリボイラ7に熱源流体
の温度を高くする必要がある等の欠点があつた。
そこで、上記のような欠点を克服するために、第
3図に示すように、再生塔31から吸収塔へ戻さ
れるリーン液の一部をフラツシユタンク32で蒸
発させ、生じたフラツシユ蒸気をエゼクター33
に通して、高圧の作動蒸気で圧縮して再生塔31
の塔底に導入する方法が提案された。しかし、こ
の場合、エゼクター33の吐出効率が十分でな
く、フラツシユ蒸気に比べて大量の作動蒸気を必
要とする。また作動蒸気は塔底液に直接導入され
るため、液中の水分バランスがくずれる。そのた
め水分を系外に排出する必要があるが、排出水は
外部環境に悪影響を与えないように、水処理装置
を必要とした。
Recently, from the above point, with the aim of reducing heat consumption,
As shown in Figure 2, the regeneration tower 21 is
A part of the lean liquid returned from the high pressure regeneration part 22 to the absorption tower is transferred to the flash tank 2.
4, and the resulting flash vapor is introduced into the low-pressure regeneration section 23. However, in this case, in order for the steam to flow smoothly, the flash pressure (temperature) naturally needs to be higher than the required value, and since the pressure in the low-pressure regeneration section 23 is slightly higher than atmospheric pressure, the high-pressure regeneration It is necessary to further increase the pressure (temperature) in the high-pressure regeneration section 22, and therefore the reboiler 7 attached to the high-pressure regeneration section 22 has disadvantages such as the need to increase the temperature of the heat source fluid.
Therefore, in order to overcome the above-mentioned drawbacks, as shown in FIG. 33
through the regeneration tower 31 and compressed with high-pressure working steam.
A method was proposed to introduce it into the bottom of the tower. However, in this case, the discharge efficiency of the ejector 33 is not sufficient, and a large amount of working steam is required compared to flash steam. Furthermore, since the working steam is directly introduced into the bottom liquid, the water balance in the liquid is disrupted. Therefore, it was necessary to discharge water outside the system, but a water treatment device was required to prevent the discharged water from having a negative impact on the external environment.

この発明は、上記のような欠点をことごとく解
消し、エネルギーコストの節減を果すことのでき
る熱炭酸カリ脱CO2装置を提供することを目的と
する。
The object of the present invention is to provide a thermal potassium carbonate removal CO 2 device that can eliminate all of the above-mentioned drawbacks and reduce energy costs.

この発明による熱炭酸カリ脱CO2装置は、高温
の濃K2CO3溶液でガス混合物中の主としてCO2
吸収する吸収塔と、吸収塔から来たリツチ液をス
トリツピング処理して吸収ガスを放出させ、リー
ン液を吸収塔へ戻す再生塔とを備えた脱CO2装置
において、リーン液を熱源流体として水蒸気を生
成する第1熱交換器と、第1熱交換器から来た水
蒸気をリチウムハラルド水溶液に吸収して吸収熱
を発生させ、この熱でストリツピング蒸気を生成
させる第2熱交換器と、第2熱交換器で希薄にな
つたリチウムハラルド水溶液を加熱濃縮する第3
熱交換器と、第3熱交換器で生じた水蒸気を凝縮
して第1熱交換器へ送る凝縮水を生じる第4熱交
換器とが設けられていることを要旨とする。
The thermal potassium carbonate deCO 2 apparatus according to the present invention includes an absorption tower that mainly absorbs CO 2 in a gas mixture with a high-temperature concentrated K 2 CO 3 solution, and a stripping treatment of the rich liquid coming from the absorption tower to produce the absorbed gas. In the deCO 2 equipment, which is equipped with a regeneration tower that releases the lean liquid and returns the lean liquid to the absorption tower, there is a first heat exchanger that generates water vapor using the lean liquid as a heat source fluid, and a lithium A second heat exchanger generates absorption heat by absorbing it into the Harald aqueous solution and uses this heat to generate stripping steam, and a third heat exchanger heats and concentrates the diluted lithium Harald aqueous solution in the second heat exchanger.
The gist is that a heat exchanger and a fourth heat exchanger that condenses water vapor generated in the third heat exchanger and generates condensed water to be sent to the first heat exchanger are provided.

