JPS62118222A - Pyroelectric type infrared detecting element - Google Patents
Pyroelectric type infrared detecting elementInfo
- Publication number
- JPS62118222A JPS62118222A JP60258959A JP25895985A JPS62118222A JP S62118222 A JPS62118222 A JP S62118222A JP 60258959 A JP60258959 A JP 60258959A JP 25895985 A JP25895985 A JP 25895985A JP S62118222 A JPS62118222 A JP S62118222A
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- pyroelectric
- receiving surface
- effective light
- infrared detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims abstract description 28
- 238000000605 extraction Methods 0.000 claims description 5
- 230000035945 sensitivity Effects 0.000 abstract description 17
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 239000000853 adhesive Substances 0.000 abstract description 3
- 229910052732 germanium Inorganic materials 0.000 description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 7
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 238000000992 sputter etching Methods 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000005616 pyroelectricity Effects 0.000 description 2
- 244000089486 Phragmites australis subsp australis Species 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/34—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は赤外線を利用して温度計測、地球資源観測、気
象観測、公害観測、防犯・防災監視、交通関係、熱管理
工程の監視計測を行う焦電形赤外検出素子に関するもの
である。[Detailed Description of the Invention] Industrial Field of Application The present invention is a focus for monitoring and measuring temperature measurement, earth resource observation, weather observation, pollution observation, crime prevention/disaster prevention monitoring, transportation-related, and thermal management processes using infrared rays. This relates to an electric infrared detection element.
従来の技術
集光レンズに直接赤外検出素子を密着し集光効率を高く
して赤外検出性能を改善した赤外検出器として、イマー
ジョンレ/ズ付す−ミスタ形赤外検出器がある。(電子
技術総合研究所調査報告第177号PP65〜66)
第3図にその例を示す。同図(a)は側面図、(b)は
底面図である。イブ−ジョン形ゲルマニウムレンズ12
にサーミスタ素子11が密着している。2. Description of the Related Art As an infrared detector that improves infrared detection performance by directly attaching an infrared detection element to a condensing lens to increase light condensing efficiency, there is an immersion laser/mister type infrared detector. (Electronic Technology Research Institute Investigation Report No. 177 PP65-66) An example is shown in FIG. 3(a) is a side view, and FIG. 2(b) is a bottom view. Eve-sion type germanium lens 12
The thermistor element 11 is in close contact with.
13.14は信号取り出しのための電極である。15゜
16は各々信号数シ出しのためのリード線である。13 and 14 are electrodes for signal extraction. 15 and 16 are lead wires for outputting signal numbers.
このサーミスタ形赤外検出素子は、温度による抵抗変化
により赤外の熱吸収を検知するもので、一般的にはサー
ミスタ素子11の側端からリード線15.16を取9出
す構造になっている。This thermistor type infrared detection element detects infrared heat absorption by resistance change due to temperature, and generally has a structure in which lead wires 15 and 16 are taken out from the side end of the thermistor element 11. .
イマージョン形ゲルマニウムレ/ズ12側に入射した赤
外光はレンズ12で集光されてサーミスタ素子11に入
射する。サーミスタ素子11は入射赤外光により温度が
上昇しその抵抗値が低下するので、リード線15.16
を介して流れる電流は大きくなる。この抵抗変化量によ
シ入射赤外光を量的に検知し、各種測定を行うものであ
る。The infrared light incident on the immersion type germanium laser 12 is focused by the lens 12 and is incident on the thermistor element 11. The temperature of the thermistor element 11 increases due to the incident infrared light, and its resistance value decreases, so the lead wires 15 and 16
The current flowing through becomes larger. The incident infrared light is detected quantitatively based on the amount of resistance change, and various measurements are performed.
