JPS62118010A - Control device for generating plant - Google Patents

Control device for generating plant

Info

Publication number
JPS62118010A
JPS62118010A JP60256363A JP25636385A JPS62118010A JP S62118010 A JPS62118010 A JP S62118010A JP 60256363 A JP60256363 A JP 60256363A JP 25636385 A JP25636385 A JP 25636385A JP S62118010 A JPS62118010 A JP S62118010A
Authority
JP
Japan
Prior art keywords
steam pressure
signal
plant
value
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60256363A
Other languages
Japanese (ja)
Inventor
Masanori Sakuragi
桜木 正範
Zenichi Ogiso
小木曽 善一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP60256363A priority Critical patent/JPS62118010A/en
Publication of JPS62118010A publication Critical patent/JPS62118010A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To keep heat balance in a plant in normality, by varying the steam pressure setting value as a function of a plant output demand value at the time of plant output alteration, and compensating it by the actual pressure in addition. CONSTITUTION:At an EHC 13a of a turbine, a pressure setting signal is formed by a first function generator as a function of a plant output demand value, while a steam pressure desired value is formed as well by a second function generator 14a. And, a deviation between the steam pressure desired value and the actual pressure signal is inputted into a PID circuit, forming a compensation signal, and the steam pressure setting value is compensated. According to a deviation between this compensated pressure setting value and the actual pressure, governor opening of the turbine is controlled. With this constitution, the steam pressure can be kept to the specified value without offset.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、高速増殖炉等を用いた発電プラントの制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a control device for a power plant using a fast breeder reactor or the like.

[発明の技術的背景とその問題点] 第2図は高速増殖炉発電プラントの水蒸気系を示すもの
で、図において、蒸気タービン1で仕事を終えた蒸気は
復水器2において復水とされた後、低圧給水加熱器3に
より加熱され脱気器4を通り給水ポンプ5により昇圧さ
れた後、高圧給水加熱器6により加熱される。
[Technical background of the invention and its problems] Figure 2 shows the steam system of a fast breeder reactor power plant. Thereafter, the water is heated by a low-pressure feed water heater 3 , passes through a deaerator 4 , is pressurized by a feed water pump 5 , and is then heated by a high-pressure feed water heater 6 .

高圧給水加熱器6で加熱された給水は、蒸発器7に導か
れる。ここで2次系の液体金属ナトリウムと熱交換した
後、蒸気となりドレンセパレータ8内へ流入し、次に過
熱器9へ導かれ、ざらに過熱された後、主蒸気止め弁1
0およびタービン加減弁11を通してタービン1へ導か
れる。
The feed water heated by the high-pressure feed water heater 6 is guided to the evaporator 7. After exchanging heat with the liquid metal sodium in the secondary system, it becomes steam and flows into the drain separator 8, then is led to the superheater 9, where it is roughly heated, and then the main steam stop valve 1
0 and is guided to the turbine 1 through the turbine control valve 11.

主蒸気止め弁10の上流には、タービンバイパス弁12
の開度およびタービン加減弁11の開度を制御するEH
C(エレクトロハイドリックコントローラ)13が配置
されており、送電系統からの負荷喪失等の周波数外乱に
対して余剰蒸気をタービンバイパス弁12を通して復水
器2ヘダンプすることによって主蒸気の質量バランスを
保持し、蒸気圧力を所定の値に制御している。
Upstream of the main steam stop valve 10, a turbine bypass valve 12 is provided.
and the opening degree of the turbine control valve 11.
An electro-hydraulic controller (C) 13 is installed to maintain the mass balance of main steam by dumping excess steam to the condenser 2 through the turbine bypass valve 12 in response to frequency disturbances such as load loss from the power transmission system. The steam pressure is controlled to a predetermined value.

すなわち、以上のような水蒸気系ではEHCI3により
タービンバイパス弁12およびタービン加減弁11の開
度が制御され、水蒸気系の適切な運転が行なわれる。
That is, in the steam system as described above, the opening degrees of the turbine bypass valve 12 and the turbine control valve 11 are controlled by the EHCI 3, and the steam system is appropriately operated.

