JP3312396B2 - Gas pressure control method for combined cycle power plant - Google Patents

Gas pressure control method for combined cycle power plant

Info

Publication number
JP3312396B2
JP3312396B2 JP25807392A JP25807392A JP3312396B2 JP 3312396 B2 JP3312396 B2 JP 3312396B2 JP 25807392 A JP25807392 A JP 25807392A JP 25807392 A JP25807392 A JP 25807392A JP 3312396 B2 JP3312396 B2 JP 3312396B2
Authority
JP
Japan
Prior art keywords
pressure
power plant
lng
gas supply
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25807392A
Other languages
Japanese (ja)
Other versions
JPH06108876A (en
Inventor
隆 八木
昌宏 林
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP25807392A priority Critical patent/JP3312396B2/en
Publication of JPH06108876A publication Critical patent/JPH06108876A/en
Application granted granted Critical
Publication of JP3312396B2 publication Critical patent/JP3312396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Control Of Fluid Pressure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、LNG貯蔵基地からの
LNGを一本の送ガスをコンバインドサイクル発電所に
供給する方法に係り、特にその各発電所でのLNG入口
圧力を安定して制御できるコンバインドサイクル発電所
の送ガス圧力制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for supplying LNG from an LNG storage base to a combined cycle power plant with one gas supply, and more particularly to a method for stably controlling the LNG inlet pressure at each of the power plants. The present invention relates to a method for controlling a gas supply pressure of a combined cycle power plant.

【0002】[0002]

【従来の技術】コンバインドサイクル発電所の送ガス方
式は、それぞれ距離的に離れた発電所を一本の送ガス導
管を介して結び、LNG貯蔵基地から送ガス導管を介し
全発電量に見合った量のLNGを供給して各発電所の発
電タービンを駆動するものである。この各発電所のター
ビンを駆動する場合、そのタービンの入口圧力の変動幅
は、3〜5kg/cm2 に抑える必要がある。
2. Description of the Related Art In a gas transmission system of a combined cycle power plant, power plants separated from each other at a distance are connected through a single gas transmission conduit, and the total power generation amount is matched from the LNG storage base via the gas transmission conduit. The amount of LNG is supplied to drive the power generation turbine of each power plant. When driving the turbine of each power plant, the fluctuation range of the inlet pressure of the turbine needs to be suppressed to 3 to 5 kg / cm 2 .

【0003】通常、送ガス導管の送ガス圧力は、タービ
ンの入口圧力より高く設定され、各発電所には減圧弁が
接続され、各発電所での発電量に応じて減圧弁の開度を
調整して発電量に見合ったLNGを導入すると共にター
ビンの入口圧力が所定の範囲に収まるようにしている。
[0003] Usually, the gas sending pressure of the gas sending conduit is set higher than the inlet pressure of the turbine, and a pressure reducing valve is connected to each power plant, and the opening of the pressure reducing valve is adjusted according to the amount of power generated at each power plant. Adjustment is made to introduce LNG corresponding to the amount of power generation, and to ensure that the inlet pressure of the turbine falls within a predetermined range.

【0004】[0004]

【発明が解決しようとする課題】ところで、各発電所
は、一本の送ガス導管を介して結ばれており、各発電所
では、それぞれ独立して運転するため、各発電所での圧
力制御点の選定が難しい問題がある。
The power plants are connected to each other through a single gas supply pipe. Since each power plant operates independently, the pressure control at each power plant is performed. There is a problem in selecting points.

【0005】今、例えばLNGの消費量を決め、これに
基づいて圧力損失を考慮して減圧弁の入口の設定圧力を
設定し、LNGをその消費量に応じて供給すれば、各発
電所での入口圧力は設定圧力にあり、タービンの入口圧
力を所定の変動幅内に収めることができる。しかしなが
らこの各発電所の設定圧は、各発電所の距離を考慮して
設定してあるものの、LNGの消費量が変わればその設
定圧も変化するため、実際に時々変化するLNGの消費
量に対して各発電所の圧力制御点を適正に選定すること
は困難である。
[0005] For example, if the consumption of LNG is determined, the set pressure at the inlet of the pressure reducing valve is set in consideration of the pressure loss based on this, and LNG is supplied in accordance with the consumption, the LNG at each power plant Is at a set pressure, and the turbine inlet pressure can be kept within a predetermined fluctuation range. However, although the set pressure of each power plant is set in consideration of the distance of each power plant, if the LNG consumption changes, the set pressure also changes. On the other hand, it is difficult to properly select the pressure control points of each power plant.

