JPS61114193A - Controller for fast breeder reactor plant - Google Patents

Controller for fast breeder reactor plant

Info

Publication number
JPS61114193A
JPS61114193A JP59236244A JP23624484A JPS61114193A JP S61114193 A JPS61114193 A JP S61114193A JP 59236244 A JP59236244 A JP 59236244A JP 23624484 A JP23624484 A JP 23624484A JP S61114193 A JPS61114193 A JP S61114193A
Authority
JP
Japan
Prior art keywords
pressure
request signal
flow rate
turbine
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59236244A
Other languages
Japanese (ja)
Inventor
洋 中島
玉野 豊己
桜木 正範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP59236244A priority Critical patent/JPS61114193A/en
Publication of JPS61114193A publication Critical patent/JPS61114193A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Control Of Temperature (AREA)
  • Feedback Control In General (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は高速増殖炉プラントの制御I装置に関づる。[Detailed description of the invention] [Technical field of invention] The present invention relates to a control I device for a fast breeder reactor plant.

[発明の技術的背狽とその問題点] 第3図は高速増殖炉プラントの水蒸気系を示すもので、
図において、蒸気タービン1で仕事を終えた蒸気は復水
器2において復水とされた後、低圧給水加熱器3により
加熱され脱気器4を通り給水ポンプ5により昇圧された
後、高圧給水加熱器6により加熱される。
[Technical disadvantages of the invention and its problems] Figure 3 shows the steam system of a fast breeder reactor plant.
In the figure, steam that has completed its work in a steam turbine 1 is converted into condensate in a condenser 2, heated by a low-pressure feed water heater 3, passed through a deaerator 4, and then boosted in pressure by a feed water pump 5. It is heated by a heater 6.

高圧給水加熱器6で加熱された給水は、蒸発器8のウオ
ーミング運転時には蒸発器8をバイパス、 してフラッ
シコタンク7へ導かれた後、再び復水器2内へ循環する
。このウオーミング運転が終了した後においては、給水
は蒸発器8に脣かれる。
The feed water heated by the high-pressure feed water heater 6 bypasses the evaporator 8 during the warming operation of the evaporator 8, is guided to the flashco tank 7, and then circulates into the condenser 2 again. After this warming operation is completed, the supplied water is delivered to the evaporator 8.

ここで二次系の液体金属ナトリウムと熱交換した後、蒸
気となりドレンセパレータ9内へ流入する。
After exchanging heat with the secondary liquid metal sodium, it becomes vapor and flows into the drain separator 9.

このときフラツシコタンク7への給水はブロー弁23に
よってゼロにまで絞り込まれる。
At this time, the water supply to the flat tank 7 is reduced to zero by the blow valve 23.

ドレンセパレータ9にはフラツシコタンク7に接続され
るドレン弁10を備えたドレン配管11が接続されてい
る。このドレン弁10はドレンセパレータ圧力制御2I
I器12にJ:りその開度を制御される。ドレンセパレ
ータ9からの蒸気は蒸気止め弁13を通った1多、蒸気
タービン1の起動準備未了の段階において【ま過熱器バ
イパス蒸気制御弁14の介挿される過熱器バイパスライ
ン15を通りタービンバイパス弁16を通った後、復水
器2内に循環される。
A drain pipe 11 equipped with a drain valve 10 connected to the flat tank 7 is connected to the drain separator 9 . This drain valve 10 has a drain separator pressure control 2I.
The opening degree of the J: is controlled by the I device 12. The steam from the drain separator 9 passes through the steam stop valve 13, and when the steam turbine 1 is not ready for startup, it passes through the superheater bypass line 15, where the superheater bypass steam control valve 14 is inserted, to the turbine bypass. After passing through the valve 16, it is circulated into the condenser 2.

一方、蒸気タービン1の起動*iが完了し、初期負荷投
入に至る間においては、ドレンセパレータ9からの蒸気
は主蒸気温度制御系24の目標値を一ト昇させることに
より、過熱器制御弁25が開とされるので、制御弁14
ど25に分流せしめられることとなり、制御弁25を通
る蒸気は過熱器17において過熱された後、制御弁14
を通った蒸気と混合せしめられ、主蒸気止め弁18、タ
ービン加減弁19を通り蒸気タービン1内に流入する。
On the other hand, after the start-up*i of the steam turbine 1 is completed and before the initial load is applied, the steam from the drain separator 9 is supplied to the superheater control valve by raising the target value of the main steam temperature control system 24 by one step. 25 is open, the control valve 14
The steam passing through the control valve 25 is superheated in the superheater 17 and then passed through the control valve 14.
It is mixed with the steam that has passed through the steam, and flows into the steam turbine 1 through the main steam stop valve 18 and the turbine control valve 19.

