JP4256684B2 - Gas supply method - Google Patents

Gas supply method Download PDF

Info

Publication number
JP4256684B2
JP4256684B2 JP2003005569A JP2003005569A JP4256684B2 JP 4256684 B2 JP4256684 B2 JP 4256684B2 JP 2003005569 A JP2003005569 A JP 2003005569A JP 2003005569 A JP2003005569 A JP 2003005569A JP 4256684 B2 JP4256684 B2 JP 4256684B2
Authority
JP
Japan
Prior art keywords
gas
pressure
gas flow
variable
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003005569A
Other languages
Japanese (ja)
Other versions
JP2004220237A (en
Inventor
秀人 高崎
友法 山口
昇志 山本
訓聡 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003005569A priority Critical patent/JP4256684B2/en
Publication of JP2004220237A publication Critical patent/JP2004220237A/en
Application granted granted Critical
Publication of JP4256684B2 publication Critical patent/JP4256684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガス製造工場等から発生するガスを消費地に安定供給する方法に関する。更に詳しくは、ガス供給量の変動、ガス消費量の変動に対応するために、ガス流路に設置された調節弁の開閉動作制御に関する。
【0002】
【従来の技術】
エチレン製造の際に副生ガスとして発生する水素ガスは、そのガスの特性を利用して各種産業の製造工場において原料及びユーティリティとして使用されている。各種産業の製造工場等において使用される水素ガスは、継続的に安定供給することが絶対的条件として求められている。特に複数のガス供給源から供給されたガスを複数のガス消費地に分配供給する場合には、需給バランスをとるためのガス供給制御が複雑となるので、ガス圧力の変動に対する応答性が低下する。
【0003】
そこで、供給系内にガス混合器を設置し、複数のガス供給源の内、いずれかのガス供給源のガス供給量に変動があった場合にも、他のガス供給源からガス混合器に速やかにガスを補給し、そのガス混合器を介してガス供給することによりガスを安定供給する制御装置が提案されている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開平7−261847号公報
【0005】
しかし、上記装置では、ガス混合器の設置スペースを確保する必要があり、また、ガス混合器にガスを補給しなければならないため、ガス供給源からのガス供給量を調節できない場合には適用できないという問題があった。
【0006】
また、実プラントにおいては、通常、ガス流路に設置したガス圧力調節弁やガス流量調節弁の開度をPID制御することにより、ガスの安定供給が行われている。これら調節弁の開度をPID制御する際の制御変数は、運転中のプラントにおいて試行錯誤することによって適正な制御変数を求められ、速く滑らかな調節弁の制御を実現している。
【0007】
しかしながら、運転中のプラントにおいて、適正なPID制御変数を求めることは非常に困難である。というのも、試行錯誤で制御変数を求めていく過程では、変数P、I及びDそれぞれを大きくし過ぎてしまったり、小さくし過ぎてしまったりして、各消費地への水素ガス供給量を大きく変動させてしまう恐れがあるからである。
【0008】
【発明が解決しようとする課題】
本発明は、上記の従来技術の問題を解決しようとするものであり、各ガス消費地へのガス供給量を変動させることなく、かつ、ガス供給系内にガス混合器やバッファータンク等を設置することなく、複数のガス供給源から複数のガス消費地にガスを安定的に継続して供給できる方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記課題を解決する本発明は、エチレン製造の際に副生ガスとして発生する水素ガスを複数のガス供給源からガス流路を介して複数のガス消費地に安定供給する方法であって、このガス供給系のガス流路には、ガス圧力を計測するガス圧力計測器と、ガス圧力を調節するガス圧力調節弁と、ガス流量を調節するガス流量調節弁とが設けられ、水素ガスを貯蔵するためのガス混合器及びバッファータンクが設置されておらず、ガス供給系を再現したシミュレーションソフト上で、ガス温度及び流量の時間変化に対してガス圧力調節弁の制御変数(変数P、変数I及び変数D)を変化させることによりガス圧力計測器にて得られるガス流路の圧力の変動が±0.2%未満となるような制御変数を決定し、この制御変数を用いてガス供給系のガス圧力調節弁の開度をPID制御することを特徴としている。
【0010】
【発明の実施の形態】
以下、図面を用いて本発明のガス供給方法について詳細に説明する。図1は、本発明の一実施形態に係るガス安定供給方法を適用するガス供給系の構成を示すブロック図である。
【0011】
このガス供給系は、エチレン製造工場10、第2の製造工場11a及び第3の製造工場11bからそれぞれ発生した水素ガスを図示しない制御装置による制御の下で第1〜第4のガス消費工場20a〜20dと燃料ガス系に分配供給するものである。
エチレン製造工場10にガス流量計測器3a及びガス流量調節弁1aを介して第1のガス消費工場20aが接続されると共に、エチレン製造工場10にガス流量計測器3b、ガス流量調節弁1b、ガス流量計測器3d及びガス流量調節弁1dを介して第2のガス消費工場20bが接続されている。同様に、エチレン製造工場10にガス流路5a、ガス圧力計測器4a、ガス流量計測器3c及びガス流量調節弁1cを介して第3のガス消費工場20cが接続され、さらにガス圧力計測器4aから分岐し、ガス圧力調節弁2d、ガス圧力計測器4d及びガス流路5dを介して第4のガス消費工場20dが接続されている。また、ガス圧力計測器4aから分岐してガス圧力調節弁2aが接続され、このガス圧力調節弁2aにガス流路5c、ガス圧力計測器4c及びガス圧力調節弁2cを介して燃料ガス系が接続されている。