【0006】通常、設定圧力に対して圧力が変動しても
減圧弁で調整すれば、一応変動幅内に収めることは可能
であるが、この減圧弁による調整には限度があり、例え
ば距離的に離れた発電所間で一方はLNGの消費量が少
なく、他方は多い場合等では、これら発電所のLNGの
全消費量を基にLNGを供給しようとすると、遠方の発
電所では圧力損失が、タービンの変動幅より上回ってし
まい減圧弁でタービンの入口圧力を所定の変動幅に抑え
ることができなくなる問題がある。
Normally, even if the pressure fluctuates with respect to the set pressure, it is possible to temporarily fall within the fluctuation range by adjusting the pressure with the pressure reducing valve. However, the adjustment by the pressure reducing valve is limited. If LNG consumption is low on one side and LNG consumption is high on the other side, if LNG is to be supplied based on the total consumption of LNG at these power plants, pressure loss will occur at distant power plants. However, there is a problem that the pressure exceeds the fluctuation range of the turbine, and the pressure at the inlet of the turbine cannot be suppressed to a predetermined fluctuation range by the pressure reducing valve.

【0007】そこで、本発明の目的は、上記課題を解決
し、一本の送ガス導管を介して各発電所にLNGを供給
するにおいて、各発電所のタービン入口圧を所定の変動
幅に抑えることができるコンバインドサイクル発電所の
送ガス圧力制御方法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems and to suppress the turbine inlet pressure of each power plant to a predetermined fluctuation range when supplying LNG to each power plant via one gas feed pipe. It is an object of the present invention to provide a method of controlling a gas supply pressure of a combined cycle power plant.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、LNG貯蔵基地からのLNGを、調整弁を
介し一本の送ガス導管を通して複数箇所の発電所に供給
すると共に各発電所で、送ガス導管からのLNGをそれ
ぞれ減圧弁で圧力調整してタービンに供給するコンバイ
ンドサイクル発電所の送ガス圧力制御方法において、各
発電所の減圧弁の入口圧力を、予め送ガス管の圧力損失
に応じて設定し、各発電所で減圧弁入口側の実際の供給
圧力と設定圧力との差から制御出力を求めると共にその
各制御出力の内で最も大きいものを選択し、この制御出
力値を流量制御の設定として、その設定値にてLNG貯
蔵基地の総流量を制御するものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention is to supply LNG from an LNG storage base to a plurality of power plants through a single gas feed conduit via a regulating valve and to generate electricity at each of a plurality of power plants. In a gas supply pressure control method for a combined cycle power plant in which LNG from a gas supply conduit is regulated by a pressure reducing valve and supplied to a turbine, the inlet pressure of the pressure reducing valve of each power plant is determined in advance by a gas supply pipe. Set according to the pressure loss, determine the control output from the difference between the actual supply pressure at the pressure reducing valve inlet side and the set pressure at each power plant, and select the largest control output among the control outputs. The value is set as the flow rate control, and the total flow rate of the LNG storage base is controlled by the set value.

【0009】[0009]

【作用】上記構成によれば、各発電所に導入されるLN
Gの実際圧力と設定圧との差から制御出力を求め、その
制御出力の内大きい方を選択し、その制御出力値を設定
値として総流量を補正することで、実際の変動に応じた
適切な圧力制御が行え、発電所のタービンの入口圧力の
変動幅を所定内に抑えることが可能となる。
According to the above construction, the LN introduced into each power plant
The control output is obtained from the difference between the actual pressure of G and the set pressure, the larger one of the control outputs is selected, and the total output is corrected by using the control output value as the set value, so that an appropriate value corresponding to the actual fluctuation is obtained. Pressure control can be performed, and the fluctuation range of the inlet pressure of the turbine of the power plant can be suppressed within a predetermined range.

【0010】[0010]

【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0011】図1において、LNG貯蔵基地6には流量
調整弁1を介して送ガス導管7が接続される。この流量
調整弁1の出口側には送ガス入口流量計5bと送ガス入
口圧力計5aが接続される。この送ガス導管7は、LN
G貯蔵基地6から距離a離れた発電所8aまで敷設さ
れ、その発電所8aから距離b離れた発電所8bまで敷
設される。送ガス導管7から各発電所8a,8bへのL
NGの供給は、減圧弁2a,2bを介して、各発電所8
a,8bのタービン9に供給されるようになっている。
この減圧弁2a,2bの入口側には、送ガス入口圧力計
3a,3bと送ガス入口流量計4a,4bが接続され
る。
In FIG. 1, a gas supply conduit 7 is connected to an LNG storage base 6 via a flow control valve 1. An outlet side of the flow control valve 1 is connected to a gas inlet flow meter 5b and a gas inlet pressure gauge 5a. This gas supply conduit 7 is connected to LN
It is laid to a power station 8a at a distance a from the G storage base 6, and is laid to a power station 8b at a distance b from the power station 8a. L from the gas transmission pipe 7 to each power station 8a, 8b
NG is supplied to each power station 8 via the pressure reducing valves 2a and 2b.
a and 8b.
Gas inlet pressure gauges 3a, 3b and gas inlet flow meters 4a, 4b are connected to the inlet sides of the pressure reducing valves 2a, 2b.