なお、初期負荷投入以後においては、原子炉出カー1:
昇が行われて過熱器17の入[1す1〜リウム濶度が上
背するに伴って主蒸気温度制御系24の作用により、過
熱器バイパス蒸気制御弁1/Iは自動的に閉とされる。
In addition, after the initial load is applied, the reactor output car 1:
As the temperature rises and the temperature of the superheater 17 increases, the superheater bypass steam control valve 1/I automatically closes due to the action of the main steam temperature control system 24. be done.

主蒸気ILめ弁18上流にはタービンバイパス弁16の
開度およびタービン加減弁1つの開度を制御するEl−
IC(エレク1−ロバイドリックコン1−11−ラ)2
0が配置されている。
Upstream of the main steam IL valve 18, there is an El-
IC (Electronic 1-Robidriccon 1-11-Ra) 2
0 is placed.

すなわち、Jx上のような水蒸気系ではE l−I C
によりタービンバイパス弁16おにびタービン加減弁1
9の開度が制御され、水蒸気系の適切な作動が行なわれ
る。
That is, in a water vapor system such as on Jx, E l-I C
Turbine bypass valve 16 and turbine control valve 1
9 is controlled to ensure proper operation of the steam system.

第4図はE HCの詳細を示すもので、このE 1−I
Cでは主蒸気圧力、タービン回転数および加速度が入力
され、タービンバイパス弁16およびタービン加減弁1
9の開度が制御される。なお、主蒸気圧力の圧力設定値
、すなわちIPR(イニシャルプレッシャーレギ]レー
ション)設定値おにび圧力漏定率はそれぞれ一定値に保
持された状態でEHCによる制御が行なわれる。
Figure 4 shows the details of E HC, and this E 1-I
At C, the main steam pressure, turbine rotational speed and acceleration are input, and the turbine bypass valve 16 and turbine control valve 1 are inputted.
The opening degree of 9 is controlled. The pressure setting value of the main steam pressure, that is, the IPR (initial pressure regulation) setting value, and the pressure leakage rate are each controlled by EHC while being held at constant values.

しかしながら、このようにIPR設定値および圧力漏定
率を固定したままの状態で水、蒸気系の作動を行なう場
合には、第4図に示すE I−I C全流出要求信号S
1をあらかじめ定められた全流量要求信号計画曲線に一
致させるべく、主蒸気圧力を変化させる必要が生ずる。
However, when operating the water and steam systems with the IPR set value and pressure leak rate fixed as described above, the E I-I C total outflow request signal S shown in FIG.
1 to match the predetermined total flow demand signal planning curve, it becomes necessary to vary the main steam pressure.

すなわち、F l−I Cは以下に示す如く、主蒸気圧
力によって作られる全流出要求信号S1と、タービン1
の回転数によって作られる加減弁流量要求信号S2を組
合せて、 タービン蒸気流山(加減弁流開要求信@)+タービンバ
イパス弁蓋気流m −全主蒸気流量(全流出要求信号) なる関係を加減弁19とバイパス弁16を操作すること
によって常時保持し、主蒸気圧力を安定に保つことを目
的とした制御システムである。
That is, as shown below, F l-I C combines the total outflow demand signal S1 produced by the main steam pressure and the turbine 1
By combining the regulator valve flow rate request signal S2 generated by the rotation speed of , the relationship becomes: Turbine steam flow rate (control valve flow open request signal @) + Turbine bypass valve cover air flow m - Total main steam flow rate (total outflow request signal) This control system aims to maintain main steam pressure at all times by operating valve 19 and bypass valve 16 to keep it stable.

ここで全流量要求信号S1と加減弁流量要求信@S2は
次のようにして作られる。
Here, the total flow rate request signal S1 and the regulating valve flow rate request signal @S2 are generated as follows.

全流出要求信号 =(主蒸気圧カーIPR設定値)/圧力漏定率加減弁流
量要求信号 一負荷設定値+(タービン回転数 一回転数設置値)/速度調定率 なお、タービン出力は加減弁19蒸気流出に、またこの
蒸気流量は加減弁19開度にほぼ比例覆る。
Total outflow request signal = (main steam pressure car IPR setting value) / pressure leakage rate regulating valve flow rate request signal - load setting value + (turbine rotation speed - rotation speed setting value) / speed regulation rate Note that the turbine output is the regulating valve 19 The steam flow rate is approximately proportional to the opening degree of the control valve 19.