さらに、第2の製造工場11aがガス流路5dに接続され、第3の製造工場11bがガス圧力計測器4b及びガス圧力調節弁2bを介してガス流路5cに接続されている。
また、第3の製造工場11bはエチレン製造工場10と第2のガス消費工場20bとの間に介在されたガス流量調節弁1bの下流側にも接続されている。
【0012】
また、図示していない制御装置は、ガス圧力計測器4a〜4dにて得られた圧力信号に基づいて、入力された制御変数および制御目標値等からガス流量調節弁1a〜1dおよびガス圧力調節弁2a〜2dの開度を計算し、結果を電気または空気信号として出力し、これら調節弁の開度をPID制御する機能を有する装置である。
【0013】
ここで、PID制御とは、制御変数であるP(比例動作)、I(積分動作)およびD(微分動作)を用いて、制御対象の指示値を目標値に近づけるようにする制御のことをいう。
【0014】
このようなガス供給系において、例えば、第4の消費工場20dのガス消費量が変動すると、ガス流路5dの圧力が変動する。ガス流路5dの圧力が一定となるように、ガス圧力調節弁2dの開度がPID制御され、ガス流路5dへ送出する水素ガス量を増減する。このガス圧力調節弁2dの開度調節に伴ってガス流路5aの圧力が変動しないよう、ガス圧力調節弁2aの開度がPID制御され、ガス流路5cへ送出する水素ガス量を増減する。次いで、ガス圧力調節弁2aの開度調節に伴ってガス流路5cの圧力が変動しないように、ガス圧力調節弁2cの開度がPID制御され、燃料ガス系へ供給する水素ガス量を増減する。また、たとえガス流路5cの圧力が変動した場合でも、ガス流路5bの圧力が変動しないように、ガス圧力調節弁2bの開度がPID制御され、ガス圧力調節弁2bからガス流路5cへ送出する水素ガス量が変動しないようにする。即ち、ガス圧力調節弁2a〜2dは、第4の消費工場20dのガス消費量の変動を、最終的に燃料ガス系への供給量の増減によって調整し、ガス供給系内の圧力を安定化している。
【0015】
本実施の形態において、調節弁の制御変数P、IおよびDはそれぞれ、以下の各動作に対応している。
P動作:目標値と指示値に差R[%]が発生した時、その差Rに変数Pを乗じた値だけ弁の開度S[%]を瞬時に動かす制御動作
I動作:目標値と指示値に差R[%]が発生し続けた時、その差Rに変数Pを乗じた値だけ弁の開度S[%]を、変数I[分]の時間をかけて動かす制御動作D動作:目標値と指示値の差R[%]が1分間に1[%]増加したとき、変数Pに変数Dを乗じた値だけ、弁の開度S[%]を瞬時に動かす制御動作
【0016】
上記説明から分かるように、変数Pは、弁動作の速さを決める制御変数であり、大き過ぎると弁動作が早すぎて振動の原因となり、小さ過ぎると弁動作が遅すぎて指示値を目標値に制御できなくなってしまう。変数Iは、弁動作の滑らかさを決める制御変数であり、大き過ぎると指示値を目標値に近づけるのに時間が掛かり過ぎ、小さ過ぎるとP動作に近づいてI動作の狙いである滑らかさが無くなってしまう。したがって、調節弁の速く滑らかな制御を実現するためには、振動が生じない範囲で変数Pを極力大きく、変数Iを極力小さくする必要がある。
【0017】
また、変数Dは、指示値の単位時間当たり変化率に応じた弁動作を決めるので振動を抑制する特性を決める制御変数である。ゆえに、高周波の振動に対してD動作は、振動を増幅させてしまうこともあり、一般にこの種のPID制御においては、変数D=0とすることが多い。
変数D=0とした場合、各ガス圧力調節弁2a〜2dの変数Pおよび変数Iが適正でないと、例えば、第4の消費工場20dのガス消費量が変動したときに以下の問題が起こる。
1.ガス圧力調節弁2dの変数Pおよび変数Iが適正でないと、ガス流路5aとガス流路5dの圧力が安定せず、第1の消費工場20aへの送出量とガス流路5bの圧力が変動してしまう。また、ガス流路5bの圧力変動に伴って第2の消費工場20bへの送出量も変動してしまう。
2.ガス圧力調節弁2aの変数Pおよび変数Iが適正でないと、ガス流路5aの圧力変動は収まらない。また、ガス流路5cの圧力も変動する。
3.ガス圧力調節弁2bの変数Pおよび変数Iが適正でないと、ガス流路5bの圧力変動は収まらない。また、ガス流路5cの圧力も変動する。
4.ガス圧力調節弁2cの変数Pおよび変数Iが適正でないと、ガス流路5cの圧力変動は収まらない。
【0018】
本発明においては、上記のような問題を起こすことのない制御変数を求めるために、動的圧力変動解析を用いる。動的圧力変動解析とは、時間変化する温度や流量等に対する供給系の圧力変化を時系列で算出する方法であり、例えば、汎用シミュレーションソフト「HYSYS」を使用して解析を実行することができる。この解析により得られた適正な制御変数P、IおよびDを制御装置に入力する。
【0019】
【実施例】
図1と同様のガス供給系を用いて本発明の実施例を説明する。エチレン製造工場10、第2の製造工場11aおよび第3の製造工場11bから発生する計200[容量単位/h]の水素ガスを第1〜第4の消費工場20a〜20dと燃料ガス系に分配供給する。各製造工場からの水素ガス供給量、ならびに各消費工場および燃料ガス系における水素ガス消費量は以下の通りである。ただし、水素ガス供給量は一定であり、消費工場20a、20bおよび20cにおける水素ガス消費量も一定である。
<水素ガス供給量>
エチレン製造工場10 :160[容量単位/h]
第2の製造工場11a :20[容量単位/h]
第3の製造工場11b :20[容量単位/h]
<水素ガス消費量>
第1の消費工場20a :1[容量単位/h]
第2の消費工場20b :6[容量単位/h]
第3の消費工場20c :5[容量単位/h]
第4の消費工場20d :100[容量単位/h]
燃料ガス系 :88[容量単位/h]
【0020】
エチレン製造工場10より発生した160[容量単位/h]の水素ガスは、ガス流量計測器3aおよびガス流量調節弁1aを介して第1の消費工場20aへ1[容量単位/h]、ガス流路5a、ガス圧力計測器4a、ガス流量計測器3c及びガス流量調節弁1cを介して第3の消費工場20cへ5[容量単位/h]の水素ガスが供給され、ガス流量計測器3bおよびガス流量調節弁1bを介して1[容量単位/h]、ガス流路5a、ガス圧力計測器4aおよびガス圧力調節弁2aを介して73[容量単位/h]、ガス流路5a、ガス圧力計測器4a、ガス圧力調節弁2dおよびガス圧力計測器4dを介して80[容量単位/h]の水素ガスが送出される。
第2の製造工場11aより発生した20[容量単位/h]の水素ガスは、ガス圧力計測器4dから送出された80[容量単位/h]の水素ガスとガス流路5dで合流し、計100[容量単位/h]の水素ガスが第4の消費工場20dへ供給される。