【0012】各発電所8a,8bでは要求発電量に見合
った数のタービン9を駆動すると共にそのタービン9に
LNGを供給すべく、必要な消費量を流量計4a,4b
の流量値を基に減圧弁2a,2bの開度を調整する。
In each of the power stations 8a and 8b, the necessary amount of consumption is measured to drive the number of turbines 9 corresponding to the required power generation and to supply LNG to the turbines 9 by the flow meters 4a and 4b.
The opening degree of the pressure reducing valves 2a and 2b is adjusted based on the flow rate value of (1).

【0013】各発電所8a,8bのLNG消費量(送ガ
ス流量計4a,4bの総流量値),送ガス入口圧力計3
a,3bの検出値は、基地6側の圧力制御装置A(図
2)に送信される。LNG貯蔵基地6では、通常、LN
G消費量が入力されると、送ガス入口圧力計5aが設定
供給圧力で送ガス入口流量計5bがLNG消費量に見合
うように流量調整弁1の開度を調整するが、各発電所か
らの上述した検出値に応じてその流量調整弁1の開度を
補正して供給し、LNGを実際の圧力損失に応じた送ガ
ス量となるよう制御するようになっている。
The LNG consumption of each power station 8a, 8b (total flow value of the gas flow meters 4a, 4b), the gas inlet pressure gauge 3
The detected values of a and 3b are transmitted to the pressure control device A (FIG. 2) on the base 6 side. At the LNG storage base 6, LN
When the G consumption is input, the gas inlet pressure gauge 5a adjusts the opening of the flow control valve 1 so that the gas inlet flow meter 5b matches the LNG consumption at the set supply pressure. The flow rate of the flow control valve 1 is corrected and supplied in accordance with the above-described detected value, and the LNG is controlled so as to have a gas supply amount corresponding to the actual pressure loss.

【0014】図2はこの圧力制御装置Aを示すものであ
る。
FIG. 2 shows the pressure control device A.

【0015】先ず各発電所8a,8bでは、例えば標準
のLNG消費量に見合って供給圧力と流量を設定して送
ガス導管7にLNGを流した時、距離に応じた圧力損失
を考慮し、各発電所8a,8bの減圧弁2a,2bの入
口設定圧力SVa,SVbを設定する。この設定圧力S
Va,SVbは、それぞれPID制御器10a,10b
に入力され、他方送ガス入口圧力計3a,3bの実際の
検出値PVa,PVbが入力される。PID制御器10
a,10bは、この設定圧力SVと実際の圧力PVと比
例・積分・微分を行って例えば0〜100の制御出力値
を出力する。この各PID制御器10a,10bの制御
出力値はハイセレクタ11に入力される。ハイセレクタ
11は、この制御出力値の内、大きいほうを選択し、こ
れを制御値として流量制御器12に入力する。流量制御
器12には、各発電所8a,8bでのLNG総流量が入
力されており、この総流量をハイセレクタ11からの制
御出力値で補正してハイセレクタ13を介して流量調整
弁1に出力してLNG供給量を調整する。
First, in each of the power plants 8a and 8b, when LNG is supplied to the gas supply conduit 7 by setting a supply pressure and a flow rate in accordance with, for example, a standard LNG consumption, a pressure loss according to a distance is taken into consideration. The inlet set pressures SVa and SVb of the pressure reducing valves 2a and 2b of the power plants 8a and 8b are set. This set pressure S
Va and SVb are PID controllers 10a and 10b, respectively.
And the actual detection values PVa and PVb of the gas inlet pressure gauges 3a and 3b are input. PID controller 10
a and 10b perform a proportional / integral / differential operation on the set pressure SV and the actual pressure PV to output a control output value of 0 to 100, for example. The control output values of the PID controllers 10a and 10b are input to the high selector 11. The high selector 11 selects the larger one of the control output values, and inputs this to the flow controller 12 as a control value. The total flow rate of LNG at each of the power plants 8 a and 8 b is input to the flow rate controller 12, and the total flow rate is corrected by the control output value from the high selector 11, and the flow rate is adjusted via the high selector 13. To adjust the LNG supply amount.