しかるに、プラント出力制御系による自動制御を行なう
出力運転領域、例えば、出力40%〜100%の間にお
けるプラントのヒートバランスは、一般に、主蒸気圧力
を一定に固定して4画される。
However, the heat balance of a plant in an output operation range that is automatically controlled by a plant output control system, for example, between 40% and 100% output, is generally divided into four sections with the main steam pressure fixed constant.

しかしながら、前記のようにE l−I Cの適用にお
いてIPR設定値おにび圧力漏定率を負荷によらず一定
に固定する場合には、タービン加減弁19の開度は全流
量要求信号S1により作られ、さらに、この全流出要求
信号S1は、主蒸気圧力によって作られるため、部分負
荷時におりる主蒸気圧力を一定値にすることは不可能で
ある。
However, when the IPR set value and pressure leakage rate are fixed constant regardless of the load in the application of E I-I C as described above, the opening degree of the turbine control valve 19 is determined by the full flow rate request signal S1. Further, since this total outflow request signal S1 is generated by the main steam pressure, it is impossible to maintain the main steam pressure at a constant value during partial load.

このような事情により従来の高速増殖炉プラントでは、
プラントの負荷に対応したヒートバランスを決定するこ
とが非常に困難であった。
Due to these circumstances, in conventional fast breeder reactor plants,
It has been extremely difficult to determine the heat balance that corresponds to the plant load.

[発明の目的1 本発明はかかる従来の事情に対処してなされたもので、
E l−I Cシステムを有する高速増殖炉プラントの
水蒸気系の運転に関し、プラント出力制御系により自動
制御を行なう出力運転領域において、負荷レベルの変更
に対して主蒸気圧力を所定の値に制御することによりプ
ラント全体のヒートバランスを4画に合致したものとす
ることのできる高速増殖炉プラントの制ti11装置を
提供しようとづるものである。
[Object of the Invention 1 The present invention has been made in response to such conventional circumstances,
Regarding the operation of the steam system of a fast breeder reactor plant having an E I-I C system, the main steam pressure is controlled to a predetermined value in response to changes in the load level in the power operation region that is automatically controlled by the plant output control system. The purpose of this invention is to provide a control system for a fast breeder reactor plant, which can thereby make the heat balance of the entire plant conform to the quadrature.

C発明の概要] すなわち本発明は、主蒸気圧力どE l−I C圧力設
定値との偏差に圧力漏定率を乗算し全流量要求信号を得
るとともに、タービン回転数とタービン加速度に基づい
て加減弁流量要求信号を得、前記全流量要求信号および
加減弁流量要求信号に基づいてタービンバイパス弁およ
びタービン加減弁の開度を制御する高速増殖炉プラント
の制御装置において、前記圧力漏定率を9荷要求信号に
基づいて変化さゼる圧力漏定率信号発生装置と、前記圧
力設定値を負荷要求信号に基づいて変化させる圧力設定
信号発生装置とを備え、前記負荷要求信号の変化に対し
前記主蒸気圧力を変化させることなく前記EHCの全流
量要求信号をブランl−ll1l ill系の負荷要求
信号に一致さ1!る機能を有することを特徴とする高速
増殖炉プラントの制御装置である。
C Summary of the invention] That is, the present invention multiplies the deviation between the main steam pressure and the pressure setting value by the pressure leakage rate to obtain the total flow rate request signal, and adjusts the flow rate based on the turbine rotation speed and turbine acceleration. In a control device for a fast breeder reactor plant that obtains a valve flow rate request signal and controls the opening degrees of a turbine bypass valve and a turbine control valve based on the total flow rate request signal and the control valve flow rate request signal, a pressure leak rate signal generating device that changes the pressure setting value based on the load request signal; and a pressure setting signal generating device that changes the pressure setting value based on the load request signal; Match the full flow demand signal of the EHC to the load demand signal of the blank l-ll1ll system without changing the pressure1! This is a control device for a fast breeder reactor plant, which is characterized by having the function of

[発明の実施例] 以下本発明の詳細を図面に示す一実施例について説明す
る。
[Embodiment of the Invention] The details of the present invention will be described below with reference to an embodiment shown in the drawings.