第3図はEl−IC13の詳細を示すもので、このEH
013では蒸気圧力によって作られる全蒸気流量要求信
号S1と、タービン1の回転数によって作られる加減弁
流量要求信号S2を組合せて、タービン蒸気流量(加減
弁流量要求信号)+タービンバイパス弁蒸気流量 =全主蒸気流量(全蒸気流量要求信号)なる関係をター
ビン加減弁11とタービンバイパス弁12を操作するこ
とによって常時保持し、蒸気圧力を安定に保つ。
Figure 3 shows the details of El-IC13, and this EH
In 013, the total steam flow rate request signal S1 generated by the steam pressure and the regulator valve flow rate request signal S2 generated by the rotation speed of the turbine 1 are combined, and the turbine steam flow rate (control valve flow rate request signal) + turbine bypass valve steam flow rate = The relationship of total main steam flow rate (total steam flow rate request signal) is always maintained by operating the turbine control valve 11 and turbine bypass valve 12, and the steam pressure is kept stable.

ここで全蒸気流量要求信号S1と加減弁流量要求信号S
2は次のように作られる。
Here, the total steam flow rate request signal S1 and the control valve flow rate request signal S
2 is created as follows.

全蒸気流量要求信号= (蒸気圧カー蒸気圧力設定値)/圧力調定率一方、同様
にして 加減弁流量要求信号 =負荷設定値+(回転数設定値 一タービン回転数)/速度調定率 なお、ここで蒸気圧力設定値および圧力調定率はあらか
じめ設定された一定値とされる。
Total steam flow rate request signal = (Steam pressure car steam pressure setting value) / Pressure regulation rate Meanwhile, in the same way, the regulating valve flow rate request signal = Load setting value + (Rotation speed setting value - Turbine rotation speed) / Speed regulation rate. Here, the steam pressure set value and the pressure adjustment rate are preset constant values.

上記構成の高速増殖炉発電プラントで、プラント出力の
変更を行なう場合は、第4図のグラフに示すようにプラ
ント制御系を作動させることにより、プラント出力要求
信号に応じて原子炉出力A、1法主冷却系流IB、2次
主冷却系流量C1給水流量り間の協調をとって変更する
協調制御を行なう。なおこのグラフにおいて縦軸は相対
値を、横軸は経過時間を示している。また、このとき送
電系統の外乱が発生しなければ、EHC13においてタ
ービン加減弁開度が全蒸気流量要求信号S1により決定
され、蒸気圧力が制御される。
When changing the plant output in a fast breeder reactor power plant with the above configuration, the reactor output A, 1 Cooperative control is performed in which the primary cooling system flow IB and the secondary main cooling system flow rate C1 are coordinated and changed. Note that in this graph, the vertical axis represents relative values, and the horizontal axis represents elapsed time. At this time, if no disturbance occurs in the power transmission system, the EHC 13 determines the opening degree of the turbine control valve based on the total steam flow rate request signal S1, and controls the steam pressure.

しかしながら、プラント出力、タービン出力、蒸気流量
、タービン加減弁開度は互いにほぼ比例する関係にある
。したがって、蒸気圧力設定値、圧力調定率を一定値と
して、タービン加減弁開度を決定する制御装置では、プ
ラント出力を変更した場合に蒸気圧力を所定の値に保つ
ことができなくなり、プラント全体のヒートバランスが
損われるという問題がある。
However, the plant output, turbine output, steam flow rate, and turbine control valve opening are approximately proportional to each other. Therefore, with a control device that determines the turbine control valve opening while keeping the steam pressure set value and pressure adjustment rate constant, it will not be possible to maintain the steam pressure at a predetermined value when the plant output is changed, and the overall plant There is a problem that the heat balance is impaired.