【0016】このように各PID制御器10a,10b
の制御出力値の大きいほうを選択すること、すなわち、
圧力損失が大きく最も圧力が低くなる発電所に合せて供
給量を制御することで、タービンの入口側の圧力変動幅
を所定範囲内に収めることが可能となる。
As described above, the PID controllers 10a, 10b
To select the larger control output value of
By controlling the supply amount in accordance with the power plant having the largest pressure loss and the lowest pressure, it is possible to keep the pressure fluctuation width on the inlet side of the turbine within a predetermined range.

【0017】なお、このハイセレクタ13には、LNG
貯蔵基地6側のLNG供給量が入力され、各発電所から
の圧力と流量の送信が断線事故などで受信できないない
場合、基地6側で流量調整弁1を制御することができる
ようになっている。すなわち、各発電所8a,8bでL
NG消費量が決定されると、その消費量に見合った供給
量となるよう調整弁1の開度が設定される。この場合、
先ず入口圧力計5aで検出した圧力が圧力制御器14に
入力され、その圧力が設定供給圧力となるように制御出
力が流量制御器15に入力され、これを基に流量制御器
15は送ガス入口流量計5bによる流量値が適正になる
ように制御流量値をハイセレクタ13に出力する。この
場合ハイセレクタ11は、通常は圧力損失を考慮した流
量制御器12の出力値の方が高いため、流量制御器12
の出力値で流量調整弁1を制御するが、各発電所からの
圧力と流量の送信が断線事故などで受信できないない場
合、基地6側で設定した制御流量値で流量調整弁1を制
御することが可能となる。
The high selector 13 has an LNG
When the supply amount of LNG at the storage base 6 is input and the transmission of the pressure and flow from each power plant cannot be received due to a disconnection accident or the like, the flow control valve 1 can be controlled at the base 6 side. I have. That is, L at each power station 8a, 8b
When the NG consumption is determined, the opening of the regulating valve 1 is set so that the supply amount matches the consumption. in this case,
First, the pressure detected by the inlet pressure gauge 5a is input to the pressure controller 14, and the control output is input to the flow controller 15 so that the pressure becomes the set supply pressure. The control flow rate value is output to the high selector 13 so that the flow rate value by the inlet flow meter 5b becomes appropriate. In this case, since the output value of the flow controller 12 considering the pressure loss is normally higher, the high selector 11
When the transmission of pressure and flow from each power plant cannot be received due to a disconnection accident or the like, the flow control valve 1 is controlled by the control flow value set on the base 6 side. It becomes possible.

【0018】なお、上述の実施例では発電所を2箇所で
説明したが3箇所以上あってもよいことは勿論である。
In the above-described embodiment, two power stations have been described, but it goes without saying that there may be three or more power stations.

【0019】[0019]

【発明の効果】以上要するに本発明によれば、各発電所
に導入されるLNGの実際圧力と設定圧との差から制御
出力を求め、その制御出力の内大きい方を選択し、その
制御出力値に基づいて総流量を補正することで、実際の
変動に応じた適切な圧力制御が行え、発電所のタービン
の入口圧力の変動幅を所定内に抑えることが可能とな
る。
In summary, according to the present invention, the control output is obtained from the difference between the actual pressure of the LNG introduced into each power plant and the set pressure, and the larger one of the control outputs is selected. By correcting the total flow rate based on the value, appropriate pressure control can be performed in accordance with the actual fluctuation, and the fluctuation width of the inlet pressure of the turbine of the power plant can be suppressed within a predetermined range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing one embodiment of the present invention.

【図2】本発明における圧力制御装置の詳細を示す回路
のブロック図である。
FIG. 2 is a block diagram of a circuit showing details of a pressure control device according to the present invention.

【符号の説明】[Explanation of symbols]

1 流量調整弁 2a,2b 減圧弁 3a,3b 送ガス入口圧力計 4a,4b 送ガス入口流量計 5a 送ガス出口圧力計 5b 送ガス出口流量計 6 LNG貯蔵基地 7 送ガス導管 8a,8b 発電所 9 タービン DESCRIPTION OF SYMBOLS 1 Flow control valve 2a, 2b Pressure reducing valve 3a, 3b Gas inlet pressure gauge 4a, 4b Gas inlet flow meter 5a Gas outlet pressure gauge 5b Gas outlet flow meter 6 LNG storage base 7 Gas sending pipe 8a, 8b Power plant 9 Turbine