第1図は本発明の高速増殖炉プラントの制御装置のE 
HCを示すもので、このE l−I Cでは、負荷要求
信号83に基づいて出力設定信号を発生し、圧力設定値
を変更する圧力設定信号発生装@30と、負荷要求信号
83に基づいて圧力漏定率信号を出力し、圧力漏定率を
変化させる圧力漏定重信月光q:装置31とが配置され
ている。
Figure 1 shows E of the control system for a fast breeder reactor plant according to the present invention.
This E l-I C includes a pressure setting signal generator @30 that generates an output setting signal based on the load request signal 83 and changes the pressure setting value, and a pressure setting signal generator @30 that generates an output setting signal based on the load request signal 83 and changes the pressure setting value. A pressure leakage determination device 31 that outputs a pressure leakage constant rate signal and changes the pressure leakage constant rate is disposed.

このようなE HCでは、予め負荷レベルに対応して適
切な圧力漏定率が圧力漏定率信号発生!!!i謂31に
サーベイされており、プラントの負荷が変更される際に
圧力漏定率と圧力設定値どを同時に変更づることにより
主蒸気圧力が所定の値に制御される。
In this type of EHC, a pressure leak rate signal is generated that is appropriate for the load level in advance! ! ! The main steam pressure is controlled to a predetermined value by simultaneously changing the pressure leakage rate and pressure setting value when the plant load is changed.

すなわち、自動制御を行なう負荷範囲において、予め負
荷レベルに応じた適切な圧力漏定率が圧力漏定率信号発
生装置31にサーベイされており、次に述べる式を常に
満たすように負荷要求信号S3の変化に対して圧力設定
値および圧力漏定率が変更される。
That is, in the load range where automatic control is performed, an appropriate pressure leakage rate according to the load level is surveyed in advance by the pressure leakage rate signal generator 31, and changes in the load request signal S3 are made so that the following formula is always satisfied. The pressure setting value and pressure leakage rate are changed.

Qp s = [1Ps−Ps o (Q) ]/ [
Gp  (Q) ] :Q ここでPsoは圧力設定値を、Gpは圧力漏定率を、Q
は負荷要求信号33(プラントマスク信号)を、Qps
は全流量要求信号S1を示している。
Qps = [1Ps-Ps o (Q) ]/[
Gp (Q) ] :Q Here, Pso is the pressure setting value, Gp is the pressure leak rate, and Q
is the load request signal 33 (plant mask signal), Qps
indicates the full flow rate request signal S1.

すなわち、このような関係を満たすときには、全流量要
求信号S1は常にQPS:Qとなるため、主蒸気圧力を
所定の値に保持した状態でプラントの負荷変更を実現す
ることができる。
That is, when such a relationship is satisfied, the total flow rate request signal S1 always becomes QPS:Q, so it is possible to change the plant load while maintaining the main steam pressure at a predetermined value.

なお、圧力設定信号発生装置 設定信号発生装置30内で行なわれる演算はアナログあ
るいはデジタルのいずれの方式でもよいことは勿論であ
る。
It goes without saying that the calculations performed within the pressure setting signal generating device setting signal generating device 30 may be of either analog or digital type.

また、以上述へた実施例では、QP s xQであり、
QP s =Qではないが、以下に述べる構成を取るこ
とによりQPS=Qとすることができ、これによりQP
SとQとの間のオフセットを除去し、プラント出力を負
荷要求に完全に一致することができる。
In addition, in the embodiments described above, QP s xQ,
Although QP s = Q, it is possible to set QPS = Q by adopting the configuration described below, and thereby QP s = Q.
The offset between S and Q can be removed and the plant output can perfectly match the load demand.

すなわち、第1図の点線および第2図に示すにうに(Q
QP8)を作成し、制御器(一般にPIDijlltI
l器)を介してフィードバックでることにより圧力設定
値Pso (Q)を作成する。
That is, sea urchin (Q) shown in the dotted line in Figure 1 and in Figure 2
QP8) and controller (generally PIDijlltI
A pressure set value Pso (Q) is created by feedback via the

なお、第2図の関数発り:器には、前述した式をpso
について解いた次式が記憶されている。
In addition, for the function generator in Figure 2, the above-mentioned formula is used as pso
The following equation solved for is memorized.