上記において、第1熱交換器には第4熱交換器
で生じた凝縮水が通され、これが熱源流体リーン
液によつて蒸気化せられる。
In the above, condensed water generated in the fourth heat exchanger is passed through the first heat exchanger, and is vaporized by the lean heat source fluid.

第2熱交換器には被加熱流体として、リーン
液、または再生塔の塔頂ガスから生じた凝縮水が
通される。
A lean liquid or condensed water generated from the top gas of the regeneration tower is passed through the second heat exchanger as the fluid to be heated.

第3熱交換器には熱源流体として、外部加熱蒸
気、リーン液、再生塔の塔頂ガス、または吸収塔
の塔頂から出る精製ガスが通される。
Externally heated steam, lean liquid, top gas of a regeneration tower, or purified gas exiting from the top of an absorption tower is passed through the third heat exchanger as a heat source fluid.

第4熱交換器にはリーン液、再生塔の塔頂ガス
から生じた凝縮水、または外部冷却水が通され
る。
Lean liquid, condensed water generated from the top gas of the regeneration tower, or external cooling water is passed through the fourth heat exchanger.

代表的な実施態様においては、第2熱交換器に
被加熱流体としてリーン液が通され、第3熱交換
器に熱源流体として外部加熱蒸気が通され、第4
熱交換器に被加熱流体としてリーン液が通され
る。
In a typical embodiment, a lean liquid is passed through the second heat exchanger as the fluid to be heated, externally heated steam is passed as the heat source fluid through the third heat exchanger, and a fourth
A lean liquid is passed through the heat exchanger as a fluid to be heated.

リチウムハラルドとしてはLiBr,LiCl,LiIが
例示される。LiBrが最も好適である。
Examples of lithium Harald include LiBr, LiCl, and LiI. LiBr is most preferred.

つぎにこの発明の実施例について具体的に説明
する。
Next, embodiments of the present invention will be specifically described.

第4図において、吸収塔41の塔底に原料ガス
が導入され、塔頂に濃K2CO3溶液が供給される。
そして両者が大気圧以上で100℃以上の条件下に
直接気液向流接触させる。その結果、原料ガス中
の主としてCO2が濃K2CO3溶液に吸収されるとと
もに、H2S等のガスも吸収され、精製ガスが塔頂
から取出される。精製ガスは吸収反応の反応熱に
よつて通常10〜120℃に昇温されているので、熱
交換器42で原料ガスを加熱し、さらに冷却器4
3において冷却水で冷される。そして吸収塔41
で混入した水蒸気がここで凝縮され、凝縮水が再
生塔44の塔頂に導かれる。
In FIG. 4, raw material gas is introduced into the bottom of an absorption tower 41, and a concentrated K 2 CO 3 solution is supplied to the top of the tower.
The two are brought into direct gas-liquid countercurrent contact under conditions of atmospheric pressure or higher and 100°C or higher. As a result, mainly CO 2 in the raw material gas is absorbed into the concentrated K 2 CO 3 solution, and gases such as H 2 S are also absorbed, and purified gas is taken out from the top of the column. Since the temperature of the purified gas is normally raised to 10 to 120°C due to the reaction heat of the absorption reaction, the raw material gas is heated in the heat exchanger 42 and then further heated in the cooler 4.
3, it is cooled with cooling water. and absorption tower 41
The water vapor mixed in is condensed here, and the condensed water is led to the top of the regeneration tower 44.