一方、本出願人は先にサーミスタ素子以上の高感度を目
的として、第4図(a)(b)に示すような集光レンズ
接着赤外検出素子を出願した。(特願昭60−8376
4号)。図において1は両面に電極3,4を形成した焦
電素子で、一方の電極側、九とえば電極4側を半球状の
ゲルマニウムレンズ2に接着させる。リード線取り出し
部は第4図(b)に示すように有効受光面から少し出張
った部分にAt蒸着膜5を形成し、超音波ボンダーでリ
ード線6,7を接続する。On the other hand, the present applicant has previously filed an application for an infrared detection element bonded to a condenser lens as shown in FIGS. 4(a) and 4(b) with the aim of achieving higher sensitivity than that of a thermistor element. (Patent application 1983-8376
No. 4). In the figure, reference numeral 1 denotes a pyroelectric element having electrodes 3 and 4 formed on both sides, and one electrode side, for example, the electrode 4 side, is adhered to a hemispherical germanium lens 2. As shown in FIG. 4(b), the lead wire extraction portion is formed by forming an At evaporated film 5 on a portion slightly protruding from the effective light receiving surface, and connecting the lead wires 6 and 7 with an ultrasonic bonder.
入射した赤外線は集光レンズ2で集光されて焦電素子1
に入射する。焦電素子は入射した赤外線に応じて焦電気
を発生し、信号取り出し電極3よシ取シ出される。The incident infrared rays are condensed by a condensing lens 2 and sent to a pyroelectric element 1
incident on . The pyroelectric element generates pyroelectricity in response to incident infrared rays, and the pyroelectricity is extracted through the signal extraction electrode 3.
発明が解決しようとする問題点
サーミスタ形赤外検出器は赤外線に対する感度が劣るの
で、焦電形赤外検出素子を使うことが望ましい。この焦
電形赤外検出素子は、高感度を達成するためには小型、
薄板化が望まれ、例えば、直径0.3 mm 、厚さ1
0μm程度のものが実現されている。しかしこのように
小型、薄板化されると取扱いが非常に困難になり製造の
歩留りが大変悪い、すなわち、性能の観点からは、更に
薄く、微少化することが望ましいが、歩留シの観点から
は、それに反して大きく丈夫にしたいという互いに相反
する問題点を有している。Problems to be Solved by the Invention Since the thermistor type infrared detector has poor sensitivity to infrared rays, it is desirable to use a pyroelectric type infrared detection element. This pyroelectric infrared detection element needs to be small and compact in order to achieve high sensitivity.
A thin plate is desired, for example, a diameter of 0.3 mm and a thickness of 1
A thickness of about 0 μm has been realized. However, if the plate is made smaller and thinner in this way, it becomes extremely difficult to handle and the manufacturing yield is very low.In other words, from a performance standpoint, it is desirable to make the plate even thinner and smaller, but from the viewpoint of yield. On the other hand, they have the contradictory problem of wanting to make them larger and stronger.
本発明は上記の相反する問題点を解決し、赤外検出感度
が大きく、かつ取扱いも容易で製造の歩留りを向上させ
ることを目的としたものである。The object of the present invention is to solve the above-mentioned contradictory problems, and to provide a device that has high infrared detection sensitivity, is easy to handle, and improves manufacturing yield.
問題点を解決するための手段
上記目的を達成するために、本発明は焦電素子の寸法を
有効感度面寸法よシ大きくし、その有効感度面の厚さを
他の部分よシ薄く形成し、この赤外線検出素子に集光レ
ンズを接着したものである。Means for Solving the Problems In order to achieve the above object, the present invention makes the dimensions of the pyroelectric element larger than the dimensions of the effective sensitivity surface, and makes the thickness of the effective sensitivity surface thinner than the other parts. , a condenser lens is bonded to this infrared detection element.
作用
上記構成によれば、赤外線検出素子の有効受光面は極く
薄く、赤外検出感度向上に寄与している。Effect: According to the above configuration, the effective light-receiving surface of the infrared detection element is extremely thin, contributing to improvement in infrared detection sensitivity.