Ps o =Ps −GP  (Q) xQ[発明の効
果] 以上述べたJ:うに本発明の高速増殖炉プラン]・の制
m装置では、予め負荷レベルに対応して適切な圧力漏定
率をサーベイしておき、プラン!・の負荷が変更される
際に、この圧力漏定率と圧力設定値とを同時に変更する
ようにしたので、主蒸気圧力を所定の値に容易に制御す
ることが可能となり、プラント全体のヒー1へバランス
を81画に合致したものにすることかできる。
Ps o = Ps - GP (Q) Keep it, plan!・When the load of You can adjust the balance to match 81 strokes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の高速増殖炉プラントの制御装置のF 
l−I Cの一実施例を示すブロック図、第2図はQp
 s =Qとするための構成を示すブロック図、第3図
は高速増殖炉プラントの水蒸気系を示す配管系統図、第
4図は第3図に示すE HCの詳細を示すブロック図で
ある。
Figure 1 shows F of the control system for a fast breeder reactor plant according to the present invention.
A block diagram showing one embodiment of l-I C, FIG.
FIG. 3 is a block diagram showing the configuration for setting s = Q, FIG. 3 is a piping system diagram showing the steam system of the fast breeder reactor plant, and FIG. 4 is a block diagram showing details of the EHC shown in FIG. 3.

Claims (1)

【特許請求の範囲】[Claims] (1)主蒸気圧力とEHC圧力設定値との偏差に圧力調
定率を乗算し全流量要求信号を得るとともに、タービン
回転数とタービン加速度に基づいて加減弁流量要求信号
を得、前記全流量要求信号および加減弁流量要求信号に
基づいてタービンバイパス弁およびタービン加減弁の開
度を制御する高速増殖炉プラントの制御装置において、
前記圧力調定率を負荷要求信号に基づいて変化させる圧
力漏定率信号発生装置と、前記圧力設定値を負荷要求信
号に基づいて変化させる圧力設定信号発生装置とを備え
、前記負荷要求信号の変化に対し前記主蒸気圧力を変化
させることなく前記EHCの全流量要求信号をプラント
制御系の負荷要求信号に一致させる機能を有することを
特徴とする高速増殖炉プラントの制御装置。
(1) Multiply the deviation between the main steam pressure and the EHC pressure set value by the pressure adjustment rate to obtain a total flow rate request signal, and obtain a regulating valve flow rate request signal based on the turbine rotation speed and turbine acceleration to obtain the total flow rate request. In a control device for a fast breeder reactor plant that controls the opening degree of a turbine bypass valve and a turbine control valve based on a signal and a control valve flow rate request signal,
A pressure leakage rate signal generator that changes the pressure adjustment rate based on a load request signal, and a pressure setting signal generator that changes the pressure setting value based on the load request signal, On the other hand, a control device for a fast breeder reactor plant, characterized in that it has a function of matching the total flow rate request signal of the EHC with the load request signal of the plant control system without changing the main steam pressure.
JP59236244A 1984-11-09 1984-11-09 Controller for fast breeder reactor plant Pending JPS61114193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59236244A JPS61114193A (en) 1984-11-09 1984-11-09 Controller for fast breeder reactor plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59236244A JPS61114193A (en) 1984-11-09 1984-11-09 Controller for fast breeder reactor plant

Publications (1)

Publication Number Publication Date
JPS61114193A true JPS61114193A (en) 1986-05-31

Family

ID=16997910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59236244A Pending JPS61114193A (en) 1984-11-09 1984-11-09 Controller for fast breeder reactor plant

Country Status (1)

Country Link
JP (1) JPS61114193A (en)

Similar Documents

Publication Publication Date Title
US4207842A (en) Mixed-flow feedwater heater having a regulating device
US4437313A (en) HRSG Damper control
US4274256A (en) Turbine power plant with back pressure turbine
US6134891A (en) Method and device for quick power regulation of a power station system
JPS6310321B2 (en)
US3172266A (en) Automatic start-up devices for a steamelectric generating plant
CA1067150A (en) Output regulator for a thermal power-producing plant
JPS61114193A (en) Controller for fast breeder reactor plant
US3089308A (en) Regulating system for steam power plants with forced-flow boilers
JPS61145305A (en) Control device for turbine plant using hot water
GB778941A (en) Improvements relating to power plant including a nuclear reactor
GB845013A (en) Regulation of thermal power plants
JPH0330761B2 (en)
JPS61114196A (en) Method of starting fast breeder reactor plant
JPS61114197A (en) Method of stopping fast breeder reactor plant
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JP2965607B2 (en) Steam turbine controller
JPS62118010A (en) Control device for generating plant
JPH0221296A (en) Controlling of fast breeder reactor system
JPS58148208A (en) Controller of combined cycle power plant
JP3056880B2 (en) Feedwater heater controller
JPS61114195A (en) Method of stopping fast breeder reactor plant
JPH0440527B2 (en)
SU987122A1 (en) Control system of central heating turboelectric plant
JPS59110810A (en) Water level control device for steam turbine degasifier