吸収塔41の塔底から出たリツチ液は、減圧器
39を経て再生塔44の塔頂に導かれ、塔底に供
給されたストリツピング蒸気と向流的に直接触し
て加熱され、リツチ液からCO2,H2S等のガスが
放出される。
The rich liquid discharged from the bottom of the absorption tower 41 is led to the top of the regeneration tower 44 via the pressure reducer 39, where it is heated by directly contacting the stripping vapor supplied to the bottom of the tower in a countercurrent manner, and the rich liquid is heated. Gases such as CO 2 and H 2 S are released.

再生塔44の塔底から出たリーン液は、リボイ
ラ45において加熱蒸気で加熱され、生じた蒸気
は再生塔44の塔底に循環されてストリツピング
蒸気として用いられる。こうして吸収ガスを放出
したリーン液は、ポンプ46を介して吸収塔41
の塔頂に戻され、ガス吸収液として再使用され
る。
The lean liquid discharged from the bottom of the regeneration tower 44 is heated with heating steam in the reboiler 45, and the generated steam is circulated to the bottom of the regeneration tower 44 and used as stripping steam. The lean liquid that has released the absorbed gas in this way is transferred to the absorption tower 41 via the pump 46.
The gas is returned to the top of the column and reused as a gas absorption liquid.

再生塔44の下方には4基の多管式間接熱交換
器47,48,49,50が配置されており、第
1熱交換器47の胴部と第2熱交換器48の胴部
の間、第3熱交換器49の胴部と第4熱交換器5
0の胴部の間にはそれぞれ水蒸気を通す連通路が
設けられている。
Four shell-and-tube indirect heat exchangers 47, 48, 49, and 50 are arranged below the regeneration tower 44, and the body of the first heat exchanger 47 and the body of the second heat exchanger 48 are Between the body of the third heat exchanger 49 and the fourth heat exchanger 5
Communication passages through which water vapor passes are provided between the body parts of the two bodies.

再生塔44から吸収塔41へ戻されるリーン液
は、その流路に配された第1熱交換器47の多管
部に通され、胴部にはさらに、後述する第4熱交
換器50から出た凝縮水が通される。リーン液は
標準的な作動条件下にある再生塔44では温度
111℃で排出され、これが100℃になるまで熱交換
が行なわれる。そして熱交換によつて上記凝縮水
が蒸発させて、96℃の水蒸気が発生せられる。ま
た100℃になつたリーン液は、この温度で吸収塔
41の塔頂に戻される。
The lean liquid returned from the regeneration tower 44 to the absorption tower 41 is passed through the multi-tubular section of the first heat exchanger 47 disposed in the flow path, and the lean liquid is further passed through the multi-tubular section of the first heat exchanger 47 arranged in the flow path, and the lean liquid is further passed through the multi-tubular section of the first heat exchanger 47 from the fourth heat exchanger 50, which will be described later. The condensed water that comes out is passed through. In the regenerator 44 under standard operating conditions, the lean liquid has a temperature of
It is discharged at 111°C, and heat exchange is performed until the temperature reaches 100°C. The condensed water is then evaporated through heat exchange to generate steam at 96°C. The lean liquid, which has reached 100°C, is returned to the top of the absorption tower 41 at this temperature.

第1熱交換器47に隣接する第2熱交換器48
の胴部には、48重量%のLiBr水溶液が通され、
これに第1熱交換器47から来た96℃の水蒸気が
吸収される。この吸収によつてLiBr水溶液は43
重量%に薄められるとともに、126〜116℃の温度
レベルで吸収熱を発生する。この場合の温度と圧
力の関係は、第10図に示すとおりである。
A second heat exchanger 48 adjacent to the first heat exchanger 47
A 48% by weight LiBr aqueous solution is passed through the body of the
This absorbs the 96°C water vapor coming from the first heat exchanger 47. Due to this absorption, the LiBr aqueous solution becomes 43
It is diluted to % by weight and generates absorbed heat at a temperature level of 126-116℃. The relationship between temperature and pressure in this case is as shown in FIG.

吸収される水蒸気の単位重量当りの発熱量Qa
は、次式で与えられる。
Calorific value Qa per unit weight of absorbed water vapor
is given by the following equation.