一方他の部分は十分厚いので、素子全体としては、十分
機械的強度を有している。機械的強度の小さい有効受光
部は素子の中央部に位置し、周辺の厚い部分で機械的に
補強されるわけである。この厚い部分に信号取出しのり
一ド線が接続されるので、素子が破損することなく、高
い歩留りで素子の組上げが可能である。On the other hand, since the other parts are sufficiently thick, the element as a whole has sufficient mechanical strength. The effective light-receiving part, which has low mechanical strength, is located in the center of the element, and is mechanically reinforced by the thicker parts around it. Since the signal lead wire is connected to this thick portion, the device can be assembled at a high yield without damaging the device.
実施例
以下、本発明の実施例について図面とともに詳細に説明
する。EXAMPLES Hereinafter, examples of the present invention will be described in detail with reference to the drawings.
第1図は本発明による焦電形赤外検出素子の実施例を示
し、同図(a)は断面側面図、同図(b)は底面図であ
る。図中第4図の各部と対応する部分には同一符号を付
す。焦電素子1は一辺が1mm1厚さ30 mmの正方
形のチタン酸鉛のような焦電材料板よシ成シ、その中央
部に円形又は角形、たとえば直径0.3mmの円形の凹
みが形成されている。この凹みはイオンミリングによシ
25μmの深さに削り取られる。したがって、焦電素子
1の中央部の厚さは5μmと非常に薄く構成され、この
部分を赤外線に対する有効受光面10とする。FIG. 1 shows an embodiment of a pyroelectric infrared detection element according to the present invention, with FIG. 1(a) being a cross-sectional side view and FIG. 1(b) being a bottom view. In the figure, parts corresponding to those in FIG. 4 are given the same reference numerals. The pyroelectric element 1 is made of a square plate of pyroelectric material such as lead titanate with sides of 1 mm and thickness of 30 mm, and a circular or square recess, for example, a circular recess with a diameter of 0.3 mm, is formed in the center of the plate. ing. This recess is milled to a depth of 25 μm by ion milling. Therefore, the thickness of the central portion of the pyroelectric element 1 is very thin, 5 μm, and this portion is used as the effective light-receiving surface 10 for infrared rays.
イオンミリングはArイオンによる作用で、通常の条件
で実施した。即ち、焦電素子に0.3 mm−の穴のあ
いた厚さ50μmのステンレスマスクを重ねて、イオン
ミリングによシ、焦電素子中央部に0.3μm+6の凹
みを形成した。Ion milling was performed under normal conditions using Ar ions. That is, a 50 μm thick stainless steel mask with a 0.3 mm hole was placed over the pyroelectric element, and a 0.3 μm+6 depression was formed in the center of the pyroelectric element by ion milling.
次に、焦電素子1千面側に接地電極4として0、3 m
m lII のNiCr蒸着膜を凹みに対応する中央位
置に蒸着し、これに電気的に接続するようAt(アルミ
ニウム)蒸着膜8を柄状に蒸着する。一方ゲルマニウム
赤外集光レンズ2の平面上にたんざく状fit蒸着膜5
を蒸着し、これに焦電素子1の蒸着膜8が接するように
し、かつ焦電素子1の凹みが赤外集光レンズ2の中央部
に来るよう位置合せをして導電性接着剤にて接着する。Next, a ground electrode 4 of 0.3 m is placed on the 1,000-plane side of the pyroelectric element.
A NiCr vapor-deposited film of m lII is vapor-deposited at the central position corresponding to the recess, and an At (aluminum) vapor-deposited film 8 is vapor-deposited in a pattern so as to be electrically connected thereto. On the other hand, on the plane of the germanium infrared condensing lens 2, a tanzak-shaped fit vapor deposited film 5 is formed.
The vapor deposited film 8 of the pyroelectric element 1 is in contact with this, and the recess of the pyroelectric element 1 is positioned at the center of the infrared condensing lens 2, and then a conductive adhesive is applied. Glue.
有効受光面10及びその他の面は、通常のエポキシ系接
着剤9で接着する。ゲルマニウム赤外集光し/ズ2上の
At蒸着膜5にはリード線7を導電性接着剤にて接続す
る。The effective light-receiving surface 10 and other surfaces are adhered with a common epoxy adhesive 9. A lead wire 7 is connected to the At vapor deposited film 5 on the germanium infrared light condensing/glass 2 with a conductive adhesive.