[発明の目的] 本発明はかかる背景技術のもとになされたもので、高速
増殖炉発電プラント等の協調制御およびEHCを用いた
発電プラントにおいて、プラント出力の変更を行なう場
合にも、蒸気圧力をオフセットなしで所定の値に保つこ
とができ、発電プラントのヒートバランスを正常に保つ
ことのできる発電プラントの制御装置を提供しようとす
るものである。
[Object of the Invention] The present invention has been made based on the above background art, and it is possible to change the steam pressure even when changing the plant output in a power plant using cooperative control and EHC such as a fast breeder reactor power plant. The present invention aims to provide a control device for a power generation plant that can maintain the heat balance of the power generation plant at a normal value by keeping the amount of energy at a predetermined value without offset.

[発明の概要] すなわち本発明は、プラント出力要求値に対して、協調
制御によりプラント出力の変更を行なう発電プラントに
配置され、EHCにより蒸気圧力の制御を行なう発電プ
ラントの制御装置において、前記プラント出力要求値の
関数として蒸気圧力設定信号を出力する第1の関数発生
器と、前記プラントの出力要求値の関数として蒸気圧力
目標信号を出力する第2の関数発生器と、前記蒸気圧力
目標信号と実際の蒸気圧力信号との偏差が入力され補正
信号を出力する補正信号作成装置とを備え、前記蒸気圧
力設定信号を前記補正信号により補正して前記EHCの
蒸気圧力設定値とし、この蒸気圧力設定値と実際の蒸気
圧力との偏差量に応じてタービン加減弁開度を制御し、
前記蒸気圧力をオフセットなしで所定の値に保持するこ
とにより、発電プラントのヒートバランスを正常に保つ
ことのできるようにしたものである。
[Summary of the Invention] That is, the present invention provides a control device for a power generation plant that is installed in a power generation plant that changes the plant output through cooperative control in response to a required plant output value, and that controls steam pressure using EHC. a first function generator that outputs a steam pressure setting signal as a function of the output demand value; a second function generator that outputs a steam pressure target signal as a function of the output demand value of the plant; and the steam pressure target signal. and a correction signal generating device that receives a deviation between the actual steam pressure signal and the actual steam pressure signal and outputs a correction signal, corrects the steam pressure setting signal using the correction signal to make the steam pressure setting value of the EHC, and adjusts the steam pressure The turbine control valve opening degree is controlled according to the amount of deviation between the set value and the actual steam pressure,
By maintaining the steam pressure at a predetermined value without offset, the heat balance of the power plant can be maintained normally.

[発明の実施例] 以下、本発明の詳細を図面を用いて一実施例について説
明する。
[Embodiment of the Invention] Hereinafter, details of the present invention will be described by way of an embodiment using the drawings.

第1図は、本発明の一実施例の発電プラントの制御装置
で必るEHC13aを示すもので、このEHC13aは
、出力要求信号を入力されて、この関数としてそれぞれ
蒸気圧力目標信号、蒸気圧力設定信号を出力する2台の
関数発生器14a、14bと、この関数発生器14aか
らの蒸気圧力目標信号と実測された蒸気圧力測定信号と
の偏差が入力され、PID制御により補正信号を出力す
る補正信号作成装置15とを備えている。そしてこのE
HC13aは、第3図に示すEHCに換えて、第2図に
示す高速増殖炉発電プラント等に配置される。
FIG. 1 shows an EHC 13a that is necessary in a control device for a power generation plant according to an embodiment of the present invention.This EHC 13a receives an output request signal and uses this as a function to set a steam pressure target signal and a steam pressure setting, respectively. Two function generators 14a and 14b output signals, and the deviation between the steam pressure target signal from the function generator 14a and the actually measured steam pressure measurement signal is input, and a correction signal is output by PID control. The signal generating device 15 is also provided. And this E
The HC 13a is placed in a fast breeder reactor power plant or the like shown in FIG. 2 instead of the EHC shown in FIG. 3.