Qa=Hse+WliHli−(Wli+1)Hlo Hse=第1熱交換器で発生した水蒸気のエンタル
ピー Wli=第2熱交換器に供給されるLiBr水溶液の量 Hli=第2熱交換器に供給されるLiBr水溶液のエ
ンタルピー Hlo=第2熱交換器から出るLiBr水溶液のエンタ
ルピー 第2熱交換器48の多管部には被加熱流体とし
て再生塔44の塔底から出る111℃の飽和リーン
液の一部が通され、上記吸収熱によつて加熱され
る。そしてリーン液はここで蒸発されて再生塔4
4の塔底に戻され、ストリツピング蒸気として用
いられる。
Qa = Hse + WliHli - (Wli + 1) Hlo Hse = enthalpy of water vapor generated in the first heat exchanger Wli = amount of LiBr aqueous solution supplied to the second heat exchanger Hli = amount of LiBr aqueous solution supplied to the second heat exchanger Enthalpy Hlo = Enthalpy of the LiBr aqueous solution coming out of the second heat exchanger A part of the 111°C saturated lean liquid coming out of the bottom of the regeneration tower 44 is passed through the multi-tube section of the second heat exchanger 48 as a fluid to be heated. , is heated by the absorbed heat. The lean liquid is then evaporated here into the regeneration tower 4.
4 is returned to the bottom of the column and used as stripping steam.

第2熱交換器48において43重量%まで薄めら
れたLrBr水溶液は、第3熱交換器49の胴部に
通される。そして同水溶液は、多管部に通された
圧力5Kg/cm2abs.温度147℃以上の外部加熱蒸気
との熱交換により加熱されて、48重量%まで濃縮
される。
The LrBr aqueous solution diluted to 43% by weight in the second heat exchanger 48 is passed through the body of the third heat exchanger 49. The aqueous solution is then heated by heat exchange with externally heated steam at a pressure of 5 kg/cm 2 abs and a temperature of 147° C. or higher passed through the multi-tube section, and concentrated to 48% by weight.

この時発生した約1.8Kg/cm2abs.の水蒸気は、
第3熱交換器49に隣接する第4熱交換器50の
胴部に通され、多管部に再生塔44の塔底から出
た111℃のリーン液の一部が通されている。そし
てリーン液は水蒸気との熱交換により加熱されて
蒸発され、再生塔44の塔底に戻されて、ストリ
ツピング蒸気として用いられる。また上記水蒸気
は凝縮せられ、凝縮水は前述したように第1熱交
換器47に送られる。
The water vapor of approximately 1.8Kg/cm 2 abs. generated at this time is
The liquid is passed through the body of the fourth heat exchanger 50 adjacent to the third heat exchanger 49, and a portion of the lean liquid at 111° C. discharged from the bottom of the regeneration tower 44 is passed through the multi-tube section. The lean liquid is then heated and evaporated by heat exchange with steam, returned to the bottom of the regeneration tower 44, and used as stripping steam. Further, the water vapor is condensed, and the condensed water is sent to the first heat exchanger 47 as described above.

再生塔44でストリツピングされたCO2,H2S
等のガスを含む塔頂ガスは、塔頂から冷却器51
を経て凝縮器52に導かれ、塔頂ガスに含まれる
水蒸気が、凝縮器52において外部冷却水によつ
て凝縮される。凝縮水は水蒸気として逃げた量に
等しい量の補給水とともに塔頂に戻される。
CO2,H2S等の非凝縮ガスは系外に排出される。
CO 2 , H 2 S stripped in regeneration tower 44
The top gas containing gases such as
The water vapor contained in the top gas is condensed in the condenser 52 by external cooling water. The condensed water is returned to the top of the tower along with an amount of make-up water equal to the amount that escaped as steam.
Non-condensable gases such as CO 2 and H 2 S are discharged outside the system.