一方、焦電素子lの凹状に加工された面には信号取9出
し電極3として0.3mm−の凹部内とそこから柄状に
反対方向に延びた形でfit蒸着膜が付けられ、リード
線6が接着される。On the other hand, on the concavely processed surface of the pyroelectric element 1, a fit evaporated film is attached as a signal output electrode 3 within the 0.3 mm recess and extending in the opposite direction from there in the shape of a handle. Line 6 is glued.
尚、ゲルマニウム赤外集光レンズ2両面には、反射防止
膜が蒸着されている。Incidentally, an antireflection film is deposited on both surfaces of the germanium infrared condensing lens 2.
焦電素子1の中央部の肉薄部分が赤外光に対する有効受
光面10を構成し、赤外集光レンズ2に入射した赤外線
は赤外集光レンズ2で集光されて、この焦電素子1の有
効受光面10に集中して照射される。この有効受光WJ
10は肉薄であるので赤外線に対して高感度である。The thin central part of the pyroelectric element 1 constitutes an effective light-receiving surface 10 for infrared light, and the infrared light incident on the infrared condensing lens 2 is condensed by the infrared condensing lens 2. The light is concentrated on one effective light-receiving surface 10. This effective light receiving WJ
No. 10 is thin, so it is highly sensitive to infrared rays.
一方、焦電素子1の有効受光面lOの周囲は肉厚が十分
厚いので機械的強度は強く、取扱いは容易で、あシ損傷
するおそれもないので歩留りが大幅に゛向上する。具体
的には赤外比検出能2X108cmHz’/ W (チ
ョッピング周波数160H2)の素子を歩留り80%で
得られ、歩留りが大巾に向上し、感度特性も0.3 m
m−,10μ厚の素子に比較して約20%向上した。On the other hand, the area around the effective light-receiving surface IO of the pyroelectric element 1 is sufficiently thick, so it has strong mechanical strength, is easy to handle, and there is no risk of damage to the reeds, so the yield is greatly improved. Specifically, we were able to obtain a device with an infrared ratio detection capability of 2X108cmHz'/W (chopping frequency 160H2) at a yield of 80%, which significantly improved the yield and improved the sensitivity to 0.3 m.
This is an improvement of about 20% compared to the m-, 10μ thick element.
第2図(a)(b)は本発明による赤外線検出素子の第
2の実施例を示す。この実施例は焦電素子の凹面側をゲ
ルマニウム赤外集光レンズ2に接着した例であシ、その
他の構成および各部の寸法は第1図の実施例と同様であ
る。この場合有効受光面10はレンズに接触しておらず
、空間が存在することになる。すなわち、焦電素子1が
赤外集光レンズ2に密着していないので、熱時定数が1
0 m secと長くなり、低いチョッピング周波数(
16Hz ) で第1図の実施例の5倍の電圧感度が
得られた。但し、この場合応答速度は1/10になって
いる。即ち熱時定数が第1図実施例の10倍である。FIGS. 2(a) and 2(b) show a second embodiment of the infrared detection element according to the present invention. In this embodiment, the concave side of the pyroelectric element is bonded to the germanium infrared condensing lens 2, and the other configurations and dimensions of each part are the same as the embodiment shown in FIG. In this case, the effective light-receiving surface 10 is not in contact with the lens, and a space exists. That is, since the pyroelectric element 1 is not in close contact with the infrared condensing lens 2, the thermal time constant is 1.
0 m sec and a low chopping frequency (
16 Hz), a voltage sensitivity five times that of the embodiment shown in FIG. 1 was obtained. However, in this case, the response speed is 1/10. That is, the thermal time constant is 10 times that of the embodiment shown in FIG.