第3の製造工場11bより発生した20[容量単位/h]の水素ガスのうち5[容量単位/h]は、ガス流量調節弁1bから送出された1[容量単位/h]の水素ガスとガス流路5bで合流し、計6[容量単位/h]の水素ガスがガス流量計測器3dおよびガス流量調節弁1dを介して第2の消費工場20bへ供給され、残り15[容量単位/h]の水素ガスは、ガス圧力計測器4bおよびガス圧力調節弁2bを介して、ガス圧力調節弁2aから送出された73[容量単位/h]の水素ガスとガス流路5cで合流し、計88[容量単位/h]の水素ガスがガス圧力計測器4cおよびガス圧力調節弁2cを介して燃料ガス系へ送出される。
【0021】
まず、各々のガス圧力調節弁2a〜2dの制御変数(変数P、変数Iおよび変数D)として以下の値を入力し、ガス圧力調節弁2a〜2dの開度をPID制御して、3つのガス供給源(エチレン製造工場10、第2の製造工場11aおよび第3の製造工場11b)からガス流路を介して4つのガス消費工場20a〜20dにガスを分配供給した。ガス流路5bの圧力変動を図2(適用前)、ガス流路5cの圧力変動を図3(適用前)およびガス流路5dの圧力変動を図4(適用前)に示す。各ガス流路5b〜5dの圧力変動が±4%を超えており、各ガス消費工場に水素ガスを安定して供給することができないことが分かる。
(ガス圧力調節弁2a)=(0.4,1.0,0.0)
(ガス圧力調節弁2b)=(1.0,1.0,0.0)
(ガス圧力調節弁2c)=(1.0,1.0,0.0)
(ガス圧力調節弁2d)=(1.5,5.0,0.0)
【0022】
次に、汎用シミュレーションソフト「HYSYS」により、図1のガス供給系を再現し、シミュレーションソフト上で各ガス圧力調節弁2a〜2dの制御変数(変数P、変数I、変数D)をそれぞれ変化させて、各ガス流路5a〜5dの圧力変動が小さくなるように制御変数を決定した。ここで決定した制御変数として、例えば、以下に示すような値を図示しない制御装置に入力し、ガス圧力調節弁2a〜2dの開度をPID制御して、3つのガス供給源からガス流路を介して4つのガス消費工場にガスを分配供給した。ガス流路5bの圧力変動を図2(適用後)、ガス流路5cの圧力変動を図3(適用後)およびガス流路5dの圧力変動を図4(適用後)に示す。本発明の方法を適用したことにより、各ガス流路5b〜5dの圧力変動を±0.2%未満にすることができ、各ガス消費工場に水素ガスを安定して供給することができた。
(ガス圧力調節弁2a)=(0.4,1.0,0.0)
(ガス圧力調節弁2b)=(4.0,5.0,0.0)
(ガス圧力調節弁2c)=(7.0,4.0,0.0)
(ガス圧力調節弁2d)=(5.0,4.0,0.0)
【0023】
【発明の効果】
本発明によれば、複数のガス供給源からガス流路を介して複数のガス消費地にガスを供給する際、運転中のプラントにおいて各ガス消費地への水素ガス供給量を変動させることなく、かつ、ガス供給系内にガス混合器やバッファータンク等を設置することなく各ガス消費地にガスを安定供給することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係るガス安定供給方法を適用するガス供給系の構成を示すブロック図である。
【図2】 一実施形態におけるガス流路の圧力を示すグラフである。
【図3】 一実施形態におけるガス流路の圧力を示すグラフである。
【図4】 一実施形態におけるガス流路の圧力を示すグラフである。
【符号の説明】
1a〜1d ガス流量調節弁、2a〜2d ガス圧力調節弁、3a〜3d ガス流量計測器、4a〜4d ガス圧力計測器、5a〜5d ガス流路、10 エチレン製造工場、11a 第2の製造工場、11b 第3の製造工場、20a 第1の消費工場、20b 第2の消費工場、20c 第3の消費工場、20d 第4の消費工場。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for stably supplying gas generated from a gas manufacturing factory or the like to a consumption area. More specifically, the present invention relates to control of opening / closing operation of a control valve installed in a gas flow path in order to cope with fluctuations in gas supply amount and gas consumption.
[0002]
[Prior art]
Hydrogen gas generated as a by-product gas in the production of ethylene is used as a raw material and utility in manufacturing factories of various industries using the characteristics of the gas. As an absolute condition, hydrogen gas used in manufacturing factories of various industries is required to be stably supplied continuously. In particular, when gas supplied from a plurality of gas supply sources is distributed and supplied to a plurality of gas consuming areas, gas supply control for balancing the supply and demand is complicated, resulting in a decrease in responsiveness to fluctuations in gas pressure. .
[0003]
Therefore, a gas mixer is installed in the supply system, and even if there is a change in the gas supply amount of any one of the plurality of gas supply sources, the other gas supply source is changed to the gas mixer. There has been proposed a control device that stably supplies gas by quickly replenishing gas and supplying gas through the gas mixer (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-261847 [0005]