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−207831(JP,A) 特開 平4−179835(JP,A) 特開 昭61−141018(JP,A) 実開 昭55−103711(JP,U) (58)調査した分野(Int.Cl.7,DB名) F02C 1/00 - 9/58 G05D 16/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-207831 (JP, A) JP-A-4-179835 (JP, A) JP-A-61-141018 (JP, A) 103711 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F02C 1/00-9/58 G05D 16/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 LNG貯蔵基地からのLNGを、調整弁
を介し一本の送ガス導管を通して複数箇所の発電所に供
給すると共に各発電所で、送ガス導管からのLNGをそ
れぞれ減圧弁で圧力調整してタービンに供給するコンバ
インドサイクル発電所の送ガス圧力制御方法において、
各発電所の減圧弁の入口圧力を、予め送ガス管の圧力損
失に応じて設定し、各発電所で減圧弁入口側の実際の供
給圧力と設定圧力との差から制御出力を求めると共にそ
の各制御出力の内で最も大きいものを選択し、この制御
出力値を流量制御の設定値として、その設定値にてLN
G貯蔵基地の総流量を調整制御することを特徴とするコ
ンバインドサイクル発電所の送ガス圧力制御方法。
1. An LNG from an LNG storage base is supplied to a plurality of power plants through one gas supply conduit via a regulating valve, and at each power plant, LNG from the gas supply conduit is pressure-reduced by a pressure reducing valve. In a method of controlling a gas supply pressure of a combined cycle power plant that adjusts and supplies the combined gas to a turbine,
The pressure at the inlet of the pressure reducing valve at each power plant is set in advance according to the pressure loss of the gas supply pipe, and at each power plant, the control output is obtained from the difference between the actual supply pressure at the pressure reducing valve inlet side and the set pressure, and The largest one of the control outputs is selected, and this control output value is set as a set value of the flow control.
A gas supply pressure control method for a combined cycle power plant, wherein a total flow rate of a G storage base is adjusted and controlled.
JP25807392A 1992-09-28 1992-09-28 Gas pressure control method for combined cycle power plant Expired - Lifetime JP3312396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25807392A JP3312396B2 (en) 1992-09-28 1992-09-28 Gas pressure control method for combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25807392A JP3312396B2 (en) 1992-09-28 1992-09-28 Gas pressure control method for combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH06108876A JPH06108876A (en) 1994-04-19
JP3312396B2 true JP3312396B2 (en) 2002-08-05

Family

ID=17315154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25807392A Expired - Lifetime JP3312396B2 (en) 1992-09-28 1992-09-28 Gas pressure control method for combined cycle power plant

Country Status (1)

Country Link
JP (1) JP3312396B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303559A (en) * 2006-05-11 2007-11-22 Nissan Motor Co Ltd Gas supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303559A (en) * 2006-05-11 2007-11-22 Nissan Motor Co Ltd Gas supply system

Also Published As

Publication number Publication date
JPH06108876A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
US4729930A (en) Augmented air supply for fuel cell power plant during transient load increases
US8056317B2 (en) Apparatus and system for gas turbine engine control
EP0573140B1 (en) Real-time economic load allocation
EP1096351A1 (en) Parallel bypass type fluid feeding device, and method and device for controlling fluid variable type pressure system flow rate used for the device
US7685802B2 (en) Methods and apparatus to facilitate gas turbine fuel control
JPH05501492A (en) Control unit installed on site
US4798531A (en) Process and apparatus for the control of the air and fuel supply to a plurality of burners
JP4256684B2 (en) Gas supply method
JP3312396B2 (en) Gas pressure control method for combined cycle power plant
CN113464920A (en) Method and system for coordinately controlling steam pressure of main pipe
US5045272A (en) Fluid temperature balancing system
JP2001027104A (en) Condensate flow control method for condensate steam turbine
JP2000274603A (en) Water supply controller
KR20150136908A (en) Integrated Control System for Supercritical Brayton Cycle Power plant using Variable Heat Source
JP3817851B2 (en) Fuel gas pressure control method and apparatus for gas fired boiler
JPS5831519B2 (en) Parallel operation method for multiple gas holders
JP3628884B2 (en) Steam header pressure controller
CN210688183U (en) Water supply system and nuclear power plant
JP4266198B2 (en) Flow control device
JPH06324747A (en) Flow rate control method
JPH0672695B2 (en) Air-fuel ratio proportional control method
JPH0926108A (en) Water supply control device
JPS62118010A (en) Control device for generating plant
JP3677844B2 (en) Natural gas supply apparatus and method
JP2003157116A (en) Gas supply pressure control system

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11