凹部の寸法は、有効受光面10と同一でなく大きくても
よい。実施例3として、0.4mnz11で凹状加工し
、有効受光面10を0.3 in−として第2図の構成
で素子を製作した。この実施例では、薄い部分が0.4
mm mと拡がったので、更に熱時定数が2倍となシ
、8Hzのチョッピング周波数で第1図の実施例101
0倍の電圧感度が得られた。The dimensions of the recessed portions may not be the same as the effective light receiving surface 10 and may be larger. As Example 3, a device was fabricated with the configuration shown in FIG. 2, with a concave shape of 0.4 mmnz11 and an effective light receiving surface 10 of 0.3 in. In this example, the thin part is 0.4
mm m, the thermal time constant is further doubled.Example 101 of FIG.
A voltage sensitivity of 0 times was obtained.
凹部は焦電素子1の片面に限らず両面に形成してもよい
。実施例4として、凹状加工寸法は0.3m1Tll+
1であるが、焦電素子1の両面を削り、有効受光面10
の厚さを5μm、素子厚10μm1凹部′ 深さが両面
共に2.5μmの素子で第1図と同様にして集光レンズ
付赤外検出素子を製作した。The recessed portions may be formed not only on one side of the pyroelectric element 1 but also on both sides. As Example 4, the concave processing size is 0.3m1Tll+
1, both sides of the pyroelectric element 1 are shaved to form an effective light-receiving surface 10.
An infrared detection element with a condenser lens was manufactured in the same manner as shown in FIG. 1 using an element having a thickness of 5 μm, an element thickness of 10 μm, and a depth of 2.5 μm on both sides of each recess.
実施例4では、赤外集光レンズ2と素子間の距離が2.
5μm と赤外波長10μm帯と比べて十分短いので、
光学的反射損が少くなりチョッピング周波数16Hz
で実施例2の1.5倍即ち実施例1の7.5倍の電圧
感度が得られた。In Example 4, the distance between the infrared condenser lens 2 and the element is 2.
5μm, which is sufficiently short compared to the infrared wavelength band of 10μm,
Optical reflection loss is reduced and chopping frequency is 16Hz.
A voltage sensitivity 1.5 times that of Example 2, that is, 7.5 times that of Example 1, was obtained.
以上、種々の実施例について説明したが、焦電素子1と
しては正方形に限られず円形であってもよい。いずれに
してもその辺あるいは径が有効−受光面10の辺または
径の1.5倍以上あれば強度的には十分である。また、
有効受光面10の厚さは薄い方が感度がよいが一般にそ
の周囲の部分の素子厚の2/3以下とすればよい。Although various embodiments have been described above, the pyroelectric element 1 is not limited to a square shape, but may be circular. In any case, it is sufficient for strength if the side or diameter is 1.5 times or more the side or diameter of the effective light-receiving surface 10. Also,
The thinner the effective light-receiving surface 10 is, the better the sensitivity is, but generally it should be 2/3 or less of the element thickness of the surrounding area.
発明の効果
以上のように、本発明は焦電素子の中央部の肉厚を他の
部分より薄くしてこの部分に有効受光面10を形成し、
集光レンズに接着させた赤外線検出素子で、赤外検出感
度が大きく、かつ製造の歩留りを大きく向上させた赤外
線検出素子を得ることができる。Effects of the Invention As described above, the present invention makes the wall thickness of the central part of the pyroelectric element thinner than other parts to form the effective light-receiving surface 10 in this part,
By using an infrared detection element adhered to a condenser lens, it is possible to obtain an infrared detection element with high infrared detection sensitivity and greatly improved manufacturing yield.
第1図(a)、(b)は本発明による焦電形赤外検出素
子の実施例における断面側面図および底面図、第2図(
aλ(b)は本発明による焦電形赤外検出素子の他の実
施例における断面側面図および底面図、第3図(a3.
(b)および第4図(a)(b)は各々従来の赤外線検
出素子の断面側面図および平面図である。
1・・・焦電素子、2・・・赤外集光レンズ、3・・・
信号取り出し電極、4・・・接地電極、10・・有効受
光面。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
第3図FIGS. 1(a) and 1(b) are a cross-sectional side view and a bottom view of an embodiment of a pyroelectric infrared detection element according to the present invention, and FIG.
aλ(b) is a cross-sectional side view and a bottom view of another embodiment of the pyroelectric infrared detection element according to the present invention, and FIG. 3 (a3.