そしてこのEHC13aを配置された高速増殖炉発電プ
ラントにおいて、プラント出力の変更を行なう場合には
、プラント制御系を作動させ、第4図のグラフに示すよ
うにプラント出力要求信号に応じて原子炉出力A、1法
主冷却系流量B、2次主冷却系流量C1給水流量り間の
協調をとり、協調制御を行なうとともに、第1図に示す
EHC13aにおいて次のように主蒸気圧力の制御を行
なう。
When changing the plant output in a fast breeder reactor power plant in which this EHC13a is installed, the plant control system is activated and the reactor output is changed according to the plant output request signal as shown in the graph of Figure 4. A, 1st method main cooling system flow rate B, secondary main cooling system flow rate C1, feed water flow rate are coordinated and controlled, and the main steam pressure is controlled as follows in EHC 13a shown in Figure 1. .

すなわち、このEHC13aでは、関数発生器14bに
おいて 蒸気圧力=蒸気圧力設定信号値士圧力調定率Xプラント
出力要求値=所定の値 なる関係を満たすプラント出力要求信号の関数として蒸
気圧力設定信号を出力する。そして、補正信号作成装置
15は、関数発生器14aから出力された蒸気圧力目標
信号と実際に測定された蒸気圧力測定信号との偏差量が
入力され、この偏差を解消するように、PAD制御によ
り補正信号を出力する。そして、この補正信号と関数発
生器14bから出力された蒸気圧力設定信号とを重ね合
わせて蒸気圧力設定値とする。
That is, in this EHC 13a, the function generator 14b outputs a steam pressure setting signal as a function of the plant output request signal that satisfies the following relationship: steam pressure = steam pressure setting signal value - pressure regulation rate x plant output request value = predetermined value. . The correction signal generating device 15 receives the amount of deviation between the steam pressure target signal outputted from the function generator 14a and the actually measured steam pressure measurement signal, and performs PAD control to eliminate this deviation. Outputs a correction signal. Then, this correction signal and the steam pressure setting signal outputted from the function generator 14b are superimposed to obtain a steam pressure setting value.

次に、蒸気圧力設定値と実測された蒸気圧力との偏差量
と、圧力調定率から、以下に示す式により全蒸気流量要
求信号S3を算出する。
Next, the total steam flow rate request signal S3 is calculated from the deviation amount between the steam pressure set value and the actually measured steam pressure and the pressure adjustment rate using the formula shown below.

(蒸気圧カー蒸気圧力設定値) /圧力調定率=全蒸気流量要求信号 一方、同様にして 加減弁流量要求信号 =負荷設定値+(回転数設定値 一タービン回転数)/速度調定率 なる関係式から加減弁流星要求信号S4を算出し、ター
ビン蒸気流量(加減弁流量要求信号)十タービンバイパ
ス弁蒸気流ω =全主蒸気流量(全蒸気流量要求信号)により、タービ
ン加減弁開度、タービンバイパス弁開度を決定し、制御
する。
(Steam pressure car steam pressure setting value) /Pressure regulation rate = total steam flow rate request signal On the other hand, in the same way, the regulating valve flow rate request signal = load setting value + (rotation speed setting value - turbine rotation speed) / speed regulation rate The regulating valve meteor request signal S4 is calculated from the formula, and the turbine steam flow rate (regulating valve flow rate request signal) + turbine bypass valve steam flow ω = total main steam flow rate (total steam flow rate request signal) determines the turbine regulating valve opening, Determine and control the bypass valve opening.

すなわち、上記説明のこの実施例の発電プラントの制御
装置では、プラント出力要求信号の関数として、 蒸気圧力=蒸気圧力設定信号値士圧力調定率×プラント
出力要求値=所定の値 なる関係を満たすように蒸気圧力設定信号を設定し、ざ
らに、プラント出力要求信号の関数として設定された蒸
気圧力目標信号と実際の主蒸気圧力測定信号との偏差に
基づいてPID制御により蒸気圧力設定信号の補正を行
なって蒸気圧力設定値とし、この蒸気圧力設定値と実際
の蒸気圧力との偏差量に比例した全蒸気流量要求信@S
3によりタービン加減弁開度を制御するので、蒸気圧力
をオフセットなしで所定の値に保つことができ、プラン
ト全体の正常なヒートバランスを保つことができる。
That is, in the power plant control device of this embodiment described above, as a function of the plant output request signal, the following relationship is satisfied: steam pressure = steam pressure setting signal value + pressure adjustment rate × plant output request value = predetermined value. Roughly, the steam pressure setting signal is corrected by PID control based on the deviation between the steam pressure target signal set as a function of the plant output request signal and the actual main steam pressure measurement signal. is set as the steam pressure set value, and the total steam flow rate request signal @S is proportional to the deviation amount between this steam pressure set value and the actual steam pressure.
Since the opening degree of the turbine control valve is controlled by 3, the steam pressure can be maintained at a predetermined value without offset, and a normal heat balance of the entire plant can be maintained.