第5図から第9図までこの発明の変形例を示す
ものである。
FIGS. 5 to 9 show modified examples of the present invention.

第5図の場合、第2熱交換器48にはその被加
熱流体として、再生塔44の塔頂ガス冷却用の凝
縮器52から出た凝縮水が通される。
In the case of FIG. 5, condensed water discharged from the condenser 52 for cooling the top gas of the regeneration tower 44 is passed through the second heat exchanger 48 as the fluid to be heated.

第6図の場合、第3熱交換器49にはその熱源
流体としてリーン液が通され、第4熱交換器50
にはその被加熱流体として、再生塔44の塔頂ガ
ス冷却用の凝縮器52から出た凝縮水が通され
る。
In the case of FIG. 6, lean liquid is passed through the third heat exchanger 49 as its heat source fluid, and the fourth heat exchanger 50
The condensed water discharged from the condenser 52 for cooling the top gas of the regeneration tower 44 is passed as the fluid to be heated.

第7図の場合、第3熱交換器49にはその熱源
として、再生塔44の塔頂ガスが通され、また第
4熱交換器50には外部冷却水が通されている。
この場合の温度と圧力の関係の一例は、第11図
に示すとおりである。
In the case of FIG. 7, the top gas of the regeneration tower 44 is passed through the third heat exchanger 49 as its heat source, and external cooling water is passed through the fourth heat exchanger 50.
An example of the relationship between temperature and pressure in this case is as shown in FIG.

第8図の場合、第3熱交換器49にはその熱源
として、吸収塔41の塔頂から出るガスすなわち
精製ガスが通され、また第4熱交換器50には外
部冷却水が通される。
In the case of FIG. 8, gas exiting from the top of the absorption tower 41, that is, purified gas, is passed through the third heat exchanger 49 as its heat source, and external cooling water is passed through the fourth heat exchanger 50. .

第9図の場合、第2熱交換器48にはその被加熱
流体として、吸収塔41の塔底から出るリツチ液
が通されている。また第1熱交換器47には第4
図の場合と同じく再生塔44の塔頂から出るリー
ン液が通される。
In the case of FIG. 9, the rich liquid discharged from the bottom of the absorption tower 41 is passed through the second heat exchanger 48 as the fluid to be heated. The first heat exchanger 47 also has a fourth heat exchanger.
As in the case shown in the figure, the lean liquid discharged from the top of the regeneration tower 44 is passed through.

第1図に示す従来例の装置と、第4図に示すこ
の発明の実施例の装置において、CO2含有量8.4
%、温度40℃、流量8000Nm3/Hの原料ガスか
ら、CO2含量1.3%の精製ガスを得る場合につい
て、同一条件下に熱量バランスを測定した。
In the conventional device shown in FIG. 1 and the device of the embodiment of the present invention shown in FIG. 4, the CO 2 content was 8.4.
The calorific value balance was measured under the same conditions in the case of obtaining purified gas with a CO 2 content of 1.3% from a raw material gas with a temperature of 40° C. and a flow rate of 8000 Nm 3 /H.

第1図に示す装置の場合、リボイラ7で与えら
れた熱量7.32Gcal/Hのうち、4.34Gcal/Hは凝
縮器9の外部冷却水に、0.81Gcal/Hは放出され
たCO2,H2S等のガスに、2.17Gcal/Hは精製ガ
ス冷却用の冷却器4の外部冷却水にそれぞれ持去
られる。
In the case of the device shown in FIG. 1, of the 7.32 Gcal/H of heat given by the reboiler 7, 4.34 Gcal/H goes to the external cooling water of the condenser 9, and 0.81 Gcal/H goes to the released CO 2 , H 2 2.17 Gcal/H is carried away by the external cooling water of the cooler 4 for cooling purified gas.