However, in the above apparatus, it is necessary to secure an installation space for the gas mixer, and it is necessary to replenish the gas to the gas mixer. Therefore, it is not applicable when the gas supply amount from the gas supply source cannot be adjusted. There was a problem.
[0006]
In an actual plant, normally, gas is stably supplied by PID-controlling the opening of a gas pressure control valve or a gas flow rate control valve installed in the gas flow path. As the control variables when performing PID control of the opening degree of these control valves, an appropriate control variable is obtained by trial and error in an operating plant, and the control valve is quickly and smoothly controlled.
[0007]
However, it is very difficult to determine an appropriate PID control variable in an operating plant. This is because, in the process of obtaining the control variable by trial and error, the variables P, I and D are made too large or too small, and the hydrogen gas supply amount to each consumption area is reduced. This is because there is a risk of a large fluctuation.
[0008]
[Problems to be solved by the invention]
The present invention is intended to solve the above-mentioned problems of the prior art, and does not change the amount of gas supplied to each gas consumption area, and a gas mixer, a buffer tank, etc. are installed in the gas supply system. It is an object of the present invention to provide a method capable of stably and continuously supplying gas from a plurality of gas supply sources to a plurality of gas consumption areas.
[0009]
[Means for Solving the Problems]
The present invention for solving the above problems is a method for stably supplying hydrogen gas generated as a by-product gas during ethylene production from a plurality of gas supply sources to a plurality of gas consumption areas through gas flow paths. The gas flow path of the gas supply system is provided with a gas pressure measuring device for measuring the gas pressure, a gas pressure adjusting valve for adjusting the gas pressure, and a gas flow rate adjusting valve for adjusting the gas flow rate to store hydrogen gas. The gas pressure control valve control variables (variable P, variable I) with respect to the time change of the gas temperature and flow rate on the simulation software that reproduces the gas supply system without the gas mixer and buffer tank for And a variable D) is determined to determine a control variable such that the fluctuation in the pressure of the gas flow path obtained by the gas pressure measuring instrument is less than ± 0.2%, and the gas supply system is determined using this control variable. Gas pressure It is characterized in the degree of opening of the control valve to PID control.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the gas supply method of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a gas supply system to which a gas stable supply method according to an embodiment of the present invention is applied.