なおこの実施例では、本発明の発電プラント制御装置を
高速増殖炉発電プラントについて適用した実施例につい
て説明したが、本発明は、かかる実施例に限定されるも
のではなく、たとえば火力発電プラント、軽水炉発電プ
ラント等に用いることができることはもらろんである。
Although this embodiment describes an example in which the power plant control device of the present invention is applied to a fast breeder reactor power plant, the present invention is not limited to such an example. It goes without saying that it can be used in power generation plants, etc.

[発明の効果] 以上述べたように本発明の発電プラントの制御装置では
、プラント出力要求値の関数として蒸気圧力設定信号を
出力する第1の関数発生器と、プラントの出力要求値の
関数として蒸気圧力目標信号を出力する第2の関数発生
器と、蒸気圧力目標信号と実際の蒸気圧力信号との偏差
が入力され補正信号を出力する補正信号作成装置とを備
え、蒸気圧力設定信号を補正信号により補正してEHC
の蒸気圧力設定値とし、この蒸気圧力設定値と実際の蒸
気圧力との偏差量に応じてタービン加減弁開度を制御す
るので、蒸気圧力をオフセットなしで所定の値に保持す
ることができ、発電プラントのヒートバランスを正常に
保つことができる。
[Effects of the Invention] As described above, the power plant control device of the present invention includes a first function generator that outputs a steam pressure setting signal as a function of the plant output request value, and a first function generator that outputs the steam pressure setting signal as a function of the plant output request value. A second function generator that outputs a steam pressure target signal, and a correction signal creation device that receives the deviation between the steam pressure target signal and the actual steam pressure signal and outputs a correction signal, and corrects the steam pressure setting signal. Corrected by signal and EHC
Since the steam pressure setting value is set to , and the turbine adjustment valve opening degree is controlled according to the amount of deviation between this steam pressure setting value and the actual steam pressure, the steam pressure can be maintained at a predetermined value without offset. The heat balance of the power generation plant can be maintained normally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の発電プラントの制御装置で
あるEHCの構成を示すブロック図、第2図は高速増殖
炉発電プラントを示す配管系統図、第3図は従来のEH
Cを示すブロック図、第4図は協調制御を示すグラフで
ある。 S3・・・・・・・・・・・・・・・全蒸気流量要求信
号S4・・・・・・・・・・・・・・・加減弁流口要求
信号13a・・・・・・・・・・・・・・・EHC14
a、14b・・・関数発生器 15・・・・・・・・・・・・・・・・・・補正信号作
成装置出願人      日本原子力事業株式会社出願
人      株式会社 東 芝 代理人 弁理士  須 山 佐 − 第2図
Fig. 1 is a block diagram showing the configuration of an EHC which is a control device for a power plant according to an embodiment of the present invention, Fig. 2 is a piping system diagram showing a fast breeder reactor power plant, and Fig. 3 is a conventional EHC.
A block diagram showing C and FIG. 4 are graphs showing cooperative control. S3・・・・・・・・・・・・・Total steam flow rate request signal S4・・・・・・・・・・・・・・・Adjustment valve flow port request signal 13a・・・・・・・・・・・・・・・EHC14
a, 14b...Function generator 15...Correction signal generation device Applicant Japan Atomic Energy Corporation Applicant Toshiba Corporation Agent Patent attorney Su Yamasa - Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)プラント出力要求値に対して協調制御によりプラ
ント出力の変更を行なう発電プラントに配置され、EH
Cにより蒸気圧力の制御を行なう発電プラントの制御装
置において、前記プラント出力要求値の関数として蒸気
圧力設定信号を出力する第1の関数発生器と、前記プラ
ントの出力要求値の関数として蒸気圧力目標信号を出力
する第2の関数発生器と、前記蒸気圧力目標信号と実際
の蒸気圧力信号との偏差が入力され補正信号を出力する
補正信号作成装置とを備え、前記蒸気圧力設定信号を前
記補正信号により補正して前記EHCの蒸気圧力設定値
とし、この蒸気圧力設定値と実際の蒸気圧力との偏差量
に応じてタービン加減弁開度を制御し、前記蒸気圧力を
オフセットなしで所定の値に保持することを特徴とする
発電プラントの制御装置。
(1) The EH
A control device for a power plant that controls steam pressure according to C, includes a first function generator that outputs a steam pressure setting signal as a function of the plant output request value, and a steam pressure target output signal that outputs a steam pressure setting signal as a function of the plant output request value. a second function generator that outputs a signal; and a correction signal creation device that receives input of a deviation between the steam pressure target signal and the actual steam pressure signal and outputs a correction signal; The steam pressure set value of the EHC is corrected by the signal, and the turbine adjustment valve opening degree is controlled according to the amount of deviation between the steam pressure set value and the actual steam pressure, and the steam pressure is set to a predetermined value without offset. A control device for a power generation plant, characterized in that:
(2)補正信号作成装置は、PID制御を行う特許請求
の範囲第1項記載の発電プラントの制御装置。
(2) The power generation plant control device according to claim 1, wherein the correction signal generation device performs PID control.
JP60256363A 1985-11-15 1985-11-15 Control device for generating plant Pending JPS62118010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60256363A JPS62118010A (en) 1985-11-15 1985-11-15 Control device for generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60256363A JPS62118010A (en) 1985-11-15 1985-11-15 Control device for generating plant