これに対し、第4図に示す装置の場合、再生塔
44から吸収塔41に戻されるリーン液は、第1
熱交換器47において111℃から100℃に温度降下
されるため、吸収塔41の作動温度も下がる。そ
の結果、吸収塔41の塔頂から出る精製ガス中の
水蒸気含量が低下し、したがつて冷却器43にお
いて冷却水に持去られる熱量も少なくなり、
1.47Gcal/Hでよい。冷却水の使用量ももちろん
少なくてよい。また上記のように吸収塔41の作
動温度が低いため、吸収塔41から再生塔44に
送られるリツチ液の温度も低くなる。その結果、
再生塔44の塔頂から出る塔頂ガスの温度が低く
なるとともに、その水蒸気分圧も下がる。したが
つて冷却器51および凝縮器52において冷却水
に持去られる熱量も少なくなり、2.73Gcal/Hで
よい。冷却水の使用量ももちろん少なくてよい。
そうすると、放出されたCO2,H2S等のガスによ
つて、従来例の場合と同じく0.81Gcal/Hの熱量
が持去られるとすると、リボイラ45に必要な熱
量は5.01Gcal/Hとなり、第1図の装置の場合に
比べて32%の熱量節減が達成される。
On the other hand, in the case of the apparatus shown in FIG. 4, the lean liquid returned from the regeneration tower 44 to the absorption tower 41 is
Since the temperature is lowered from 111°C to 100°C in the heat exchanger 47, the operating temperature of the absorption tower 41 is also lowered. As a result, the water vapor content in the purified gas exiting from the top of the absorption tower 41 decreases, and therefore the amount of heat carried away by the cooling water in the cooler 43 also decreases.
1.47Gcal/H is sufficient. Of course, the amount of cooling water used can also be reduced. Furthermore, since the operating temperature of the absorption tower 41 is low as described above, the temperature of the rich liquid sent from the absorption tower 41 to the regeneration tower 44 is also low. the result,
As the temperature of the top gas exiting from the top of the regeneration tower 44 becomes lower, its water vapor partial pressure also falls. Therefore, the amount of heat carried away by the cooling water in the cooler 51 and condenser 52 is also reduced, and may be 2.73 Gcal/H. Of course, the amount of cooling water used can also be reduced.
Then, assuming that the released gases such as CO 2 and H 2 S remove 0.81 Gcal/H of heat as in the conventional case, the amount of heat required for the reboiler 45 is 5.01 Gcal/H, A heat saving of 32% is achieved compared to the device shown in FIG.

以上のとおりで、この発明による熱炭酸カリ脱
CO2装置によれば、従来の装置に比べてエネルギ
ーコストを大幅に節減することができるととも
に、冷却水の節減も果すことができる。
As described above, the thermal potassium carbonate removal according to the present invention
CO 2 devices can significantly reduce energy costs and reduce cooling water compared to conventional devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す工程図、第2図および第
3図は従来例を示す要部工程図、第4図はこの発
明の実施例を示す工程図、第5図から第9図まで
はこの発明の変形例を示す要部工程図、第10図
および第11図は温度と圧力の関係を示すグラ
フ、第12図は従来例の熱量バランスを示す概略
図、第13図はこの発明の実施例の熱量バランス
を示す概略図である。 41…吸収塔、44…再生塔、45…リボイ
ラ、47…第1熱交換器、48…第2熱交換器、
49…第3熱交換器、50…第4熱交換器、52
…凝縮器。
Figure 1 is a process diagram showing a conventional example, Figures 2 and 3 are main part process diagrams showing a conventional example, Figure 4 is a process diagram showing an embodiment of this invention, and Figures 5 to 9. 10 and 11 are graphs showing the relationship between temperature and pressure, FIG. 12 is a schematic diagram showing the heat balance of the conventional example, and FIG. 13 is a diagram showing the present invention. It is a schematic diagram showing the calorific value balance of the example. 41... Absorption tower, 44... Regeneration tower, 45... Reboiler, 47... First heat exchanger, 48... Second heat exchanger,
49...Third heat exchanger, 50...Fourth heat exchanger, 52
…Condenser.