[0011]
This gas supply system includes the first to fourth gas consuming factories 20a under the control of a hydrogen gas generated from the ethylene manufacturing plant 10, the second manufacturing plant 11a, and the third manufacturing plant 11b by a control device (not shown). ˜20d and distributed to fuel gas system.
A first gas consumption factory 20a is connected to the ethylene manufacturing factory 10 via a gas flow rate measuring device 3a and a gas flow rate adjusting valve 1a, and a gas flow rate measuring instrument 3b, a gas flow rate adjusting valve 1b, and a gas are connected to the ethylene manufacturing factory 10. A second gas consumption factory 20b is connected via the flow rate measuring device 3d and the gas flow rate control valve 1d. Similarly, a third gas consuming factory 20c is connected to the ethylene manufacturing factory 10 via a gas flow path 5a, a gas pressure measuring instrument 4a, a gas flow measuring instrument 3c, and a gas flow regulating valve 1c, and further a gas pressure measuring instrument 4a. The fourth gas consuming factory 20d is connected via the gas pressure control valve 2d, the gas pressure measuring device 4d, and the gas flow path 5d. A gas pressure control valve 2a is branched from the gas pressure measuring instrument 4a, and a fuel gas system is connected to the gas pressure adjusting valve 2a via the gas flow path 5c, the gas pressure measuring instrument 4c and the gas pressure adjusting valve 2c. It is connected.
Further, the second manufacturing factory 11a is connected to the gas flow path 5d, and the third manufacturing factory 11b is connected to the gas flow path 5c via the gas pressure measuring instrument 4b and the gas pressure control valve 2b.
The third manufacturing factory 11b is also connected to the downstream side of the gas flow rate control valve 1b interposed between the ethylene manufacturing factory 10 and the second gas consumption factory 20b.
[0012]
Further, the control device (not shown) is configured to adjust the gas flow rate adjusting valves 1a to 1d and the gas pressure based on the input control variables and control target values based on the pressure signals obtained by the gas pressure measuring devices 4a to 4d. It is a device having a function of calculating the opening degree of the valves 2a to 2d, outputting the result as an electric or air signal, and performing PID control of the opening degree of these control valves.
[0013]
Here, PID control refers to control that uses the control variables P (proportional action), I (integral action), and D (differential action) to bring the indicated value of the controlled object closer to the target value. Say.
[0014]
In such a gas supply system, for example, when the gas consumption amount of the fourth consumption factory 20d varies, the pressure of the gas flow path 5d varies. The opening degree of the gas pressure control valve 2d is PID controlled so that the pressure in the gas flow path 5d is constant, and the amount of hydrogen gas delivered to the gas flow path 5d is increased or decreased. The opening of the gas pressure control valve 2a is PID-controlled so that the pressure of the gas flow path 5a does not fluctuate with the adjustment of the opening of the gas pressure control valve 2d, and the amount of hydrogen gas sent to the gas flow path 5c is increased or decreased. . Next, the opening of the gas pressure control valve 2c is PID controlled so that the pressure of the gas flow path 5c does not fluctuate with the adjustment of the opening of the gas pressure control valve 2a, and the amount of hydrogen gas supplied to the fuel gas system is increased or decreased. To do. Further, even if the pressure of the gas flow path 5c varies, the opening degree of the gas pressure control valve 2b is PID controlled so that the pressure of the gas flow path 5b does not vary, and the gas flow path 5c from the gas pressure control valve 2b. Ensure that the amount of hydrogen gas delivered to the air does not fluctuate. That is, the gas pressure control valves 2a to 2d finally adjust the fluctuation of the gas consumption amount of the fourth consumption factory 20d by increasing or decreasing the supply amount to the fuel gas system to stabilize the pressure in the gas supply system. ing.
[0015]
In the present embodiment, the control variables P, I and D of the control valve respectively correspond to the following operations.
P action: When a difference R [%] occurs between the target value and the indicated value, a control action I instantaneously moves the valve opening S [%] by a value obtained by multiplying the difference R by the variable P. I action: the target value and When the difference R [%] continues to occur in the indicated value, the control operation D moves the valve opening S [%] by the value obtained by multiplying the difference R by the variable P over the time of the variable I [minute]. Action: When the difference R [%] between the target value and the indicated value increases by 1 [%] per minute, the control action moves the valve opening S [%] instantaneously by the value obtained by multiplying the variable P by the variable D [0016]
As can be seen from the above description, the variable P is a control variable that determines the speed of the valve operation. If it is too large, the valve operation is too early and causes vibration. If it is too small, the valve operation is too slow and the target value is set as the target value. It becomes impossible to control to the value. The variable I is a control variable that determines the smoothness of the valve operation. If it is too large, it takes too much time to bring the indicated value closer to the target value, and if it is too small, it approaches the P operation and the smoothness that is the aim of the I operation is reduced. It will disappear. Therefore, in order to realize fast and smooth control of the control valve, it is necessary to make the variable P as large as possible and the variable I as small as possible within a range where vibration does not occur.