4(b) and FIGS. 4(a) and 4(b) are a cross-sectional side view and a plan view, respectively, of a conventional infrared detection element. 1... Pyroelectric element, 2... Infrared condensing lens, 3...
Signal extraction electrode, 4... Ground electrode, 10... Effective light receiving surface. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3
Claims (4)
し、前記有効受光面部の一方の面に接地電極、他方の面
に信号取り出し電極を備え、前記焦電素子の接地電極形
成側の面を赤外集光レンズに接着したことを特徴とする
焦電形赤外検出素子。(1) The central part of the pyroelectric element is made thin to form an effective light-receiving surface, one surface of the effective light-receiving surface is provided with a ground electrode, and the other surface is provided with a signal extraction electrode, and the ground electrode forming side of the pyroelectric element is provided. A pyroelectric infrared detection element characterized by having a surface bonded to an infrared condensing lens.
5倍以上であることを特徴とする特許請求の範囲第1項
記載の焦電形赤外検出素子。(2) The dimensions of the infrared detection element are 1.
The pyroelectric infrared detecting element according to claim 1, characterized in that it is 5 times or more.
の素子厚の2/3以下であることを特徴とする特許請求
の範囲第1項記載の焦電形赤外検出素子。(3) The pyroelectric infrared detection element according to claim 1, wherein the thickness of the effective light-receiving surface of the infrared detection element is 2/3 or less of the thickness of other parts of the element.
ていることを特徴とする特許請求の範囲第1項記載の焦
電形赤外検出素子。(4) The pyroelectric infrared detection element according to claim 1, wherein a space is formed between the effective light-receiving surface and the infrared condensing lens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60258959A JPS62118222A (en) | 1985-11-19 | 1985-11-19 | Pyroelectric type infrared detecting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60258959A JPS62118222A (en) | 1985-11-19 | 1985-11-19 | Pyroelectric type infrared detecting element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62118222A true JPS62118222A (en) | 1987-05-29 |
Family
ID=17327397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60258959A Pending JPS62118222A (en) | 1985-11-19 | 1985-11-19 | Pyroelectric type infrared detecting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62118222A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60128312A (en) * | 1983-12-15 | 1985-07-09 | Toshiba Corp | Pyroelectric sensor |
-
1985
- 1985-11-19 JP JP60258959A patent/JPS62118222A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60128312A (en) * | 1983-12-15 | 1985-07-09 | Toshiba Corp | Pyroelectric sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3514681B2 (en) | Infrared detector | |
JPH0649975U (en) | Infrared detector | |
JP2012173191A (en) | Thermal photodetector, thermal photodetection device, and electronic device | |
CN109813449A (en) | A kind of integrated polarizing non-refrigerated infrared detector and production method | |
JP6350933B2 (en) | Infrared detector | |
JPS6146768B2 (en) | ||
JP2004257885A (en) | Multi-element type infrared detector | |
JP3580126B2 (en) | Infrared sensor | |
JPH07209089A (en) | Infrared ray sensor | |
JPS6212454B2 (en) | ||
JPH09311072A (en) | Infrared detector | |
KR100759013B1 (en) | Non-contact ir temperature sensor and method for manufactruing the same | |
US6403959B1 (en) | Infrared detector element, and infrared sensor unit and infrared detecting device using it | |
JPS6351493B2 (en) | ||
JPS62118222A (en) | Pyroelectric type infrared detecting element | |
JPS637611B2 (en) | ||
US4475040A (en) | Pyroelectric infrared detector | |
JPH01224629A (en) | Pyroelectric infrared detecting element and infrared detector | |
JPH08184514A (en) | Pressure sensor | |
JP2014095674A (en) | Infrared detector and manufacturing method thereof | |
JPS63131031A (en) | Infrared ray detection element | |
JPS62119420A (en) | Pyroelectric type infrared detection element | |
JPS63131032A (en) | Pyroelectric type infrared ray detector | |
JPS62119418A (en) | Pyroelectric type infrared detection thin film element | |
JPS62285029A (en) | Infrared detector and manufacture of the same |