Publications (1)

Publication Number Publication Date
JPS62118010A true JPS62118010A (en) 1987-05-29

Family

ID=17291638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60256363A Pending JPS62118010A (en) 1985-11-15 1985-11-15 Control device for generating plant

Country Status (1)

Country Link
JP (1) JPS62118010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198786B1 (en) * 1998-05-22 2001-03-06 General Electric Company Methods of reactor system pressure control by reactor core power modulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198786B1 (en) * 1998-05-22 2001-03-06 General Electric Company Methods of reactor system pressure control by reactor core power modulation

Similar Documents

Publication Publication Date Title
EP0093118B1 (en) Hrsg damper control
US4549503A (en) Maximum efficiency steam temperature control system
JPH0566601B2 (en)
JPS62118010A (en) Control device for generating plant
US4969084A (en) Superheater spray flow control for variable pressure operation
JPS62118009A (en) Controlling method for generating plant
JP2000297608A (en) Control device for feed water pump of power station
JP2000257809A (en) Pressurized fluidized bed boiler and starting method of same
JPS6133362Y2 (en)
JPS61114197A (en) Method of stopping fast breeder reactor plant
JPS6069215A (en) Apparatus for controlling steam pressure at inlet side of turbine
JPS61114193A (en) Controller for fast breeder reactor plant
JPH1163481A (en) Method and apparatus for controlling pressure of fuel gas in gas fired boiler
JPS58205005A (en) Controller for drum level of waste heat boiler
JPH0249930A (en) Steam injection control device of complex power generating facility
JPH02173598A (en) Control method for fast breeder reactor plant
JPS6043103A (en) Steam system controller
JPH0579606A (en) Method and apparatus for controlling variable pressure benson boiler
JPH01234099A (en) Method and device for automatic control of power plant
JPH0241720B2 (en)
JPH03175201A (en) Preceding signal circuit of boiler plant
JPH04175401A (en) Steam turbine output controller
JPS58102003A (en) Liquid metal cooling type fast breeder reactor plant
JPS62240404A (en) Turbine control device
JPH0326998A (en) Reactor feed water controller for boiling water reactor