[0017]
Further, the variable D is a control variable that determines a characteristic for suppressing the vibration because the valve operation is determined according to the rate of change per unit time of the instruction value. Therefore, the D operation may amplify the vibration with respect to the high-frequency vibration. Generally, in this type of PID control, the variable D = 0 is often set.
When the variable D = 0, if the variables P and I of the gas pressure control valves 2a to 2d are not appropriate, for example, the following problem occurs when the gas consumption of the fourth consuming factory 20d fluctuates.
1. If the variables P and I of the gas pressure control valve 2d are not appropriate, the pressures of the gas flow path 5a and the gas flow path 5d are not stable, and the delivery amount to the first consuming factory 20a and the pressure of the gas flow path 5b are It will fluctuate. Further, the amount of delivery to the second consuming factory 20b also varies with the pressure variation of the gas flow path 5b.
2. If the variables P and I of the gas pressure control valve 2a are not appropriate, the pressure fluctuation in the gas flow path 5a cannot be accommodated. Further, the pressure of the gas flow path 5c also varies.
3. If the variables P and I of the gas pressure control valve 2b are not appropriate, the pressure fluctuation in the gas flow path 5b cannot be accommodated. Further, the pressure of the gas flow path 5c also varies.
4). If the variables P and I of the gas pressure control valve 2c are not appropriate, the pressure fluctuation in the gas flow path 5c cannot be accommodated.
[0018]
In the present invention, dynamic pressure fluctuation analysis is used in order to obtain control variables that do not cause the above problems. The dynamic pressure fluctuation analysis is a method of calculating the pressure change of the supply system with respect to time-varying temperature, flow rate, etc. in time series. For example, the analysis can be executed using general-purpose simulation software “HYSYS”. . Appropriate control variables P, I and D obtained by this analysis are input to the control device.
[0019]
【Example】
An embodiment of the present invention will be described using a gas supply system similar to that shown in FIG. A total of 200 [capacity unit / h] of hydrogen gas generated from the ethylene production factory 10, the second production factory 11a, and the third production factory 11b is distributed to the first to fourth consumption factories 20a to 20d and the fuel gas system. Supply. The amount of hydrogen gas supplied from each manufacturing plant and the amount of hydrogen gas consumed in each consuming plant and fuel gas system are as follows. However, the hydrogen gas supply amount is constant, and the hydrogen gas consumption amount in the consumption factories 20a, 20b and 20c is also constant.
<Hydrogen gas supply>
Ethylene production plant 10: 160 [capacity unit / h]
Second manufacturing factory 11a: 20 [capacity unit / h]
Third manufacturing factory 11b: 20 [capacity unit / h]
<Hydrogen gas consumption>
1st consumption factory 20a: 1 [capacity unit / h]
Second consumption factory 20b: 6 [capacity unit / h]
Third consumption factory 20c: 5 [capacity unit / h]
Fourth consumption factory 20d: 100 [capacity unit / h]
Fuel gas system: 88 [capacity unit / h]
[0020]
The hydrogen gas of 160 [volume unit / h] generated from the ethylene production factory 10 is 1 [volume unit / h] to the first consumption factory 20a via the gas flow rate measuring device 3a and the gas flow rate control valve 1a. Hydrogen gas of 5 [capacity unit / h] is supplied to the third consuming factory 20c through the passage 5a, the gas pressure measuring device 4a, the gas flow measuring device 3c and the gas flow regulating valve 1c, and the gas flow measuring device 3b and 1 [volume unit / h] through the gas flow rate control valve 1b, 73 [volume unit / h] through the gas flow path 5a, the gas pressure measuring instrument 4a and the gas pressure control valve 2a, the gas flow path 5a, the gas pressure 80 [volume unit / h] of hydrogen gas is sent out through the measuring instrument 4a, the gas pressure control valve 2d, and the gas pressure measuring instrument 4d.
The 20 [capacity unit / h] hydrogen gas generated from the second manufacturing plant 11a merges with 80 [capacity unit / h] hydrogen gas sent from the gas pressure measuring instrument 4d in the gas flow path 5d, and the total amount 100 [capacity unit / h] of hydrogen gas is supplied to the fourth consumer factory 20d.
Of the 20 [capacity unit / h] hydrogen gas generated from the third manufacturing plant 11b, 5 [capacity unit / h] are 1 [capacity unit / h] hydrogen gas sent from the gas flow rate control valve 1b. A total of 6 [capacity unit / h] hydrogen gas is supplied to the second consumption factory 20b through the gas flow rate measuring device 3d and the gas flow rate control valve 1d, and the remaining 15 [capacity unit / h] h] hydrogen gas merges with 73 [volume unit / h] of hydrogen gas sent from the gas pressure control valve 2a through the gas pressure measuring device 4b and the gas pressure control valve 2b in the gas flow path 5c, A total of 88 [volume unit / h] of hydrogen gas is sent to the fuel gas system through the gas pressure measuring device 4c and the gas pressure control valve 2c.