Claims (1)

【特許請求の範囲】 1 高温の濃K2CO3溶液でガス混合物中の主とし
てCO2を吸収する吸収塔と、吸収塔から来たリツ
チ液をストリツピング処理して吸収ガスを放出さ
せ、リーン液を吸収塔へ戻す再生塔とを備えた脱
CO2装置において、リーン液を熱源流体として水
蒸気を生成する第1熱交換器と、第1熱交換器か
ら来た水蒸気をリチウムハラルド水溶液に吸収し
て吸収熱を発生させ、この熱でストリツピング蒸
気を生成させる第2熱交換器と、第2熱交換器で
希薄になつたリチウムハラルド水溶液を加熱濃縮
する第3熱交換器と、第3熱交換器で生じた水蒸
気を凝縮して第1熱交換器へ送る凝縮水を生じる
第4熱交換器とが設けられている熱炭酸カリ脱
CO2装置。 2 第2熱交換器に被加熱流体として、リーン
液、または再生塔の塔頂ガスから生じた凝縮水が
通されている特許請求の範囲第1項記載の装置。 3 第3熱交換器に熱源流体として、外部加熱蒸
気、リーン液、再生塔の塔頂ガス、または吸収塔
の塔頂から出る精製ガスが通されている特許請求
の範囲第1項記載の装置。 4 第4熱交換器にリーン液、再生塔の塔頂ガス
から生じた凝縮水、または外部冷却水が通されて
いる特許請求の範囲第1項記載の装置。 5 第2熱交換器に被加熱流体としてリーン液が
通され、第3熱交換器に熱源流体として外部加熱
蒸気が通され、第4熱交換器に被加熱流体として
リーン液が通されている特許請求の範囲第1項記
載の装置。 6 第3熱交換器に熱源流体として再生塔の塔頂
ガスが通され、第4熱交換器に外部冷却水が通さ
れている特許請求の範囲第1項記載の装置。 7 第3熱交換器に熱源流体として吸収塔の塔頂
から出る精製ガスが通され、第4熱交換器に外部
冷却水が通されている特許請求の範囲第1項記載
の装置。 8 リチウムハライドがLiBrである特許請求の
範囲第1項記載の装置。
[Claims] 1. An absorption tower that mainly absorbs CO 2 in a gas mixture with a high-temperature concentrated K 2 CO 3 solution, and a stripping treatment of the rich liquid coming from the absorption tower to release the absorbed gas, and a lean liquid. Evacuation tower equipped with a regeneration tower that returns the water to the absorption tower.
In a CO 2 device, there is a first heat exchanger that uses a lean liquid as a heat source fluid to generate steam, and the steam coming from the first heat exchanger is absorbed into a lithium Harald aqueous solution to generate absorption heat, and this heat is used to generate stripping steam. a second heat exchanger that generates heat, a third heat exchanger that heats and concentrates the lithium Harald aqueous solution that has become diluted in the second heat exchanger, and a third heat exchanger that condenses the water vapor generated in the third heat exchanger to a fourth heat exchanger producing condensed water sent to the exchanger;
CO2 equipment. 2. The apparatus according to claim 1, wherein a lean liquid or condensed water generated from the top gas of a regeneration tower is passed through the second heat exchanger as the fluid to be heated. 3. The apparatus according to claim 1, wherein externally heated steam, lean liquid, top gas of a regeneration tower, or purified gas discharged from the top of an absorption tower is passed through the third heat exchanger as a heat source fluid. . 4. The apparatus according to claim 1, wherein a lean liquid, condensed water generated from the top gas of the regeneration tower, or external cooling water is passed through the fourth heat exchanger. 5 Lean liquid is passed through the second heat exchanger as a fluid to be heated, externally heated steam is passed through the third heat exchanger as a heat source fluid, and lean liquid is passed as a fluid to be heated through the fourth heat exchanger. An apparatus according to claim 1. 6. The apparatus according to claim 1, wherein the top gas of the regeneration tower is passed through the third heat exchanger as a heat source fluid, and the external cooling water is passed through the fourth heat exchanger. 7. The apparatus according to claim 1, wherein purified gas discharged from the top of the absorption tower is passed through the third heat exchanger as a heat source fluid, and external cooling water is passed through the fourth heat exchanger. 8. The device according to claim 1, wherein the lithium halide is LiBr.
JP57133906A 1982-07-30 1982-07-30 Apparatus for removing co2 with hot potassium carbonate Granted JPS5926926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57133906A JPS5926926A (en) 1982-07-30 1982-07-30 Apparatus for removing co2 with hot potassium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57133906A JPS5926926A (en) 1982-07-30 1982-07-30 Apparatus for removing co2 with hot potassium carbonate