[0021]
First, the following values are input as control variables (variable P, variable I, and variable D) of the gas pressure control valves 2a to 2d, and the opening degrees of the gas pressure control valves 2a to 2d are PID-controlled. Gas was distributed and supplied from the gas supply source (the ethylene production factory 10, the second production factory 11a, and the third production factory 11b) to the four gas consumption factories 20a to 20d via the gas flow paths. FIG. 2 (before application) shows the pressure fluctuation in the gas flow path 5b, FIG. 3 (before application) shows the pressure fluctuation in the gas flow path 5c, and FIG. 4 (before application) shows the pressure fluctuation in the gas flow path 5d. It can be seen that the pressure fluctuations of the gas flow paths 5b to 5d exceed ± 4%, and hydrogen gas cannot be stably supplied to the gas consuming factories.
(Gas pressure control valve 2a) = (0.4, 1.0, 0.0)
(Gas pressure control valve 2b) = (1.0, 1.0, 0.0)
(Gas pressure control valve 2c) = (1.0, 1.0, 0.0)
(Gas pressure control valve 2d) = (1.5, 5.0, 0.0)
[0022]
Next, the general-purpose simulation software “HYSYS” is used to reproduce the gas supply system of FIG. 1 and change the control variables (variable P, variable I, variable D) of the gas pressure control valves 2a to 2d on the simulation software. Thus, the control variable was determined so that the pressure fluctuation in each of the gas flow paths 5a to 5d was reduced. As the control variable determined here, for example, a value as shown below is input to a control device (not shown), and the opening degree of the gas pressure control valves 2a to 2d is PID-controlled, and the gas flow paths are supplied from three gas supply sources. The gas was distributed and supplied to four gas consumption factories. FIG. 2 (after application) shows the pressure fluctuation in the gas flow path 5b, FIG. 3 (after application) shows the pressure fluctuation in the gas flow path 5c, and FIG. 4 (after application) shows the pressure fluctuation in the gas flow path 5d. By applying the method of the present invention, the pressure fluctuation in each of the gas flow paths 5b to 5d can be less than ± 0.2%, and hydrogen gas can be stably supplied to each gas consuming factory. .
(Gas pressure control valve 2a) = (0.4, 1.0, 0.0)
(Gas pressure regulating valve 2b) = (4.0, 5.0, 0.0)
(Gas pressure control valve 2c) = (7.0, 4.0, 0.0)
(Gas pressure regulating valve 2d) = (5.0, 4.0, 0.0)
[0023]
【The invention's effect】
According to the present invention, when gas is supplied from a plurality of gas supply sources to a plurality of gas consuming places through gas flow paths, the amount of hydrogen gas supplied to each gas consuming place is not changed in an operating plant. And gas can be stably supplied to each gas consumption place, without installing a gas mixer, a buffer tank, etc. in a gas supply system.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a gas supply system to which a gas stable supply method according to an embodiment of the present invention is applied.
FIG. 2 is a graph showing the pressure of the gas flow path in one embodiment.
FIG. 3 is a graph showing the pressure of a gas flow path in one embodiment.
FIG. 4 is a graph showing the pressure of the gas flow path in one embodiment.
[Explanation of symbols]
1a to 1d gas flow rate control valve, 2a to 2d gas pressure control valve, 3a to 3d gas flow rate measuring instrument, 4a to 4d gas pressure measuring instrument, 5a to 5d gas flow path, 10 ethylene manufacturing factory, 11a second manufacturing factory 11b 3rd manufacturing factory, 20a 1st consumption factory, 20b 2nd consumption factory, 20c 3rd consumption factory, 20d 4th consumption factory.

Claims (1)

エチレン製造の際に副生ガスとして発生する水素ガスを複数のガス供給源からガス流路を介して複数のガス消費地に安定供給する方法であって、
このガス供給系のガス流路には、ガス圧力を計測するガス圧力計測器と、ガス圧力を調節するガス圧力調節弁と、ガス流量を調節するガス流量調節弁とが設けられ、水素ガスを貯蔵するためのガス混合器及びバッファータンクが設置されておらず、
ガス供給系を再現したシミュレーションソフト上で、ガス温度及び流量の時間変化に対してガス圧力調節弁の制御変数(変数P、変数I及び変数D)を変化させることによりガス圧力計測器にて得られるガス流路の圧力の変動が±0.2%未満となるような制御変数を決定し、
この制御変数を用いてガス供給系のガス圧力調節弁の開度をPID制御することを特徴とするガスの安定供給方法。
A method of stably supplying hydrogen gas generated as a by-product gas during ethylene production from a plurality of gas supply sources to a plurality of gas consumption areas through gas flow paths,
The gas flow path of the gas supply system, a gas pressure measuring device for measuring the gas pressure, the gas pressure regulating valve for adjusting the gas pressure, and gas flow rate control valve for adjusting the gas flow rate is provided, hydrogen gas There are no gas mixers or buffer tanks to store,
Obtained by the gas pressure measuring instrument by changing the control variables (variable P, variable I and variable D) of the gas pressure control valve with respect to the time change of the gas temperature and flow rate on the simulation software that reproduces the gas supply system. The control variable is determined so that the fluctuation of the pressure of the gas flow path is less than ± 0.2%,
A stable gas supply method, wherein the opening of a gas pressure control valve of a gas supply system is PID controlled using this control variable.