Publications (2)

Publication Number Publication Date
JPS5926926A JPS5926926A (en) 1984-02-13
JPS6211889B2 true JPS6211889B2 (en) 1987-03-16

Family

ID=15115860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57133906A Granted JPS5926926A (en) 1982-07-30 1982-07-30 Apparatus for removing co2 with hot potassium carbonate

Country Status (1)

Country Link
JP (1) JPS5926926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212693A (en) * 1987-02-26 1988-09-05 株式会社 前田製作所 Semiautomatic expansion device for most head boom in simultaneous expansion multistage boom

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582960B2 (en) 2010-10-22 2014-09-03 株式会社東芝 Carbon dioxide separation and recovery system and reboiler heat input measurement method
JP5725992B2 (en) * 2011-06-20 2015-05-27 三菱日立パワーシステムズ株式会社 CO2 recovery equipment
JP2013059726A (en) * 2011-09-13 2013-04-04 Mitsubishi Heavy Ind Ltd Co2 recovery device and co2 recovery method
JP6581768B2 (en) 2014-11-04 2019-09-25 三菱重工エンジニアリング株式会社 CO2 recovery apparatus and CO2 recovery method
JP6811759B2 (en) * 2018-11-09 2021-01-13 三菱重工エンジニアリング株式会社 CO2 capture device and CO2 capture method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212693A (en) * 1987-02-26 1988-09-05 株式会社 前田製作所 Semiautomatic expansion device for most head boom in simultaneous expansion multistage boom

Also Published As

Publication number Publication date
JPS5926926A (en) 1984-02-13

Similar Documents

Publication Publication Date Title
US4367258A (en) Process for the decarbonation of gases
US3191916A (en) Apparatus for separating pure ammonia gas from a mixed off-gas stream
JPS6211889B2 (en)
US2500291A (en) Process of recovering ammonia
JPH0418911A (en) Removal of acidic component from gas
JPS5867661A (en) Synthesizing method of urea
JPH08261600A (en) Recovering method for exhaust heat
US3685960A (en) Separation of co2 and h2s from gas mixtures
US4469492A (en) Process for the isothermal absorption of ethylene oxide using film absorbers
US2379076A (en) Gas purification process
JP2001081479A (en) Method and apparatus for purifying coke oven gas
JPS593004A (en) Production of synthetic gas enriched with carbon oxide
US3554690A (en) Apparatus and method for removing carbon dioxide from process gases
KR20130137473A (en) Apparatus for removing carbon dioxide for capturing carbon dioxide
US3288557A (en) Removal of acid gases for gas streams
JPH0255210A (en) Production of hydrogen sulfide
RU2280026C1 (en) Method and installation for production of carbamide
US3102788A (en) Production of pure nitrogen tetroxide
JPH04309763A (en) Waste heat recovery apparatus for nuclear power plant
JPH0371602B2 (en)
US2029411A (en) Method of regenerating absorbent liquids
JPS609551B2 (en) How to recover waste heat from ammonium water
JPH0129188B2 (en)
US2374876A (en) Process of recovering carbon dioxide from gases
SU969668A1 (en) Apparatus for producing liquid ammonia