JP2003005569A 2003-01-14 2003-01-14 Gas supply method Expired - Lifetime JP4256684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005569A JP4256684B2 (en) 2003-01-14 2003-01-14 Gas supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005569A JP4256684B2 (en) 2003-01-14 2003-01-14 Gas supply method

Publications (2)

Publication Number Publication Date
JP2004220237A JP2004220237A (en) 2004-08-05
JP4256684B2 true JP4256684B2 (en) 2009-04-22

Family

ID=32896200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005569A Expired - Lifetime JP4256684B2 (en) 2003-01-14 2003-01-14 Gas supply method

Country Status (1)

Country Link
JP (1) JP4256684B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110094639A (en) * 2019-04-17 2019-08-06 北京航天发射技术研究所 A kind of high-precision intelligent Regulation Control device and control method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5235556B2 (en) * 2008-08-07 2013-07-10 Ckd株式会社 Liquid supply system
JP2011158010A (en) * 2010-01-29 2011-08-18 Chugoku Electric Power Co Inc:The Simulation program and simulation device of gas pipeline
CN102425726B (en) * 2011-12-08 2014-07-16 煤炭科学研究总院沈阳研究院 Comprehensive gas distribution device and gas distribution method for explosion-proof tests
JP5882393B2 (en) * 2014-05-28 2016-03-09 中国電力株式会社 Gas supply system
WO2016047120A1 (en) * 2014-09-26 2016-03-31 日本電気株式会社 Operation condition determination device, operation condition determination method, control system, and computer-readable recording medium
CN106764437A (en) * 2016-12-23 2017-05-31 东莞新奥燃气有限公司 A kind of many source of the gas gas air supply systems
CN109827073B (en) * 2019-01-28 2020-08-04 中国石油天然气集团有限公司 Automatic distribution and transmission implementation method for natural gas pipeline
CN109798443A (en) * 2019-03-11 2019-05-24 北京卫星环境工程研究所 For moon sample experiments room high pure nitrogen feed system
CN109915731B (en) * 2019-04-02 2024-01-26 中国石油工程建设有限公司 Pressure protection system and method for large-drop liquefied petroleum gas pipeline
CN111981322A (en) * 2020-08-11 2020-11-24 天津华迈环保设备有限公司 Liquefied petroleum gas pressurization conveying system
CN113972383B (en) * 2021-10-28 2023-07-21 三一汽车制造有限公司 System simulation device, verification method of control parameters and proportional valve control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110094639A (en) * 2019-04-17 2019-08-06 北京航天发射技术研究所 A kind of high-precision intelligent Regulation Control device and control method

Also Published As

Publication number Publication date
JP2004220237A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP4256684B2 (en) Gas supply method
KR101162546B1 (en) Discontinuous switching flow control method of fluid using pressure type flow controller
KR101134392B1 (en) Gas feeding device for semiconductor manufacturing facilities
US7930044B2 (en) Use of dynamic variance correction in optimization
KR101014697B1 (en) Variable flow rate ratio type fluid supply device
JP4399227B2 (en) Chamber internal pressure control device and internal pressure controlled chamber
US20050150552A1 (en) Device, method, and system for controlling fluid flow
JP5091821B2 (en) Mass flow controller
JP2000077394A (en) Semiconductor manufacture device
JP6216389B2 (en) Pressure flow control device
KR20020047089A (en) System and method for a variable gain proportional-integral (pi) controller
CN103998999B (en) For adjusting the method and system of multivariable PID controller
WO2011031444A1 (en) Multi-mode control loop with improved performance for mass flow controller
KR20220071919A (en) Flow rate control apparatus, flow rate control method, and program recording medium in which program for flow rate control apparatus is recorded
CN1854627A (en) Pressure-variable and total-blast duplex controlling method for blast-variable air-conditioner system
JP6984466B2 (en) Fuel cell system
CN109791395B (en) Regulation device with adjustability of regulation performance
US10248137B2 (en) Method for controlling flow rate of fluid, mass flow rate control device for executing method, and mass flow rate control system utilizing mass flow rate control device
CN113325693A (en) Improved PID control method and device for SCR denitration system
JP2001082701A (en) Boiler/turbine generator control system
US20200299162A1 (en) Process Aeration Balance Controller in Wastewater Treatment
JP4809809B2 (en) Liquid supply system
JP2002147749A (en) Automatic combustion control system
JP2023080611A (en) Flow rate control device, flow rate control method, and program for flow rate control device
SU1301854A1 (en) Control system for chemical and heat treatment of articles in furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070903

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4256684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term